UMB CS622
Regular Expressions

Wednesday September 22, 2021

Expressions

- Small Expression: $4.23
- Regular Expression: $6.23
- Large Expression: $6.23
Announcements

• HW1 graded
 • Use gradescope for grade questions / disputes

• HW2 due Sun 9/26 11:59pm EST
HW1 Review: Inductive Proofs

Must state:
- Induction on what
 - Often, “length of input string”
 - But not always!
- Base Case
- Inductive Case
 - with inductive hypothesis

Every statement and logical step **must have justification**

Usually taken from:
- Other theorems
- Definitions
- Given assumptions
HW1 Review: Problem 4

Q:
Prove that if some DFA $M = (Q, \Sigma, \delta, q_0, F)$ has a state q such that
$\delta(q, a) = q$, for all $a \in \Sigma$, then $\hat{\delta}(q, w) = q$ for all possible strings $w \in \Sigma^*$.
Use induction on the length of w.

A:
Claim. If a DFA has a state q such that $\forall a \in \Sigma \delta(q, a) = q$, then $\forall w \in \Sigma^* \hat{\delta}(q, w) = q$.

Proof. By induction on w.

Basis: Trivially, $\hat{\delta}(q, \epsilon) = q$ by the definition of $\hat{\delta}$.

Induction step: Let $w = w'x$ where $x \in \Sigma$, assume the inductive hypothesis $\hat{\delta}(q, w') = q$. The objective is to show $\hat{\delta}(q, w) = q$ using the claim’s precondition $\forall a \delta(q, a) = q$.

$\hat{\delta}(q, w) = \hat{\delta}(q, w'x)$ by substitution of $w = w'x$

$= \delta(\hat{\delta}(q, w'), x)$ by the definition of $\hat{\delta}$

$= \delta(q, x)$ by the inductive hypothesis

$= q$ by the precondition

\square
HW1 Review: Problem 3 (part 2)

Prove that the following language is regular:

\[
\{ w \mid w \text{ has exactly two 1s} \}
\]

In other words:

1. Design a DFA that recognizes the language; and
2. give an inductive proof that the DFA does indeed recognize the language.

Assume the language contains strings from alphabet \(\Sigma = \{0, 1\} \)

Q:

A:

Claim. \(\forall w \in \Sigma^* P(w) \), where \(P(w) = w \in L(M) \iff w \in A \).

Proof. By induction on \(w \).

- Basis: \(P(\epsilon) \) holds true as \(\epsilon \notin L(M) \) (the start state \(q_0 \) is not accepting) and \(\epsilon \notin A \) (\(\epsilon \) does not have two 1s).

- Induction step: Let \(w = w'a \) where \(a \in \Sigma \). Assume \(P(w') \), and consider \(P(w) \) throughout the following case analysis.

- If \(w' \) has zero 1s, then \(M \) is in state \(q_0 \):
 - Let \(a = 0 \): \(M \) stays in \(q_0 \) and rejects with zero 1s.
 - Let \(a = 1 \): \(M \) enters \(q_1 \) and rejects with one 1.

- If \(w' \) has one 1, then \(M \) is in state \(q_1 \):
 - Let \(a = 0 \): \(M \) stays in \(q_1 \) and rejects with one 1.
 - Let \(a = 1 \): \(M \) enters \(q_2 \) and accepts with two 1s.

- If \(w' \) has two 1s, then \(M \) is in state \(q_2 \):
 - Let \(a = 0 \): \(M \) stays in \(q_2 \) and accepts with two 1s.
 - Let \(a = 1 \): \(M \) enters \(q_3 \) and rejects with three 1s.

Not strong enough! (needs to say what each state represents)

These need justification (should come from IH)
So Far: Regular Language Representations

1. State diagram (NFA/DFA)

2. Formal description
 1. $Q = \{ q_1, q_2, q_3 \}$,
 2. $\Sigma = \{ 0, 1 \}$,
 3. δ is described as
 4. q_1 is the start state, and
 5. $F = \{ q_2 \}$.

3. $\Sigma^* 001 \Sigma^*$

A practical application: text search ... it doesn’t fit!

These define a computer (program) that finds strings containing 001

Need a more concise notation
Regular Expressions Are Widely Used

- Perl
- Python
- Java
- Every lang!
Regular Expressions: Formal Definition

A regular expression is a pattern that describes a set of strings.

- **R** is a regular expression if **R** is:
 1. A for some *a* in the alphabet \(\Sigma \), (A lang containing a) length-1 string
 2. \(\varepsilon \), (A lang containing) the empty string
 3. \(\emptyset \), The empty set (i.e., a lang containing no strings)
 4. \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are regular expressions, union
 5. \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are regular expressions, or concat
 6. \((R_1^*)\), where \(R_1\) is a regular expression, star

Base cases plus union, concat, and Kleene star can express any regular language! (But we have to prove it)
Regular Expression: Concrete Example

Entire reg expr: represents lang whose strings are strings from these langs concat’ed together (implicit concat op)

- the lang \{“0”, “1”\}
- \((0 \cup 1)0^*\)
- the lang \{“”, “0”, “00”, …\}
- the lang \{“0”\}
- the lang \{“1”\}

Operator Precedence:
- Parens
- Star
- Concat (sometimes implicit)
- Union
Thm: A lang is regular iff some reg expr describes it

⇒ If a language is regular, it is described by a reg expression

⇐ If a language is described by a reg expression, it is regular
 • Easy!
 • For a given regexp, construct the equiv NFA!
 • (we mostly did it already when discussing closed ops)

How to show that a lang is regular?
Construct DFA or NFA!
A regular expression R is defined as:

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.

The diagrams illustrate the construction of an NFA to recognize $A_1 \circ A_2$. The first diagram shows the transition from the initial state to an accept state upon reading the symbol a. The second diagram depicts the construction of N to recognize $A_1 \circ A_2$. The transition arrows and states represent the transitions and states of the NFA, respectively.
Thm: A lang is regular iff some reg expr describes it

⇒ If a language is regular, it is described by a reg expression
 • Harder!
 • Need to convert DFA or NFA to Regular Expression
 • To do so, need new kind of machine: a GNFA

⇐ If a language is described by a reg expression, it is regular
 • Easy!
 • Construct the NFA! (Done)
Generalized NFAs (GNFAs)

- GNFA = NFA with regular expression transitions
GNFA→RegExp function

On GNFA input G:

- If G has 2 states, return the regular expression transition, e.g.:

 $$(R_1) (R_2)^* (R_3) \cup (R_4)$$

- Else:
 - “Rip out” one state
 - “Repair” the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExp(G')
GNFA→RegExp: “Rip/Repair” step

To convert a GNFA to a regular expression: “rip out” states, and then “repair” until only 2 states remain
GNFA \rightarrow RegExpr: “Rip/Repair” step

Before: two paths from q_i to q_j:
1. Not through q_{rip}
2. Through q_{rip}

before

after

$(R_1) (R_2)^* (R_3) \cup (R_4)$
GNFA\!\!→\!RegExpr: \textit{“Rip/Repair”} step

\begin{align*}
\text{Before:} \quad &R_1 \quad R_3 \\
& \downarrow \hspace{0.5cm} \downarrow \\
& q_{\text{rip}}
\end{align*}

\begin{align*}
\text{After: still two “paths” from } q_i \text{ to } q_j \\
1. \text{ Not through } q_{\text{rip}} \\
2. \text{ Through } q_{\text{rip}} \\
\end{align*}

\begin{align*}
& (R_1) (R_2)^* (R_3) \cup (R_4) \\
& \downarrow \\
& q_j
\end{align*}
GNFA \rightarrow RegExpr: “Rip/Repair” step

Before:
- path through q_{rip} has 3 transitions
- One is self loop

\[(R_1) (R_2)^* (R_3) \cup (R_4) \] after

\[q_i \rightarrow q_j \]
GNFA→RegExpr: “Rip/Repair” step

Before:
- path through q_{rip} has 3 transitions
- One is self loop

After:
- Self loop becomes star operation
- Others are concat’ed together

This “informal” reasoning helps our intuition

Now lets formally prove correctness of GNFA→RegExpr
GNFA→RegExpr “Correctness”

• Where “Correct” means:

$$\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G))$$

Use Proof by induction ... on size of G

This is the property we want to prove

• i.e., GNFA→RegExpr must not change the language!
Previously: Recursive (Inductive) Definitions

• Have (at least) two parts:
 • Base case
 • Inductive case
 • Self-reference must be “smaller”

• Example:

Def: GNFA⇒RegExpr: input G is a GNFA with n states:
 If \(n = 2 \): return the regular expression on the transition
 Else (G has \(n > 2 \) states):
 • “Rip” out one state and “Repair” to get \(G' \)
 • Recursively Call GNFA⇒RegExpr(\(G' \))

This is exactly the structure of an inductive proof!
GNFA→RegExpr is correct

Def: GNFA→RegExpr: input G is a GNFA with n states:
 If $n = 2$: return the regular expression on the transition
 Else (G has $n > 2$ states):
 “Rip” out one state and “Repair” to get G'
 Recursively Call GNFA→RegExpr(G')

➢ Proof (by induction on size of G):
GNFA→RegExpr is correct

Def: GNFA→RegExpr: input G is a GNFA with n states:
- If $n = 2$: return the regular expression on the transition
- Else (G has $n > 2$ states):
 - “Rip” out one state and “Repair” to get G'
 - Recursively Call GNFA→RegExpr(G')

Proof (by induction on size of G):
- **Base case:** G has 2 states
 - $\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G))$ is true, by def of GNFA!
GNFA→RegExpr is correct

Def: GNFA→RegExpr: input G is a GNFA with n states:
- If $n = 2$: return the regular expression on the transition
- Else (G has $n > 2$ states):
 - “Rip” out one state and “Repair” to get G'
 - Recursively Call GNFA→RegExpr(G')

Proof (by induction on size of G):
- **Base case:** G has 2 states
 - $\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G))$ is true!
- **IH:** Assume $\text{LANGOF}(G') = \text{LANGOF}(\text{GNFA→RegExpr}(G'))$ is true!
 - For some G' with $n-1$ states
GNFA→RegExpr is correct

Def: \(\text{GNFA→RegExpr} \): input \(G \) is a GNFA with \(n \) states:
- If \(n = 2 \): return the regular expression on the transition
- Else (\(G \) has \(n > 2 \) states):
 - “Rip” out one state and “Repair” to get \(G' \)
 - Recursively Call \(\text{GNFA→RegExpr}(G') \)

Proof (by induction on size of \(G \)):
- **Base case:** \(G \) has 2 states
 - \(\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G)) \) is true!
- **IH:** Assume \(\text{LANGOF}(G') = \text{LANGOF}(\text{GNFA→RegExpr}(G')) \)
 - For some \(G' \) with \(n-1 \) states
 - **Induction Step:** Prove it’s true for \(G \) with \(n \) states
GNFA→RegExpr is correct

Def: GNFA→RegExpr: input G is a GNFA with n states:
- If $n = 2$: return the regular expression on the transition
- Else (G has $n > 2$ states):
 - “Rip” out one state and “Repair” to get $G’$
 - Recursively Call GNFA→RegExpr($G’$)

Proof (by induction on size of G):

- **Base case:** G has 2 states
 - $\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G))$ is true!

- **IH:** Assume $\text{LANGOF}(G’) = \text{LANGOF}(\text{GNFA→RegExpr}(G’))$
 - For some $G’$ with $n-1$ states

- **Induction Step:** Prove it’s true for G with n states
 - After “rip/repair” step, we have exactly a GNFA $G’$ with $n-1$ states
 - And we know $\text{LANGOF}(G’) = \text{LANGOF}(\text{GNFA→RegExpr}(G’))$ from the IH!
GNFA→RegExpr is correct

Def: GNFA→RegExpr: input G is a GNFA with n states:
- If $n = 2$: return the regular expression on the transition
- Else (G has $n > 2$ states):
 - “Rip” out one state and “Repair” to get G'
 - Recursively Call GNFA→RegExpr(G')

Proof (by induction on size of G):
- **Base case:** G has 2 states
 - $\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G))$ is true!
- **IH:** Assume $\text{LANGOF}(G') = \text{LANGOF}(\text{GNFA→RegExpr}(G'))$
- For some G' with $n-1$ states

Induction Step: Prove it’s true for G with n states
- After “rip/repair” step, we have exactly a GNFA G' with $n-1$ states
- And we know $\text{LANGOF}(G') = \text{LANGOF}(\text{GNFA→RegExpr}(G'))$ from the IH!
 - To go from G to G': just need to prove correctness of “rip/repair” step
GNFA \Rightarrow RegExpr: “rip/repair” correctness

Must prove:
- Every string accepted before, is accepted after
- 2 cases:
 - Accepted string does not go through q_{rip}
 - Acceptance unchanged (both use R_4 transition part)
 - String goes through q_{rip}
 - Acceptance unchanged?

Mostly done this already! Just need to state more formally
Thm: A language is regular iff some regular expression describes it.

⇒ If a language is regular, it is described by a regular expression
 • Harder!
 • Need to convert DFA or NFA to regular expression
 • Use GNFA→RegExpr to convert GNFA to regular expression! (Done!)

⇐ If a language is described by a regular expression, it is regular
 • Construct the NFA! (Done)

Now we may use regular expressions to represent regular languages.

I.e., we have another way to prove things about regular languages!

So a regular language has these equivalent representations:
- DFA
- NFA
- Regular Expression
Thm: Reverse is Closed for Regular Langs

• For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R, is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^R = \{ w^R | w \in A \}$

• Theorem: if A is regular, so is A^R

• Proof (by induction on regular expressions):
Thm: Reverse is Closed for Regular Langs

if \(A \) is regular, so is \(A^R \)

Case Analysis, assume some regular language \(A \) is represented with the regular expression ...

1. \(a \) for some \(a \) in the alphabet \(\Sigma \), same reg. expr. represents \(A^R \) so it is regular
2. \(\varepsilon \), same reg. expr. represents \(A^R \) so it is regular
3. \(\emptyset \), same reg. expr. represents \(A^R \) so it is regular
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions, inductive
5. \((R_1 \circ R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \((R_1^*) \), where \(R_1 \) is a regular expression.

Need to show: if \(A_1 \cup A_2 \) is a regular language, then \((A_1 \cup A_2)^R \) is regular

IH: if \(A_1 \) and \(A_2 \) are the regular languages represented by \(R_1 \) and \(R_2 \), then \(A_1^R \) and \(A_2^R \) are regular too

Proof: \((A_1 \cup A_2)^R = A_1^R \cup A_2^R \), because reversal and union don’t affect each other and are interchangeable

\(A_1^R \) and \(A_2^R \) are regular (from IH) and union is closed for regular langs (class thm), so \(A_1^R \cup A_2^R \) is regular
In-Class quiz 9/22

See gradescope