UMBCS622
Non-Regular Languages
Monday September 27, 2021
Announcements

• HW2 due yesterday

• HW3 released, due Sun 10/3 11:59pm EST

• First in-person class: next Monday 10/4
 • McCormack M01-0209
So Far: Regular or Not?

• Many ways to prove that a language is regular:
 • Construct a DFA or NFA (or GNFA)
 • Come up with a regular expression describing the language

• But how to show that a language is not regular?
 • E.g., HTML / XML is not a regular language
 • Can’t be represented with a regular expression (common mistake)!
Flashback: Designing DFAs or NFAs

• Each state “stores” some information
 • E.g., $q_0 =$ “seen zero 1s”, $q_1 =$ “seen one 1”, $q_2 =$ “seen two 1s” etc.
 • Finite states = finite amount of info (decided in advance)

• This means **DFAs can’t keep track of an arbitrary count!**
 • would require infinite states
A Non-Regular Language

\[L = \{ \theta^n \mathbf{1}^n \mid n \geq 0 \} \]

- A DFA recognizing \(L \) would require infinite states! (impossible)
 - States representing zero \(\theta \)s, one \(\theta \), two \(\theta \)s, ...

- This language represents the essence of many PLs, e.g., HTML!
 - To better see this replace:
 - “\(\theta \)” \(\rightarrow \) “\(<\text{tag}>\)” or “(“
 - “1” \(\rightarrow \) “\(</\text{tag}>\)” or “)”

- The problem is tracking the **nestedness**
 - Regular languages cannot count arbitrary nesting depths
 - So most programming language syntax is not regular!
A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

All regular languages satisfy these three conditions!

Specifically, strings in the language longer than length p satisfy the conditions

Lemma doesn’t tell you an exact p! (just that there exists “some” p)
The Pumping Lemma: Finite Languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

In finite langs, these are true for all strings “of length at least p” (for some p)

Example: a finite language \{“ab”, “cd”\}

- **All finite langs are regular** (can easily construct DFA/NFA recognizing them)
The Pumping Lemma, a Closer Look

Pumping lemma If \(A \) is a regular language, then there is a constant \(p \) (the pumping length) where if \(s \) is any string in \(A \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying:

1. for each \(i \geq 0 \), \(xy^i z \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Strings that have a **repeatable** part can be split into:
- \(x = \) the part **before** any repeating
- \(y = \) the repeated part
- \(z = \) the part **after** any repeating

“long enough” strings, should have a repeatable (“pumpable”) part; “pumped” string is still in the language

This makes sense because DFAs have a finite number of states, so for “long enough” (i.e., some length \(p \)) inputs, some state must repeat

e.g., “long enough length” = \# of states + 1

(The Pigeonhole Principle)
The Pumping Lemma: Infinite Languages

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0\), and
3. \(|xy| \leq p\).

\(“\text{pumpable}” \) part of string

\(“\text{pumpable}” \) part cannot be empty

Example: infinite language \{“00”, “010”, “0110”, “01110”, …\}

- Language is regular bc it's described by the regular expression \(01^*0 \)
- Notice that the middle part is pumpable!
- E.g., “010” in the language can be split into three parts: \(x = 0, y = 1, z = 0 \)
 - Any pumping (repeating) of the middle part creates a string that is still in the language
 - \(i = 1 \rightarrow “010” \), \(i = 2 \rightarrow “0110” \), \(i = 3 \rightarrow “01110” \)
Summary: The Pumping Lemma ...

- ... states properties that are true for all regular languages

IMPORTANT:
- The Pumping Lemma cannot prove that a language is regular!
- But ... we can use it to prove that a language is not regular
Poll: Conditional Statements
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:

 • “If Y then X” (converse)
 • No!

 • “If not X then not Y” (inverse)
 • No!

 • “If not Y then not X” (contrapositive)
 • Yes!

Proof by contradiction
Pumping Lemma: Proving Non-Regularity

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

If any of these are not true ...

Contrapositive: “If X then Y” is equivalent to “If not Y then not X”

... then the language is not regular
Pumping Lemma: Non-Regularity Example

Let B be the language $\{0^n1^n \mid n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.
How To Do Proof By Contradiction

• Assume the opposite of the statement to prove

• Show that the assumption leads to a contradiction

• Conclude that the original statement must be true
Want to prove: 0^n1^n is not a regular language

Possible Split: $y = \text{all 0s}$

Proof (by contradiction):

- **Assume:** 0^n1^n is a regular language

 - So it must satisfy the pumping lemma

 - i.e., all strings length p or longer are pumpable

- **Counterexample** = 0^p1^p

- Choose xyz split so y contains:

 - all 0s

- **Pumping y:** produces a string with more 0s than 1s

 - Which is not in the language 0^n1^n

 - This means that 0^p1^p does not satisfy the pumping lemma

 - Which means that that 0^n1^n is a not regular language

 - This is a **contradiction** of the assumption!

Contrapositive: If not true...

Pumping lemma if A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Reminder: Pumping lemma says strings \geq length p splittable into xyz where y is pumpable

BUT ... pumping lemma requires only one pumpable splitting

So the proof is not done!

Is there another way to split into xyz?
Want to prove: \(0^n1^n \) is not a regular language

Possible Split: \(y = \) all 1s

Proof (by contradiction):

- **Assume**: \(0^n1^n \) is a regular language
 - So it must satisfy the pumping lemma
 - i.e., all strings length \(p \) or longer are pumpable
- **Counterexample** = \(0^p1^p \)

- Choose \(xyz \) split so \(y \) contains:
 - all 1s

- Is this string pumpable?
 - No!
 - By the same reasoning as in the previous slide

Pumping lemma: If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. For each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).
Want to prove: 0^n1^n is **not** a regular language

Possible Split: $y = 0s$ and $1s$

Proof (by contradiction):

- **Assume**: 0^n1^n is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings length p or longer are pumpable
- **Counterexample** = 0^p1^p

- Choose xyz split so y contains:
 - both $0s$ and $1s$

- Is this string pumpable?
 - No!
 - Pumped string will have equal $0s$ and $1s$
 - But they will be in the wrong order: so there is still a **contradiction**!
The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Repeating part y ... must be in the first p characters!

p 0s

00 ... 011 ... 1

y must be in here!
The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Example: $L = \{ 0^i1^j \mid i > j \}$
Want to prove: \(L = \{0^i1^j \mid i > j \} \) is not a regular language

Proof (by contradiction):

- **Assume:** \(L \) is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings length \(p \) or longer are pumpable
- **Counterexample** = \(0^{p+1}1^p \)

 \[
 p+1 \text{ 0s} \quad p \text{ 1s}
 \]

- Choose \(xyz \) split so \(y \) contains:
 - all 0s
 - (Only possibility, by condition 3)

- Repeat \(y \) zero times (pump down): produces string with 0s \(\leq 1 \)s
 - Which is not in the language \(\{0^i1^j \mid i > j \} \)
 - This means that \(\{0^i1^j \mid i > j \} \) does not satisfy the pumping lemma
 - Which means that it is a not regular language
 - This is a contradiction of the assumption!
Pumping Lemma Doesn’t Always Work!

• What if you can’t figure out a counterexample?
Another Way to Prove Regularity

- A set of strings S is “representative” of a language L if:
 - Every possible string $w \in \Sigma^*$ maps to a string s in S via REP where...
 - $\text{REP}(w) = s$, if for every possible string z, $wz \in L$ iff $sz \in L$

Representative set $S = \{ \varepsilon, 0, 1 \}$

Viewed this way a language organizes all strings into distinct groups

A language is regular if this number of groups is finite, i.e. it has a finite representative set!

For regular languages, strings in the “representative” set correspond to states in a DFA!

$L = 01^*$

S contains one string that reaches each state

Then $\text{REP}(w) = s$ if w reaches the same state that s represents

Then for any string z, $wz \in L$ iff $sz \in L$ because they started in the same state!
Another Way to Prove Non-Regularity

• A set of strings S is “representative” of a language L if:
 • Every possible string $w \in \Sigma^*$ maps to a string s in S via REP where ...
 • $\text{REP}(w) = s$, if for every possible string z, $wz \in L$ iff $sz \in L$

$L = \{ \theta^n1^n | n \geq 0 \}$

• There must be a $\text{REP}(\theta^k)$ every k ...
 • Because for every two strings θ^k and θ^m ...
 • ... there’s some z that completes it such that $\theta^kz \in L$ but θ^mz is not
 • E.g., let $z = 1^k$, then $\theta^k1^k \in L$ but θ^m1^k is not in L

The representative set is infinite!

So the language is not regular!
Check-in Quiz 9/27

On gradescope