UMB CS622

Turing Machines and Recursion

Monday, November 1, 2021
Announcements

• Hw6 extended deadline:
 • due Wed 11/3 11:59pm
Recursion in Programming

(define (factorial n)
 (if (zero? n)
 1
 (* n (factorial (sub1 n)))))

In most programming languages, you can call a function recursively, even before it’s completely defined!
Turing Machines and Recursion

• We’ve been saying: “A Turing machine models programs.”

• Q: Is a recursive program modeled by a Turing machine?

• A: Yes!
 • But it’s not explicit.
 • In fact, it’s a little complicated.
 • Need to prove it …

• Today: The Recursion Theorem

Where’s the recursion in this definition???
The Recursion Theorem

• You can write a TM description like this:

\[B = \text{"On input } w:\text{ 1. Obtain, via the recursion theorem, own description } \langle B \rangle.\text{"} \]
The Recursion Theorem

Prove A_{TM} is undecidable, by contradiction:

assume that Turing machine H decides A_{TM}

$B = "On input w:"

1. Obtain, via the recursion theorem, own description $\langle B \rangle$.
2. Run H on input $\langle B, w \rangle$.
3. Do the opposite of what H says. That is, accept if H rejects and reject if H accepts."

This is the non-existent "D" machine the TM that does the opposite of itself, defined using recursion! (prev. defined using diagonalization)
How can a TM “obtain it’s own description?”

How does a TM even know about “itself” before it’s completely defined?
A Simpler Exercise

Our Task:
• Create a TM that, without using recursion, prints itself.
 • How does this TM get knowledge about “itself”?

• An example, in English:

 Print out two copies of the following, the second one in quotes:
 “Print out two copies of the following, the second one in quotes:”

• This TM knows about “itself”,
 • but it does not explicitly use recursion!

Idea:
TMs can receive TMs as input; just assume input will be yourself!

“TM input”

“TM”

“argument”
 (the TM gets itself from its input!)
Self-Printing Turing Machine

The following TM Q computes $q(w)$.

$Q = \text{"On input string } w:\text{"}$

1. Construct the following Turing machine P_w. $P_w = \text{"On any input:"

 1. Erase input.\text{[1]}

 2. Write } w \text{ on the tape.}
 3. Halt."

2. Output $\langle P_w \rangle$.\text{[2]}

$B = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a portion of a TM:"

Compute $q(\langle M \rangle)$.}

Combine the result with $\langle M \rangle$ to make a complete TM.

3. Print the description of this TM and halt.”

q creates a TM (that prints a string)\text{[1]}, and outputs it as a string (i.e., it’s “quoted”)\text{[2]}

So $q(\langle M \rangle)$ prints a “quoted” M

Print out two copies of the following, the second on in quotes:
SELF, Defined With The Recursion Theorem

\[SELF = \text{“On any input:} \]
\[1. \text{ Obtain, via the recursion theorem, own description } \langle SELF \rangle. \]
\[2. \text{ Print } \langle SELF \rangle. \]

- So a TM doesn’t need explicit recursion to call itself!

- What about TMs that do more than “print itself”?
The Recursion Theorem, Formally

Recursion theorem Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w).$$

In English:

- If you want a TM R that can "obtain own description" ...

- ... instead create a TM T with an extra "itself" argument ...

- ... then construct R from T ???
The Recursion Theorem, Pictorially

• To convert a “T” to “R”:

\[A \rightarrow B \rightarrow T \]

(\(=P_{<BT>}\))

control for \(R\)

1. Construct \(A\) = program constructing \(<BT>\), and
2. Pass result to \(B\) (from before),
3. which passes “itself” to \(T\)
Recurrsion Theorem, A Concrete Example

- If you want:
 - Recursive fn

- Instead create:
 - Non-recursive fn

(define (factorial n) ;; R
 (if (zero? n)
 1
 (* n (factorial (sub1 n))))))

(define (factorial/itself ITSELF n) ;; T
 (if (zero? n)
 1
 (* n (ITSELF (sub1 n))))))

Recursion Theorem says you can convert

It’s not clear how the recursion theorem applies to real programs?
TM and Recursive Programs

• So a TM doesn’t need explicit recursion to call itself!

• What about programs? (TM = Programs)

• Can we write recursive programs without using explicit recursion?
Interlude: Lambda

• \(\lambda = \) anonymous function, e.g. \((\lambda \ x \ x)\)
 - C++:
    ```cpp
    [](int x){ return x; }
    ```
 - Java:
    ```java
    (x) -> { return x; }
    ```
 - Python:
    ```python
    lambda x : x
    ```
 - JS:
    ```javascript
    (x) => { return x; }
    ```
A Self-Printing Program

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

```
((\ (SELF) (print2x SELF))
 "((\ (SELF) (print2x SELF))")
```

Could we write a program that does something other than print “itself”?

```
(define (print2x str)
  (printf "\n\n" str str))
```

First copy
Second copy (quoted)
Non-Printing Uses of \textit{SELF}

- Program that prints “itself”:
 \[
 \begin{aligned}
 &(((\lambda \ (\text{SELF}) \ (\text{print2x SELF})) \ \\
 &"(\lambda \ (\text{SELF}) \ (\text{print2x SELF}))")
 \end{aligned}
 \]

- Program that runs “itself” repeatedly (i.e., it infinite loops):
 \[
 (((\lambda \ (\text{SELF}) \ (\text{SELF SELF})) \ \\
 ((\lambda \ (\text{SELF}) \ (\text{SELF SELF}))))
 \]

- Loop, but do something useful each time?
 \[
 (((\lambda \ (\text{SELF}) \ (f \ (\text{SELF SELF})))) \ \\
 ((\lambda \ (\text{SELF}) \ (f \ (\lambda \ (v) \ ((\text{SELF SELF} \ v)))))))
 \]

- None of these programs use explicit recursion!

\textit{Y combinator}
Recursion Theorem Proof: Coding Demo

• Program that passes “itself” to another function:

\[
\lambda x. f \\
((\lambda x. (f (\lambda v. ((x x) v)))) \\
(\lambda x. (f (\lambda v. ((x x) v))))(\lambda x. (f (\lambda v. ((x x) v)))))
\]

Y combinator

• Function that needs “itself”

(define (factorial/itself ITSELF n) ;; T
 (if (zero? n)
 1
 (* n (ITSELF (sub1 n))))
)
Fixed Points

• A value x is a **fixed point** of a function f if $f(x) = x$
Recursion Theorem and Fixed Points

Let \(t: \Sigma^* \rightarrow \Sigma^* \) be a computable function. Then there is a Turing machine \(F' \) for which \(t(\langle F' \rangle) \) describes a Turing machine equivalent to \(F \). Here we'll assume that if a string isn't a proper Turing machine encoding, it describes a Turing machine that always rejects immediately.

In this theorem, \(t \) plays the role of the transformation, and \(F \) is the fixed point.

PROOF Let \(F \) be the following Turing machine.

\(F = \) “On input \(w \):
1. Obtain, via the recursion theorem, own description \(\langle F' \rangle \).
2. Compute \(t(\langle F' \rangle) \) to obtain the description of a TM \(G \).
3. Simulate \(G \) on \(w \)."

Clearly, \(\langle F \rangle \) and \(t(\langle F' \rangle) = \langle G \rangle \) describe equivalent Turing machines because \(F \) simulates \(G \).

• i.e., Recursion Theorem implies:
 - “every TM that computes on TMs has a fixed point”
 - **As code:** “every function on functions has a fixed point”

Fixed point is a TM that is unchanged by the function
Y Combinator

• `mk-recursivelfn` = a “fixed point finder”

```
(define mk-recursive-fn
  (λ (f)
    ((λ (x) (f (λ (v) ((x x) v))))
     (λ (x) (f (λ (v) ((x x) v)))))))
```

• `factorial` is the fixed point of `mk-factorial`
Summary: Where “Recursion” Comes From

• TMs are powerful enough to:
 1. Receive other TMs as input
 2. Construct other TMs
 3. Simulate other TMs

• That’s enough to achieve recursion!
Check-in Quiz 11/1

On gradescope