PSPACE Completeness

Monday, November 29, 2021

Announcements

- HW 9 extended
 - Due Tues 11/30 11:59pm EST
- HW 10 released
 - Due Tues 12/7 11:59pm EST
- HW 11 will be last assignment
 - Due Tues 12/14 11:59pm EST

Flashback: Dynamic Programming Example

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - B \rightarrow CC | b
 - $C \rightarrow AB \mid a$

We are gaining time ...

... by spending more space!

- Example string: baaba
- Store every <u>partial string</u> and their generating variables in a <u>table</u>

Substring end char

		b	a	a	b	a
	b	vars for "b"	vars for "ba"	vars for "baa"	•••	
g ar	a		vars for "a"	vars for "aa"	vars for "aab"	
	b					
	a					48

Substring start char

Space Complexity, Formally

TMs have a space complexity

DEFINITION

Let M be a deterministic Turing machine that halts on all inputs. The **space complexity** of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of tape cells that M scans on any input of length n. If the space complexity of M is f(n), we also say that M runs in space f(n).

If M is a nondeterministic Turing machine wherein all branches halt on all inputs, we define its space complexity f(n) to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

decider

Space Complexity Classes

Languages are in a space complexity class

DEFINITION

Let $f: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. The *space complexity classes*, SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

 $SPACE(f(n)) = \{L | L \text{ is a language decided by an } O(f(n)) \text{ space deterministic Turing machine} \}.$

 $NSPACE(f(n)) = \{L | L \text{ is a language decided by an } O(f(n)) \text{ space nondeterministic Turing machine} \}.$

Compare:

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

Example: SAT Space Usage

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

2^{0(m)} exponential time machine

```
M_1 = "On input \langle \phi \rangle, where \phi is a Boolean formula:
```

- **1.** For each truth assignment to the variables x_1, \ldots, x_m of ϕ :
- **2.** Evaluate ϕ on that truth assignment. \leftarrow Each loop iteration requires O(m) space
- 3. If ϕ ever evaluated to 1, accept; if not, reject."

But the <u>space is re-used</u> on each loop! (nothing is stored from the prev loop)

So this machine runs in O(m) space complexity!

Space is "more powerful" than time.

SAT is in O(m) space complexity class!

Example: Nondeterministic Space Usage

$$ALL_{\mathsf{NFA}} = \{\langle A \rangle | A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Nondeterministic decider for $\overline{ALL_{\mathsf{NFA}}}$ (accepts NFAs that reject something)

N = "On input $\langle M \rangle$, where M is an NFA:

1. Place a marker on the start state of the NFA.

Machine tracks "current" state(s) of NFA

2. Repeat 2^q times, where q is the number of states of M:

Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.

But each loop uses only O(q) space!

4. Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Additionally, need a counter to count to 2^q : this requires $\log (2^q) = q$ extra space

q states = 2^q possible

combinations

(so exponential time)

So the whole machine runs in (nondeterministic) linear O(q) space!

Facts About Time vs Space (for Deciders)

$TIME \rightarrow SPACE$

- If a decider runs in $\underline{\text{time}}|t(n)$, then its maximum $\underline{\text{space}}$ usage is ...
- ... *t*(*n*)
- ... because it can add at most 1 tape cell per step

What about deterministic vs non-deterministic?

$SPACE \rightarrow TIME$

- If a decider runs in space f(n), then its maximum time usage is ...
- ... $(|\Gamma| + |Q|)^{f(n)} = 2^{df(n)}$
- ... because that's the number of possible configurations
- (and a decider cannot repeat a configuration)

Flashback: Deterministic vs Non-Det. Time

- If a <u>non-deterministic</u> TM runs in: t(n) time
- Then an equivalent <u>deterministic</u> TM runs in: $2^{O(t(n))}$
 - Exponentially slower

What about space?

Deterministic vs Non-Det. Space

```
Savitch's theorem For any function f\colon \mathcal{N}\longrightarrow \mathcal{R}^+, where f(n)\geq n, \operatorname{NSPACE}(f(n))\subseteq\operatorname{SPACE}(f^2(n)).
```

- If a <u>non-deterministic</u> TM runs in: f(n) space
- Then an equivalent <u>deterministic</u> TM runs in: $f^2(n)$ space
 - Exponentially Only Quadratically slower!

Flashback: Nondet -> Deterministic TM: Time

t(n) time

 $2^{O(t(n))}$ time

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - 1-2
 - 1-1-1

Nondeterministic computation

Flashback: Nondet -> Deterministic TM: Space

Tracks which node we are on, $2^{O(t(n))}$ (exponential) space??

Nondet -> Deterministic TM: Space

Let N be an NTM deciding language A in space f(n)

- This means a single path could use f(n) space
- That path could take $2^{df(n)}$ steps
 - (That's the possible ways to fill the space)
 - Each step could be a non-deterministic branch that must be saved
- So naïvely tracking these branches requires $2^{df(n)}$ space!

• Instead, let's "divide and conquer" to reduce space!

"Divide and Conquer" TM Config Sequences

Formally: A "Yielding" Algorithm

End config Start config # steps CANYIELD = "On input c_1 , c_2 , and t: \rightarrow 1. If t = 1, then test directly whether $c_1 = c_2$ or whether c_1 yields Base case c_2 in one step according to the rules of N. Accept if either test succeeds; reject if both fail. 2. If t > 1, then for each configuration c_m of N using space f(n): Run CANYIELD $(c_1, c_m, \frac{t}{2})$. Run CANYIELD $(c_m, c_2, \frac{t}{2})$. "divide and conquer" If steps 3 and 4 both accept, then accept. If haven't yet accepted, reject."

What's the middle config? Try them all (it doesn't use any more space, per loop)

Savitch's Theorem: Proof

- Let N be an NTM deciding language A in space f(n)
- Construct equivalent deterministic TM M using $O(f^2(n))$ space:

```
M = "On input w:

1. Output the result of CANYIELD (c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})."
```

- c_{start} = start configuration of N
- c_{accept} = new accepting config where all N's accepting configs go

Extra *d* constant

depends on size

of tape alphabet

PSPACE

DEFINITION

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k).$$

NPSPACE

Analogous to P and NP for time complexity

DEFINITION

NPSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

$$\mathbf{NPSPACE} = \bigcup_{k} \mathbf{SPACE}(n^k).$$

But $P \subseteq PSPACE$ and $NP \subseteq NPSPACE$

- Because each step can use at most one extra tape cell
- But space can be re-used

Flashback: Does P = NP?

algorithm doesn't have a poly time algorithm?

(in general it's hard to prove that something doesn't exist)

64

PSPACE = NPSPACE ?

- PSPACE: langs decidable in poly space on deterministic TM
- NPSPACE: langs decidable in poly space on <u>nondeterministic</u> TM

```
Theorem: PSPACE = NPSPACE !!!
```

Proof: By Savitch's Theorem!

```
Savitch's theorem For any function f: \mathcal{N} \longrightarrow \mathcal{R}^+, where f(n) \ge n, \operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}(f^2(n)).
```

Space vs Time

- $P \subseteq PSPACE$ and $NP \subseteq NPSPACE$
 - Because each step can use at most one extra tape cell
 - And space can be re-used
- PSPACE ⊆ EXPTIME
 - Because an f(n) space TM has $2^{O(f(n))}$ possible configurations
 - And a halting TM cannot repeat a configuration
- We already know $P \subseteq NP$ and PSPACE = NPSPACE ... so:

Space vs Time: <u>Conjecture</u>

Researchers believe these are <u>all</u> completely contained within each other

But this is an open conjecture!

The only progress so far is: $P \subset EXPTIME$

(we will prove next week)

Review: NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP, and

The reduction must be "easy"

2. every A in NP is polynomial time reducible to B.

These are the "hardest" problems (in NP) to solve

Potentially helps answer **P=NP**? question

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

NP-Completeness vs **NP**-Hardness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. *B* is in NP, and

"NP-Hard"

 \rightarrow 2. every A in NP is polynomial time reducible to B.

"NP-Complete" = in NP + "NP-Hard"

So a language can be NP-hard but not NP-complete!

The Halting Problem is **NP**-Hard

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Proof: Reduce 3SAT to the Halting Problem

(Why does this prove that the Halting Problem is **NP**-hard?)

Because 3SAT is NP-complete! (so every NP problem is poly time reducible to 3SAT)

The Halting Problem is **NP**-Hard

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

<u>Computable function</u>, from $3SAT \rightarrow HALT_{TM}$:

On input ϕ , a formula in 3cnf:

Construct TM M

 $M = \text{on input } \phi$

- Try all assignments
 - If any satisfy ϕ , then accept

This loops when there is no satisfying assignment!

- When all assignments have been tried, start over
- Output $< M, \phi >$
- \Rightarrow If ϕ has a satisfying assignment, then M halts on ϕ
- \Leftarrow If ϕ has no satisfying assignment, then M loops on ϕ

Review:

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** *B* is in NP, and
- \Rightarrow 2. every A in NP is polynomial time reducible to B.

So a language can satisfy only condition #2

Review:

DEFINITION

A language B is NP-complete if it satisfies two conditions:

2. every A in NP is polynomial time reducible to B.

So a language can satisfy only condition #2

Can a language satisfy only condition #1?

Yes, every language in P ...

(... unless P = NP)

Can a non-P language satisfy only condition #1?

Yes ...

... but that implies $P \neq NP$, so it's not known for sure

PSPACE-Completeness

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

1. B is in PSPACE, and

 \rightarrow 2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

The reduction must still be "easy"

Condition #2 hard to prove the first time

Flashback: NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

The <u>first</u> **NP**-complete problem:

THEOREM

SAT is NP-complete.

PSPACE-Completeness

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

- **1.** B is in PSPACE, and
- **2.** every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

The <u>first</u> **PSPACE**-complete problem:

THEOREM

TQBF is PSPACE-complete.

TQBF

 $TQBF = \{\langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

Flashback: Boolean Formulas

A Boolean	ls	Example:	
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE	
Variable	Represents a Boolean value	x, y, z	
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$	
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$	
Literal	A var or a negated var	$x \text{ or } \overline{x}$	
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$	

Flashback: The Language of Math Statements

1. $\forall q \exists p \forall x, y \ [p>q \land (x,y>1 \rightarrow xy \neq p)],$ 2. $\forall a,b,c,n \ [(a,b,c>0 \land n>2) \rightarrow a^n+b^n\neq c^n],$ and 3. $\forall q \exists p \forall x, y \ [p>q \land (x,y>1 \rightarrow (xy \neq p \land xy \neq p+2))]$

Flashback: Mathematical Statements Alphabet

• Strings in the language are drawn from the following chars:

Flashback: Formulas and Sentences

- A mathematical statement is well-formed, i.e., a formula, if it's:
 - an atomic formula: $R_i(x_1, ..., x_k)$
 - $\phi_1 \wedge \phi_2$
 - $\phi_1 \vee \phi_2$
 - ¬φ
 - where ϕ , ϕ_1 , and ϕ_2 are formulas
 - $\forall x [\phi]$
 - ∃x [φ]
 - where ϕ is a formula
 - x's "scope" is in the following brackets
 - A free variable is a variable that is outside the scope of a quantifier
- A sentence is a formula with no free variables

$$R_{1}(x_{1}) \wedge R_{2}(x_{1}, x_{2}, x_{3})$$

$$\forall x_{1} \left[R_{1}(x_{1}) \wedge R_{2}(x_{1}, x_{2}, x_{3}) \right]$$

$$\forall x_{1} \exists x_{2} \exists x_{3} \left[R_{1}(x_{1}) \wedge R_{2}(x_{1}, x_{2}, x_{3}) \right]$$

Flashback: Universes, Models, and Theories

- A universe is the set of values that variables can represent
 - E.g., the universe of the natural numbers
 - Boolean Formulas use values from the universe of {True, False}
- A model is:
 - 1. a universe, and
 - 2. an assignment of relations to relation symbols, e.g., AND, OR, NOT
- A **theory** is the set of all <u>true sentences</u> in a model's language

Quantified Boolean Formulas

A Boolean	Is	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x ext{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Quantifiers	∃or∀	
Quantified Formula	Formula with quantifiers	$\phi = \forall x \exists y \left[(x \vee y) \wedge (\overline{x} \vee \overline{y}) \right]$
Fully Quantified Formula	Sentence, no free vars	

THEOREM

TQBF is PSPACE-complete.

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

- \blacksquare 1. B is in PSPACE, and
 - **2.** every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

TQBF is in **PSPACE**

Let *m* = # variables in formula

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

PROOF First, we give a polynomial space algorithm deciding *TQBF*.

T= "On input $\langle \phi \rangle$, a fully quantified Boolean formula:

Base case: O(m) space

Recursive calls:

- 2 for each variable
- each time, save 1 bool value

1. If ϕ contains no quantifiers, then it is an expression with only constants, so evaluate ϕ and accept if it is true; otherwise, reject.

- 2. If ϕ equals $\exists x \ \psi$, recursively call T on ψ , first with 0 substituted for x and then with 1 substituted for x. If either result is accept, then accept; otherwise, reject.
- 3. If ϕ equals $\forall x \ \psi$, recursively call T on ψ , first with 0 substituted for x and then with 1 substituted for x. If both results are accept, then accept; otherwise, reject."

At most m recursive calls, so O(m) space

THEOREM

TQBF is PSPACE-complete.

 $TQBF = \{\langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

- \bullet 1. B is in PSPACE, and
 - ightharpoonup 2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

TQBF is **PSPACE**-Hard

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

Idea: Imitate Cook-Levin Theorem

Flashback: SAT is NP-complete

- Proof idea:
 - Give an algorithm that reduces accepting tableaus to satisfiable formulas

• Thus every string in the NP lang will be mapped to a sat. formula

and vice versa

Resulting formulas will have <u>four</u> components: $\phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

An **NP** "Tableau"

- input $w = w_1 \dots w_n$
- At most n^k configs
 - (why?)
- Each config has length n^k
 - (why?)

A **PSPACE** "Tableau"

- input $w = w_1 ... w_n$
- At most $2^{O(n^k)}$ configs
 - (why?)
- Each config has length n^k
 - (why?)

 $\phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$

Converting this to a formula would take <u>exponential</u> space and time!

TQBF is **PSPACE**-Hard

 $TQBF = \{\langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

Another Idea: use quantifiers to "divide and conquer"

(like we did for Savitch's Theorem)

Let $f(n) = n^k$ be the space usage of the TM

Recursively Defined Formulas: Try # 1

$$\phi_{c_1,c_2,t} = \exists m_1 \ \left[\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}} \right]$$

t halved, but formula doubles in size (two subformulas)

Doesn't work! Still exponential!

Recursively Defined Formulas: Try # 2

$$\phi_{c_1,c_2,t} = \exists m_1 \left[\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}} \right]$$

$$\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} \left[\phi_{c_3,c_4,\frac{t}{2}} \right]$$

What's this?

Use ∀ quantifier to consolidate formula size

$$\forall x \in \{y,z\} \ [\dots]$$
 Shorthand for $\ \forall x \ [\ (x=y \lor x=z) \to \dots]$ (And =, \to can be converted to AND and OR)

$$t = 2^{O(f(n))},$$
 so # halvings (subformulas) = $\log(2^{O(f(n))}) = O(f(n))$

Recursively Defined Formulas: Base Case

$$\phi_{c_1,c_2,t}$$

This formula must encode that $c_1 \rightarrow c_2$ is a valid TM step ...

... using the same encoding as Cook-Levin!

Size of this subformula = O(f(n))

Total size of all subformulas = $O(f(n)) * O(f(n)) = O(f^2(n))$

TQBF is PSPACE-Hard

 $TQBF = \{\langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

Another Idea: use quantifiers to "divide and conquer"

(like we did for Savitch's Theorem)

- \Rightarrow If M accepts w, then the formula is TRUE
- Because formula encodes accepting config seqs
- \Leftarrow If *M* rejects *w*, then the formula is FALSE
- Because there's no config seq reaching accept state

Let $f(n) = n^k$ be the space usage of the TM M deciding some language A

THEOREM

TQBF is PSPACE-complete.

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

- \checkmark 1. B is in PSPACE, and
- \checkmark 2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

i.e., the "hardest" problem in PSPACE

Check-in Quiz 11/29

On gradescope