UMB (CS622

PSPACE Completeness

Monday, November 29, 2021

HORRIBLE TRUTH:!
PLL TECHNOLOGICAL PROGRESS \S DUE <O
HUMANIT V'S UNERRNED SENSE OF ENTITLEMENT.

YIM/T, BPES WOW LO;IOG
DOES It TAKE 10 TALK
SPrcE?” 'S R/IGHT THERE

%/{/{0«/{0@#{@/{&?

« HW 9 extended
e Due Tues 11/30 11:59pm EST

e HW 10 released
* Due Tues 12/7 11:59pm EST

« HW 11 will be last assignment
« Due Tues 12/14 11:59pm EST

Flaskback- Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba
« Store every partial string and their generating variables in a table

Substring
start char

We are gaining time ...

... by spending more space!

Substring end char

QO T 9 Qv T

vars for “b” vars for “ba”

“u_n

vars for “a

vars for “aa”

vars for “baa”

vars for “aab”

48

Space Complexity, Formally

TMs have a space
complexity

DEFINITION

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input ot
length n. It the space complexity ot M is f(n), we also say that M

runs in space f(n). o
If M is alnondeterministic Turing machine Wherein all branches

halt on all inputs, we define its space comp]JexitV f(n) to be the
Irglaximum number of tape cells that M scans on any branch|of its

computation for any input of length n.

decider

49

Space Complexity Classes

Languages are in a
space complexity class

DEFINITION

Let f: N—R™" be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

deterministic Turing machine}.

NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

Compare:

Let t: N—R™ be a function. Define the time complexity class, _ . : :
TIME(t(n)), to be the collection of all languages that are decid- NTIME(t(m)) = {L| L is a language decided by an O(¢(n)) time

able by an O(t(n)) time Turing machine. nondeterministic Turing machine}.

Example: SAT Space Usage

SAT = {(¢)| ¢ is a satishiable Boolean formula}

20(m) exponential
time machine

M; =¥On input (¢), where ¢ is a Boolean formula:
1. " For each truth assignment to the variables z, ..., x,, of ¢:
2. Evaluate ¢ on that truth assignment. <—— Each loop iteration requires O(m) space
3. If ¢ ever evaluated to 1, accept; if not, reject.”

But the space is re-used on each loop!
(nothing is stored from the prev loop)

So this machine runs in O(m) space complexity!

SAT is in O(m) space complexity class!

Space is “more powerful” than time.

51

Example: Nondeterministic Space Usage
ALLnea = {(A)| Aisan NFA and L(A) = ©*}

Nondeterministic decider for ALLypa ‘SerehFehe

IN = “On input (M), where M is an NFA: |

| Machine tracks
1. Place a marker on the start state of the NFA. “current” state(s) of NFA

: 2. Repeat 27 times, where g4s the number of states of M: !

. T PP : 1 an I
q states = 29 possible | _INondeterministically select an input symbol-and change the |[5.t each loop uses

combinations positions of the markers on M’ states to simulate reading | only 0(q) space!
(so exponential time) |

| that symbol.

| 4. Accept if stages 2 and 3 reveal some string that M rejects; that
Additionally, need | 18, if at some point none of the markers lie on accept states of |
a counter to count M. Otherwise, reject.”]
to 24 this requires —_——— —_—— — —_————

log (29) = q
extra space . . o . .
So the whole machine runs in (nondeterministic) linear O(q) space!

Facts About Time vs Space (for Deciders)

TIME — SPACE

e If a decider runs in time

* ...|lt(n)

t(n)l then its maximum space usage is ...

* ... because it can add at most 1 tape cell per step

SPACE — TIME

What about deterministic vs non-deterministic?

« If a decider runs in spacef(n)‘, then its maximum time usage Is ...

* . (IT]+ QY™ =

2df(n)

» ... because that's the number of possible configurations
- (and a decider cannot repeat a configuration)

Flsttack: Deterministic vs Non-Det. Time

* If a non-deterministic TM runs in: t(n) time

* Then an equivalent deterministic TM runs in: 20(t(n))
« Exponentially slower

What about space?

Deterministic vs Non-Det. Space

THEOREM --
Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f*(n)).

* If a non-deterministic TM runs in: f(n) space

« Then an equivalent deterministic TM runs in: f?(n) space
« Expoenentially Only Quadratically slower!

Flstback NONdet = Deterministic TM: Time

t(n) time 20(t(n))[time Nondeterministic
* Simulate NTM with Det. TM: ST bl
 Number the nodes at each step 1
« Deterministically check every tree path, f \
In breadth-first order v/*\v \
: 1 1 1,23 <lMax hfightth)
S (l ongest pa

e 1-1-1 t(n)
reject o \'

Max # of nodes
b = branching per level

pt(n) —|20(t(n))

*|accept

thshsack: NOndet = Deterministic TM: Space

Always has input, 3 tapes
never changes:

— n space

0|/0[1]|0|u| ... Inputtape

Used to run each path (re-copy input
D v here for each path): t(n) space

x |x|#|0|1|x|u]| ... simulation tape
R

1(213(3[2(3|1|2|1|1]|3|u|... addresstape

Tracks which node we are on,
20¢m) (exponential) space??

Nondet = Deterministic TM: Space

AN
Let N be an NTM deciding language A in space f(n) ‘@' 4}1
* This means a single path could use f{n) space e X))
» That path could take 241 steps \N

» (That's the possible ways to fill the space)
« Each step could be a non-deterministic branch that must be saved

« So nalvely tracking these branches requires 291 space!
T
| 0|0|1|0|u| ... inputtape
D —— Tracks node
x|x|#|0|1|x|u|... simulaton tape branching e.g.,
— 1-1-2, etc.
112(3[3(2(3|1|2]1|1|3|u]|... addresstape

* Instead, let's “divide and conquer” to reduce space!

“Divide and Conquer” TM Config Sequences

 Want to chec

K whether:

TM configs

Cstart

200tm)(possibly branching) steps

* Instead, we ¢

Remembering the branch at every
step costs exponential space

Cstart

200) /2 steps

neck whether:

>

Remembering these steps

* Keep

dividing ...

costs half the space ...

C

Number of splits:
log(2°Ut)) = O(f(n))

... and we can reuse that space
to check the second half

start

>

> >

g Caccept
Each split must
remember a “c,.” config
So long as we save the = 0(f(n)) space
ntermediate config
200m) /2 st Total:
= steps
L = Caccept | | OULM) ™ OU(n))
= 0(f*(n)) space

(Savitch's Thm)

accept

Formally: A “Yielding” Algorithm

Start config | End config | # steps
Z

CANYIELD = “On inputcy, 2, and t:

Base case

—>1.

R

[f t = 1, then test directly whether ¢; = ¢5 or whether ¢; yields
co in one step according to the rules of N. Accept if either test

succeeds; reject if both fail. / I

Ift > 1, then for each configuration ¢,, of N using space f(n):
Run CANYIELD (1, ¢, 5).
Run CANYIELD (¢, €2, %).
If steps 3 and 4 both accept, then accept.

< “divide and conquer”

What's the middle

config? Try them all
(it doesn’t use any
more space, per loop)

If haven’t yet accepted, reject.”

60

Savitch’'s Theorem: Proof

« Let N be an NTM deciding language A in space f(n)

 Construct equivalent deterministic TM M using O(f*(n)) space:

M = “On input w:
1. Output the result of CANYIELD (Cstare, Caceepts 2% ™).

°C
°C

= start configuration of N

start

accept

Extra d constant
depends on size
of tape alphabet

= new accepting config where all N's accepting configs go

PSPACE

DEFINITION

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = | | SPACE(n").
k

NPSPACE

Analogous to P and NP for time complexity

DEFINITION

NPSPACE i is the class of languages that are decidable in polynomial
space on R Ueterministic ‘Turing machine. In other words,

NPSPACE = | N[SPACE(n").

But P € PSPACE and NP € NPSPACE
- Because each step can use at most one extra tape cell
- But space can be re-used

Flaskback: DOES P = NP?

Proving P # NP is hard because how do you prove an
algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)

64

PSPACE = NPSPACE ?

« PSPACE: langs decidable in poly space on deterministic TM

« NPSPACE: langs decidable in poly space on nondeterministic TM

Theorem: PSPACE = NPSPACE

Proof: By Savitch’s Theorem!

THEOREM --

Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f?(n)).

Space vs Time

« P € PSPACE and NP € NPSPACE

« Because each step can use at most one extra tape cell
* And space can be re-used

* PSPACE € EXPTIME
« Because an f{n) space TM has 2001 possible configurations
« And a halting TM cannot repeat a configuration

* We already know P € NP and PSPACE = NPSPACE ... so:
P € NP € PSPACE = NPSPACE € EXPTIME

Space vs Time: Conjecture

Researchers believe
these are all
completely contained
within each other

EXPTIME

PSPACE But this is an

open conjecture!

The only progress so far is:
P c EXPTIME
(we will prove next week)

P c NP c PSPACE = NPSPACE c EXPTIME

fevew: NP-COmpleteness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

The reduction must be “easy”

These are the “hardest” problems (in NP) to solve

Potentially helps answer P=NP? question

THEOREM = reersssmmmsssssssssssssssssssssssssssssses

If B is NP-complete and B € P, then P = NP.

NP-Completeness vs NP-Hardness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
“NP-Hard” 2. every A in NP is polynomial time reducible to B.

“NP-Complete” = in NP + “NP-Hard”

So a language can be NP-hard but not NP-complete!

The Halting Problem 1s NP-Hard

HALTtwv = {{(M,w)| M isa TM and M halts on input w}
Proof: Reduce 3SAT to the Halting Problem

(Why does this prove that the
Halting Problem is NP-hard?)

Because 3SAT is NP-complete!
(so every NP problem is poly
time reducible to 3SAT)

(x1 VT3 VT3) A (23 VT Vxg) A (T3 VT6V 1y4) HALT v = {(M,w)| M is a TM and M halts on input w}

The Halting Problem 1s NP-Hard

HALTtwv = {{(M,w)| M isa TM and M halts on input w}

Computable function, from 3SAT — HALT,:
On input ¢, a formula in 3cnf:

e Construct TM M

M =on input ¢

e Try all assignments This loops when there is
: no satisfying assignment!
* If any satisfy ¢, then accept

« When all assignments have been tried, start over

. = If ¢ has a satisfying assignment, then M halts on ¢
OUtpUt <M, ¢ > & If ¢ has no satisfying assignment, then M loops on ¢

/e . DEFINITION
ewea,

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
mmm) 2. every A in NP is polynomial time reducible to B.

So a language can satisfy only condition #2

DEFINITION

/@Wéw,'

A language B is NP-complete if it satisfies two conditions:

mms) 1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

So a language can satisfy only condition #2

Can a language satisfy only condition #1?

) Yes, every language in P ... }

(.. unless P =NP) \

Can a non-P language satisfy only condition #1?

NP-Hard

P=NP
= NP-Complete

NP-Hard
] Yes ...

... but that implies P # NP,

"""""""""""""""""""""""" e so it's not known for sure B e R

PSPACE-Completeness

DEFINITION

A language B 1s PSPACE-complete if it satisfies two conditions:

1. B isin PSPACE, and

Condition B2 hardto | 5 "iery A in PSPACE is polynomial time reducible to B.

prove the first time

If B merely satisfies condition 2, we say that it is PSPACE-hard.

The reduction must still be “easy”

thstback: NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

The first NP-complete problem:
SAT is NP-complete.

.I A \ ; / Tﬁ\ﬁ

'ffl+|_ _1:_%“ SAT = {{¢)| ¢ is a satisfiable Boolean formula}

X/ f ‘\x_/
T3 wheh configuration .,f———_ —______“.

PSPACE-Completeness

DEFINITION

A language B i1s PSPACE-complete it it satisties two conditions:

1. B isin PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

The first PSPACE-complete problem:
TQBF is PSPACE-complete.

A ,+_ / / ”\

- _]l‘-a

,’, || . TQBF {{(¢)| ¢ is a true fully quantified Boolean formula}
[J

o0 \/

""“—A

TQBF

TQBF = {{(¢)| ¢ is a true fully quantified Boolean formula}

Flashtack- Boolean Formulas

Variable
Operation
Formula ¢

Literal
Clause

TRUE or FALSE (or 1 or 0)
Represents a Boolean value
Combines Boolean variables

Combines vars and operations
A var or a negated var
Literals ORed together

TRUE, FALSE
X,V Z
AND, OR, NOT (A, V, and —)
(TAyY) V (xAZ)
I Or I,
(r1 VT2 VT3V y)

79

thstback: The Language of Math Statements

1. Yq3IpVz,y | p>q A (x,y>1 — zy#p) |,
2. Va,b,cn [(ajb,c>0 An>2) — a”+b"#c"], and

3. Yq3pVa,y [p>q A (x,y>1 = (wy#p A wy#p+2)) |

thshiack: Mathematical Statements Alphabet

« Strings In the language are drawn from the following chars:

* AV, Boolean operations

* () L1 parentheses

eV, 3 quantifiers <:|

e X variables

* Ry, .., R, | Relation symbols

Flshtack FOrmulas and Sentences

A mathematical statement is well-formed, i.e., a formula, if it’s:
 an atomic formula: R,(x,, ..., X,

* P AP
. (PiV(Pi Ri(z1) N Ra(x1, 12, 23)
.« 1 Vz1 | Ri(z1) A Ra(x1, 22, x3) |
- where ¢, ¢,, and ¢, are formulas V1 3zo Az | Ri(21) A Re(z1, T2, 23) |
* Vx| @]
* Ix[]

« where ¢ is a formula

? [

« x's “scope” is in the following brackets
« Afree variable is a variable that is outside the scope of a quantifier

e A sentence is a formula with no free variables

Fhastback: UNiverses, Models, and Theories

A universe is the set of values that variables can represent
« E.g, the universe of the natural numbers
« Boolean Formulas use values from the universe of {True, False}

« A model is:
1. a universe, and
2. an assignment of relations to relation symbols, e.g., AND, OR, NOT

A theory is the set of all true sentences in a model’s language

Quantified Boolean Formulas

____ABoolean________| .| Bample

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Quantifiers Jorv
Quantified Formula Formula with quantifiers ¢=Vz3Iy [(zVy) A (ZTVTY)]

Fully Quantified Formula Sentence, no free vars

84

TQBF is PSPACE-complete.
TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}

DEFINITION
A language B is PSPACE-complete if it satisfies two conditions:

»1. Bisin PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

TQBF is in PSPACE

TQBF = {{(¢)| ¢ 1s a true fully quantified Boolean formula}

Let m = # variables in formula

PROOF First, we give a polynomial space algorithm deciding TQBF.

T = “On input (¢), a fully quantified Boolean formula:
Base case: O(m) space | 1. If ¢ contains no quantifiers, then it is an expression with only

constants, so evaluate ¢ and accept if it is true; otherwise, reject.

Recursive calls: 2. If ¢ equals 3z v, recursively call 7" on v, first with 0 substituted
_ 2 for each variable for z and then with 1 substituted for x. If either result is accept,
- each time, save 1 then accept; otherwise, reject.

bool value 3. If ¢ equals Vx 9, recursively call 7" on v, first with 0 substituted

for z and then with 1 substituted for x. If both results are ac-
cept, then accept; otherwise, reject.”

At most m recursive calls, so O(m) space

86

TQBF is PSPACE-complete.
TQBF = {{(¢)| ¢ 1s a true fully quantified Boolean formula}

DEFINITION
A language B is PSPACE-complete if it satisfies two conditions:

V] 1. Bisin PSPACE, and
»2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

TOBF 1s PSPACE-Hard

TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}

Idea: Imitate Cook-Levin Theorem

= {(¢)| ¢ is a true tully quantified Boolean formula}

(ashback: SAT is NP-complete

* Proof idea:
« Give an algorithm that reduces accepting tableaus to satisfiable formulas

* Thus every string in the NP lang will be mapped to a sat. formula

« and vice versa : :
Resulting formulas will have four

components:
¢C€H /\ ¢start A ¢m0ve /\ ¢accept

An NP “Tableau”

do

M|Wwa| ...

w

Tl

start configuration

| second configuration

nkth configuration

s Inputw=w, ..w,

« At most n* configs
e (why?)

« Each config has length nk
* (why?)

A PSPACE “Tableau”

20(n"k)

do

M|Wwa| ...

w

Tl

nk

start configuration

| second configuration

nkth configuration

s Inputw=w, ..w,

« At most 20(n"K) configs
e (why?)

« Each config has length nk
* (why?)

qﬁcell A ¢start A Cbmove /\ Cbaccept

Converting this to a formula would take exponential space and time!

TOBF 1s PSPACE-Hard

TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}

Another Idea: use quantifiers to “divide and conquer”
(like we did for Savitch’s Theorem)

Let f{n) = n* be the space usage of the TM

* ¢Cs’cart s Caccept 5 2% ()

20(n"k)

Recursively Defined Formulas: Try # 1

O

chl,@,t — Hml [écl,ml,% /\ ¢m1,62,%]

t halved, but formula doubles in size
(two subformulas)

Doesn’t work! Still exponential!

Recursively Defined Formulas: Try # 2

A s A A .
vci,c2,t — VT [Wey my, 5 7Y ¥Pmy,c2,5]
¢c1,cz,t = dny V(CSa&l) S {(Claml)? (mlﬂc2)} _QSCS:CZM%]
What's this? t halved,
— . . only 1 subformula
Use V quantifier to consolidate formula size l
Vo € {y,z} [...] Shorthand for Vg [(gg —yVao= Z) N]

What do the base
case subformulas

= Zg(f(n))’ look like?

(And =, = can be converted to AND and OR)

so # halvings (subformulas) = log(200m) = O(f(n))

Recursively Defined Formulas: Base Case

¢Cl,62,t t=1

This formula must encode that ¢; - ¢, is a valid TM step ...

... using the same encoding as Cook-Levin!

alqi|b algi| b alal|q
@ ®) ©
g2l afc alajq alal|b

Size of this subformula = 0(f{(n)) O LR YBhE © Bhn

Total size of all subformulas = 0(f(n)) * O(f(n)) = O(f*(n))

TOBF 1s PSPACE-Hard

TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}

Another Idea: use quantifiers to “divide and conquer”

(like we did for Savitch’'s Theorem)

= If M accepts w, then the formula is TRUE
- Because formula encodes accepting config seqs
Let f{n) = n* be the space usage of < If M rejects w, :chen the formula IS FALSE
the TM M deciding some languaged - - Because there’'s no config seq reaching accept state

|qp | wy rr'2| aco rr“‘ L <o« | u | # | start configuration
| second configuration
#

®
20(n") ¢Cstart » Caccept 2df(n)

TQBF is PSPACE-complete.
TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}

DEFINITION
A language B 1s PSPACE-complete it it satisties two conditions:

V] 1. Bisin PSPACE, and
V] 2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

H
..e., the “hardest” problem in PSPACE

Check-in Quiz 11/29

On gradescope

