Hierarchy Theorems

Monday, December 6, 2021
Announcements

- HW 9
 - Due Tues 11/30 11:59pm EST

- HW 10
 - Due Tues 12/7 11:59pm EST

- HW 11
 - Out Wed 12/8
 - Due Tues 12/14 11:59pm EST
Flashback: Is SAT Intractable? (Not in P?)

• There’s no known poly time algorithm that decides SAT

• But it’s hard to prove that an algorithm doesn’t exist
Last Time: Space vs Time: **Conjecture**

We think:

\[L \subset NL = \text{coNL} \subset P \subset NP \subset \text{PSPACE} = \text{NPSPACE} \subset \text{EXPTIME} \]

We know:

\[L \subset NL = \text{coNL} \subset P \subset NP \subset \text{PSPACE} = \text{NPSPACE} \subset \text{EXPTIME} \]

So far, only if we “skip” steps:
- \(NL \subset \text{PSPACE} \)
- \(\text{PSPACE} \subset \text{EXPSPACE} \)
- \(P \subset \text{EXPTIME} \)

Proving is difficult because it requires showing that an algorithm doesn’t exist (e.g., poly time).

Do we know if any of these subsets are true? E.g., \(P \subset NP \)
How to Prove an Algorithm “Doesn’t Exist”

1. Prove containment of two language complexity classes,
 • e.g. if \(P \subset NP \)

2. Prove completeness of a language in the larger class,
 • e.g. and if \(SAT \in NP \)
 • and \(SAT \) is \(NP \)-hard

3. Conclude that the language cannot be in the smaller class
 • e.g. then \(SAT \notin P \)
 • i.e., \(SAT \) has no poly time algorithm
 • (see also HW 9, problem # 2, part 2 for related problem)
 • Prove that if \(P \neq NP \), then 3NODES cannot be \(NP \)-complete.
Theorems

\[\text{PSPACE} \subseteq \text{EXPSPACE} \]

\[\text{P} \subsetneq \text{EXPTIME} \]

Could help prove that some language doesn’t have a poly time algorithm
How Much Is a Tape Cell Worth?

• Does giving a TM “more space” make it “more powerful”?
 • I.e., does it increase the # of problems it can solve?

• What if we only give a TM 1 more tape cell?
 • (Might not help in some cases?)

• Can we formalize “more space” and “more powerful”?
Space Hierarchy Theorem

THEOREM

Space hierarchy theorem For any space constructible function $f : \mathcal{N} \to \mathcal{N}$, a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.
Flashback: Big-O Notation

Let f and g be functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^+$. Say that $f(n) = O(g(n))$ if positive integers c and n_0 exist such that for every integer $n \geq n_0$,

$$f(n) \leq c \cdot g(n).$$

When $f(n) = O(g(n))$, we say that $g(n)$ is an upper bound for $f(n)$, or more precisely, that $g(n)$ is an asymptotic upper bound for $f(n)$, to emphasize that we are suppressing constant factors.
Flashback: Small-\circ Notation

Let f and g be functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^+$. Say that $f(n) = o(g(n))$ if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In other words, $f(n) = o(g(n))$ means that for any real number $c > 0$, a number n_0 exists, where $f(n) < c\, g(n)$ for all $n \geq n_0$.

Analogy
- **Big-O**: \leq
- **Small-o**: $<$

Let f and g be functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^+$. Say that $f(n) = O(g(n))$ if positive integers c and n_0 exist such that for every integer $n \geq n_0$,

$$f(n) \leq c\, g(n).$$

When $f(n) = O(g(n))$, we say that $g(n)$ is an upper bound for $f(n)$, or more precisely, that $g(n)$ is an asymptotic upper bound for $f(n)$, to emphasize that we are suppressing constant factors.
Space Hierarchy Theorem

Theorem

Space hierarchy theorem For any space constructible function \(f : \mathbb{N} \rightarrow \mathbb{N} \), a language \(A \) exists that is decidable in \(O(f(n)) \) space but not in \(o(f(n)) \) space.
Flashback: Computable Functions

- A TM that (instead of accept/reject) “outputs” final tape contents

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Space Constructible Functions

Definition

A function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is at least $O(\log n)$, is called space constructible if the function that maps the string 1^n to the binary representation of $f(n)$ is computable in space $O(f(n))$.

Function #1: $f(n)$

Function #2 (a TM)

Input n: unary

Output $f(n)$: binary

Space usage: $O(f(n))$
Space Constructible Function Example

Let \(f(n) = n^2 \)

<table>
<thead>
<tr>
<th>Input (n) (base 10)</th>
<th>Input (n) (unary)</th>
<th>Output (n^2) (base 10)</th>
<th>Output (n^2) (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Space Constructible Function Example

Let $f(n) = n^2$

<table>
<thead>
<tr>
<th>Input n (base 10)</th>
<th>Input n (unary)</th>
<th>Output n^2 (base 10)</th>
<th>Output n^2 (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>
Space Constructible Function Example

Let $f(n) = n^2$

<table>
<thead>
<tr>
<th>Input n (base 10)</th>
<th>Input n (unary)</th>
<th>Output n^2 (base 10)</th>
<th>Output n^2 (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>9</td>
<td>1001</td>
</tr>
</tbody>
</table>
Space Constructible Function Example

Let $f(n) = n^2$

<table>
<thead>
<tr>
<th>Input n (base 10)</th>
<th>Input n (unary)</th>
<th>Output n^2 (base 10)</th>
<th>Output n^2 (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11111111111111111</td>
<td>256</td>
<td>1000000000 (2^8)</td>
</tr>
</tbody>
</table>
Space Constructible Function Example

Let \(f(n) = n^2 \)

On input \(1^n \) (\(n \) in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - (counters require) \(\log(n) \) space
- Multiply (binary nums) \(n \times n \):
 - Quadratic (grade school) algorithm
 - \(\log^2(n) \) space

Total space: \(O(\log^2(n)) \)
Space allowed: \(O(n^2) \)
Space Constructible Function Example

Let $f(n) = n^k$

On input $1^n(n$ in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - (counters require) $\log(n)$ space
- Repeat k times: multiply by n:
 - Quadratic (grade school) algorithm
 - $\log^k(n)$ space

Total space: $O(\log^k(n))$
Space allowed: $O(n^k)$
Space Hierarchy Theorem

THEOREM

Space hierarchy theorem
For any space constructible function $f: \mathcal{N} \rightarrow \mathcal{N}$, a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.
Space Hierarchy Theorem: Proof Plan

THEOREM

Space hierarchy theorem For any space constructible function $f : \mathbb{N} \rightarrow \mathbb{N}$, a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.

- Let A be a language with a decider D that runs in $O(f(n))$ space.
- Make sure D rejects something from every $o(f(n))$ language...
- ... using diagonalization!
Flashback: Diagonalization with TMs

Diagonal: Result of Giving a TM its own Encoding as Input

<table>
<thead>
<tr>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

What should happen here?

It must both accept and reject!

TM D can’t exist!

Try to construct “opposite” TM

All TMs

opposites

All TM Encodings
Diagonalization with $o(f(n))$ TMs?

Diagonal: Result of Giving a TM its own Encoding as Input

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle D \rangle$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>

Try to construct “opposite” TM

TM D can exist!

But only for $o(f(n))$ TMs!

Opposites, if M is $o(f(n))$

All TMs

Doesn’t matter!
Space Hierarchy Theorem: Diagonalization

• Let \(A \) be a language with decider \(D \) that runs in \(O(f(n)) \) space
• Make sure \(D \) rejects something from every \(o(f(n)) \) language ...
• ... using diagonalization!

If \(M \) is an \(o(f(n)) \) space TM ...
... make \(D \) differ from \(M \) on one input:
... \(<M> \) itself!
• Specifically \(D \) runs \(M \) with \(<M> \) and checks space usage is \(o(f(n)) \)
• If \(M \) accepts \(<M> \) then \(D \) rejects \(<M> \)
 • and vice versa
• Then \(D \) cannot use \(o(f(n)) \) space!

3 potential issues:
1. \(M \) uses more than \(o(f(n)) \) space
 • \(D \) rejects \(M \) if it ever uses more than \(f(n) \) space
2. \(M \) uses more than \(o(f(n)) \) space for small \(n \)
 • Accept all inputs with arbitrary padding \(<M>10^* \)
3. \(M \) might go into loop
 • \(f(n) \) space TM cannot run for more than \(2^{f(n)} \) steps
 • So \(D \) runs \(M \) for only \(2^{f(n)} \) steps
Space Hierarchy Theorem: Proof

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathbb{N} \rightarrow \mathbb{N}$, a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.

PROOF The following $O(f(n))$ space algorithm D decides a language A that is not decidable in $o(f(n))$ space.

$$D = \text{“On input } w: \langle M \rangle 10^*$$

1. Let n be the length of w.
2. Compute $f(n)$ using space constructibility and mark off this much tape. If later stages ever attempt to use more, reject.
3. If w is not of the form $\langle M \rangle 10^*$ for some TM M, reject.
4. Simulate M on w while counting the number of steps used in the simulation. If the count ever exceeds $2^{f(n)}$, reject.
5. If M accepts, reject. If M rejects, accept.”
Space Hierarchy Theorem: Corollary # 1

For any two functions $f_1, f_2 : \mathbb{N} \rightarrow \mathbb{N}$, where $f_1(n)$ is $o(f_2(n))$ and f_2 is space constructible, $\text{SPACE}(f_1(n)) \subseteq \text{SPACE}(f_2(n))$.

Proof

• f_2 is space constructible, so by the Space Hierarchy Thm ...

Space hierarchy theorem For any space constructible function $f : \mathbb{N} \rightarrow \mathbb{N}$, a language A exists that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.

• ... some lang A is decidable in $O(f_2(n))$ space but not $o(f_2(n))$

• So $A \in \text{SPACE}(f_2(n))$ but $A \notin \text{SPACE}(f_1(n))$
 • Because $f_1(n) = o(f_2(n))$

• Thus, $\text{SPACE}(f_1(n)) \neq \text{SPACE}(f_2(n))$

• So $\text{SPACE}(f_1(n)) \subset \text{SPACE}(f_2(n))$
Space Hierarchy Theorem: **Corollary # 2**

For any two real numbers $0 \leq \epsilon_1 < \epsilon_2$, $\text{SPACE}(n^\epsilon_1) \subsetneq \text{SPACE}(n^\epsilon_2)$.

Proof

- From previous corollary ...

 For any two functions $f_1, f_2: \mathcal{N} \rightarrow \mathcal{N}$, where $f_1(n)$ is $o(f_2(n))$ and f_2 is space constructible, $\text{SPACE}(f_1(n)) \subsetneq \text{SPACE}(f_2(n))$.

- Earlier we showed that n^k is space constructible

- So for any two natural numbers $k_1 < k_2$:
 - $\text{SPACE}(n^{k_1}) \subset \text{SPACE}(n^{k_2})$
 - Because $n^{k_1} = o(n^{k_2})$

- Similarly, for two rationals $c_1 < c_2$: $\text{SPACE}(n^{c_1}) \subset \text{SPACE}(n^{c_2})$

- Two rationals exist between any two reals $\epsilon_1 < c_1 < c_2 < \epsilon_2$:
 - So $\text{SPACE}(n^{\epsilon_1}) \subset \text{SPACE}(n^{\epsilon_2})$
Space Hierarchy Theorem: **Corollary # 3**

\[\text{PSPACE} \subsetneq \text{EXPSPACE} \]

Proof

- **PSPACE** = SPACE\((n^k)\)
- **EXPSPACE** = SPACE\((2^k)\)
- \(n^k = o(2^k)\)
- By Space Hierarchy Theorem ...

Space hierarchy theorem For any space constructible function \(f : \mathbb{N} \rightarrow \mathbb{N}\), a language \(A\) exists that is decidable in \(O(f(n))\) space but not in \(o(f(n))\) space.

- A language \(A\) is decidable in \(O(2^k)\) space but not \(o(2^k)\)
- So \(A \in \text{EXPSPACE}\) but \(A \notin \text{PSPACE}\)
- So \(\text{EXPSPACE} \neq \text{PSPACE}\)
Space Hierarchy Theorem: Corollary # 4

\[\text{NL} \subsetneq \text{PSPACE} \]

Proof

- **NL** = NSPACE(log \(n\))
- By Savitch’s Theorem ...

\[\text{Savitch’s theorem} \quad \text{For any function } f : N \rightarrow R^+, \text{ where } f(n) \geq n, \text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)). \]

- **NL** = NSPACE(log \(n\)) \(\subseteq\) SPACE(log² \(n\))
- By Space Hierarchy Theorem ...

\[\text{Space hierarchy theorem} \quad \text{For any space constructible function } f : N \rightarrow N, \text{a language } A \text{ exists that is decidable in } O(f(n)) \text{ space but not in } o(f(n)) \text{ space.} \]

- SPACE(log² \(n\)) \(\subset\) SPACE(\(n\)) \(\subset\) SPACE(\(n^k\)) = PSPACE

How does this help show that some lang doesn’t have an algorithm with some complexity?
How to Prove an Algorithm “Doesn’t Exist”

1. **Prove containment** of two language complexity classes,
 - e.g., if $P \subset NP$

2. **Prove completeness** of a language in the larger class,
 - e.g., and if $SAT \in NP$
 - and SAT is NP-hard

3. **Conclude** that the language cannot be in the smaller class
 - e.g., then $SAT \notin P$
 - i.e., SAT has no poly time algorithm
Flashback: **PSPACE-Completeness**

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

1. B is in PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-hard**.

THEOREM

$TQBF$ is PSPACE-complete.
PSPACE-Completeness w.r.t. \leq_L

Definition

A language B is **PSPACE-complete** if it satisfies two conditions:

1. B is in PSPACE, and
2. every A in PSPACE is polynomial-time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-hard**.

Theorem

$TQBF$ is PSPACE-complete. with respect to log space reducibility

Each subformula can be generated in log space
Space Hierarchy Theorem: Corollary # 4

\[\text{NL} \subset \text{PSPACE} \]

• \(TQBF \notin \text{NL} \)
• Because \(TQBF \) is \text{PSPACE}-Complete (w.r.t log space reducibility)
• So if \(TQBF \in \text{NL} \)
 • Then every \text{PSPACE} problem is in \text{NL}
 • and \text{NL} = \text{PSPACE}

An \text{NL} algorithm for \(TQBF \) doesn’t exist!

Now can we prove that a language doesn’t have a poly time algorithm?
A function $t: \mathbb{N} \rightarrow \mathbb{N}$, where $t(n)$ is at least $O(n \log n)$, is called \textit{time constructible} if the function that maps the string 1^n to the binary representation of $t(n)$ is computable in time $O(t(n))$.

\textbf{Definition}

Function \#1: $t(n)$

(Computable) Function \#2 (a TM)

Input n: unary

Output $t(n)$: binary

Space usage: $O(t(n))$
Time Constructible Function Example

Let $t(n) = n^2$

On input $1^n (n$ in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - Each counter increment takes:
 - $\log(n)$ steps
 - Total: $O(n \log(n))$
- Multiply $n \times n$
 - Quadratic (grade school) algorithm
 - $O(\log^2(n))$ steps

Total steps: $O(n \log(n)) + O(\log^2(n)) = O(n \log(n))$
Steps allowed: $O(n^2)$
Time Hierarchy Theorem

Theorem

Time hierarchy theorem For any time constructible function $t: \mathcal{N} \rightarrow \mathcal{N}$, a language A exists that is decidable in $O(t(n))$ time but not decidable in time $o(t(n)/\log t(n))$.

Time is “weaker”; Must increase # steps by at least $\log t(n)$ to get extra “power” (i.e., decide additional languages)
Time Hierarchy Theorem Proof

Proof The following $O(t(n))$ time algorithm D decides a language A that is not decidable in $o(t(n)/\log t(n))$ time.

$D =$ “On input w:

1. Let n be the length of w.
2. Compute $t(n)$ using time constructibility and store the value $[t(n)/\log t(n)]$ in a **binary counter**. Decrement this counter before each step used to carry out stages 4 and 5. If the counter ever hits 0, reject.
3. If w is not of the form $\langle M \rangle 10^*$ for some TM M, reject.
4. Simulate M on w.
5. If M accepts, then reject. If M rejects, then accept.”

Note: A TM simulating another TM is not free! (This style of diagonalization proof won’t work to prove $P \subset NP$)
Time Hierarchy Corollary # 1

For any two functions $t_1, t_2: \mathbb{N} \rightarrow \mathbb{N}$, where $t_1(n)$ is $o(t_2(n)/\log t_2(n))$ and t_2 is time constructible, $\text{TIME}(t_1(n)) \subsetneq \text{TIME}(t_2(n))$.
Time Hierarchy Corollary # 2

For any two real numbers $1 \leq \epsilon_1 < \epsilon_2$, we have $\text{TIME}(n^{\epsilon_1}) \not\subset \text{TIME}(n^{\epsilon_2})$.
Time Hierarchy **Corollary # 3**

\[P \not\subseteq \text{EXPTIME} \]

So there exists some language that does not have a poly time algorithm!

(Next time, we see an example)
Check-in Quiz 12/6

On gradescope