LMB CS622 An Intractable Problem

Wednesday, December 8, 2021

"I can't find an efficient algorithm, but neither can all these famous people."

Announcements

- HW 10 in
 - Due Tues 12/7 11:59pm EST

- HW 11 out
 - Due Tues 12/14 11:59pm EST
- Course evaluation at end of class today

Last Time: Nonexistent Algorithms

• It's hard to prove that something doesn't exist

- For algorithms/deciders, the best we can say is usually:
 - "There's no known poly time algorithm that decides ... e.g., SAT"

Last Time: Proving a Nonexistent Algorithm

• e.g, if $A \subset B$

- 2. Prove completeness of a language in the larger class,
 - e.g, and if $L \in \mathbf{B}$ and L is \mathbf{B} -hard
- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, then $L \notin A$, i.e., L has no decider of some complexity!

Last Time: Hierarchy Theorems

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

 $NL \subseteq PSPACE$

 $PSPACE \subseteq EXPSPACE$

THEOREM

Time hierarchy theorem For any time constructible function $t: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(t(n)) time but not decidable in time $o(t(n)/\log t(n))$.

 $P \subseteq EXPTIME$

Last Time: A Nonexistent Algorithm

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

- 1. Prove proper containment of two complexity classes,
 - e.g, **NL** ⊂ **PSPACE**

- 2. Prove completeness of a language in the larger class,
 - e.g, $TQBF \in \mathbf{PSPACE}$ and TQBF is \mathbf{PSPACE} -hard

THEOREM

TQBF is PSPACE-complete.

- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, *TQBF* ∉ **NL**,
 - i.e., TQBF has no logspace NTM decider!

What about a <u>nonexistent poly time algorithm?</u>

Thm: $EQ_{RFX\uparrow}$ is Intractable! (not in **P**!)

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

A Nonexistent Polynomial Time Algorithm

 $EQ_{\mathsf{REX}\uparrow} = \{ \langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular} \\ \text{expressions with exponentiation} \}$

- 1. Prove proper containment of two complexity classes,
 - e.g, **P** ⊂ ???

- 2. Prove completeness of a language in the larger class,
 - e.g, $EQ_{RFX\uparrow} \in ???$ and $EQ_{RFX\uparrow}$ is ???-hard
- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, $EQ_{\mathsf{RFX}\uparrow} \notin \mathbf{P}$,
 - i.e., $EQ_{REX\uparrow}$ has no poly time decider!

A Nonexistent Polynomial Time Algorithm

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q,R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

• e.g, **P** ⊂ **EXPSPACE**

- 2. Prove completeness of a language in the larger class,
 - e.g, $EQ_{REX\uparrow} \in \textbf{EXPSPACE}$ and $EQ_{REX\uparrow}$ is EXPSPACE -hard Theorem

HEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, $EQ_{\mathsf{REX}\uparrow} \notin \mathbf{P}$,
 - i.e., $EQ_{REX\uparrow}$ has no poly time decider!

$P \subset EXPSPACE$

- P ⊆ PSPACE, because
 - ⇒ A poly time algorithm uses at most poly space
 - ← But a poly space algorithm can take more than poly time
 - Because space can be reused

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

• So $P \subseteq PSPACE \subset EXPSPACE$

A Nonexistent Polynomial Time Algorithm

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q,R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

- ☑ 1. Prove proper containment of two complexity classes,
 - e.g, **P** ⊂ **EXPSPACE**

- 2. <u>Prove completeness</u> of a language in the larger class,
 - e.g, $EQ_{REX\uparrow} \in \mathbf{EXPSPACE}$ and $EQ_{REX\uparrow}$ is $\mathbf{EXPSPACE}$ -hard THEOREM

HEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, $EQ_{\mathsf{REX}\uparrow} \notin \mathbf{P}$,
 - i.e., $EQ_{REX\uparrow}$ has no poly time decider!

Flashback: Regular Expressions

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Flashback: RegExpr-NFA

R is a *regular expression* if R is

1. a for some a in the alphabet Σ ,

5. $(R_1 \circ R_2)$, where R_1 and R_2 and

6. (R_1^*) , where R_1 is a regular exp

Construction of N to recognize $A_1 \circ A_2$

RegExpr>NFA is in PSPACE

• From HW10, Problem # 2

EQ_{NFA} is in **PSPACE**

- Prove not $\overline{EQ_{NFA}}$ is in **PSPACE**
 - From HW10, Problem #3

- And prove PSPACE closed under complement
 - From HW10, Problem #1

\overline{EQ}_{NFA} is in **NPSPACE** (= **PSPACE**)

Flashback: Nondeterministic Space Usage

 $ALL_{\mathsf{NFA}} = \{ \langle A \rangle | A \text{ is an NFA and } L(A) = \Sigma^* \}$

Nondeterministic decider for $\overline{ALL_{\mathsf{NFA}}}$

N = "On input $\langle M \rangle$, where M is an NFA:

- 1. Place a marker on the start state of the NFA.
- 2. Repeat 2^q times, where q is the number of states of M:

Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.

4. Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Machine tracks
"current" states of NFA:

q states = 2q possible
combinations
(so exponential time)

Each loop uses only O(q) space!

Additionally, need a counter to count to 2^q : requires $\log (2^q) = q$ extra space

So the whole machine runs in (nondeterministic) linear O(q) space!

\overline{EQ}_{NFA} is in **NPSPACE** (= **PSPACE**)

Track 2 sets of "current" states

- N = "On input $\langle N_1, N_2 \rangle$, where N_1 and N_2 are NFAs:
 - 1. Place a marker on each of the start states of N_1 and N_2 .
 - 2. Repeat $2^{q_1+q_2}$ times, where q_1 and q_2 are the numbers of states in N_1 and N_2 :
 - Nondeterministically select an input symbol and change the positions of the markers on the states of N_1 and N_2 to simulate reading that symbol.
 - 4. If at any point a marker was placed on an accept state of one of the finite automata and not on any accept state of the other finite automaton, *accept*. Otherwise, *reject*."

Machine runs in:

- nondeterministic O(q) space
- deterministic $O(q^2)$ space

EQ_{RFX} is in **PSPACE**

 $EQ_{\mathsf{REX}} = \{\langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions $\}$

From HW10, Problem # 4

- 1. Convert regular expressions to NFAs (PSPACE)
- 2. Check if NFAs are equivalent (**PSPACE**)

Regular Expressions + Exponentiation

Let \(\) be the *exponentiation operation*.

• If R is a regular expression, then

$$R^k = R \uparrow k = \overbrace{R \circ R \circ \cdots \circ R}^k$$

- I.e., exponentiation = concatenation *k* times
- So regular expressions with exponentiation ...
 - ... still equivalent to regular langs!

Thm: $EQ_{RFX\uparrow}$ is Intractable! (not in **P**!)

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

THEOREM

 $EQ_{\mathsf{REX}^{\uparrow}}$ is EXPSPACE-complete.

EXPSPACE-Completeness

DEFINITION

A language B is **EXPSPACE-complete** if

- 1. $B \in \text{EXPSPACE}$, and
 - **2.** every A in EXPSPACE is polynomial time reducible to B.

THEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

$EQ_{RFX\uparrow}$ is in **EXPSPACE**

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

Similar to EQ_{REX} decider from HW10, Problem #4

E = "On input $\langle R_1, R_2 \rangle$, where R_1 and R_2 are regular expressions with exponentiation:

1. Convert R_1 and R_2 to equivalent regular expressions B_1 and B_2 that use repetition instead of exponentiation.

2. Convert B_1 and B_2 to equivalent NFAs N_1 and N_2 , using the conversion procedure given in the proof of Lemma 1.55.

3. Use the deterministic version of algorithm N to determine whether N_1 and N_2 are equivalent."

Uses exponentially more space

From HW10

EXPSPACE-Completeness

DEFINITION

A language B is **EXPSPACE-complete** if

- 1. $B \in \text{EXPSPACE}$, and
- \Rightarrow 2. every A in EXPSPACE is polynomial time reducible to B.

THEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

$EQ_{RFX\uparrow}$ Is **EXPSPACE**-Hard

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q, R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

Flashback: Undecidability By Checking TM Configs

 $ALL_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Proof, by contradiction

• Assume ALL_{CFG} has a decider R. Use it to create decider for A_{TM} :

On input <*M*, *w*>:

- Construct a PDA P that rejects sequences of M configs that accept w
- Convert P to a CFG G
- Give *G* to *R*:

Any machine that can validate TM config sequences could be used to prove undecidability?

- If R accepts, then M has <u>no accepting config sequences</u> for w, so reject
- If R rejects, then M has an accepting config sequence for w, so accept

Flashback: Reducing every NP language to SAT

We know **NP** languages have a poly time NTM *M*! So reduce *M* accepting config sequences to a satisfiable formula!

Reducing every **EXPSPACE** lang to EQ_{REXT}

 n^k th configuration

 $20(n^k)$

regular expressions???

We know the language has an exp space decider!

Reducing every **EXPSPACE** lang to EQ_{REXT}

 R_2 equals $R_{\text{bad-start}} \cup R_{\text{bad-window}} \cup R_{\text{bad-reject}}$

$$M = (Q, \Sigma, \Gamma, \delta, q_{\text{accept}}, q_{\text{reject}})$$

We know the language has an exp space decider!

⇒ If M accepts w, there are no rejecting M config seqs for w so $R_1 = R_2$ \Leftarrow If M rejects w, there are rejecting M config seqs for w so $R_1 \neq R_2$

 R_2 = non-rejecting M config seqs for w

Rejecting Config Sequences

A rejecting sequence of *M* configs on *w*:

- Starts in start state q_0 with w on the tape
- Each step must be valid according to δ
- Ends in config with state $q_{\rm reject}$
- R_2 generates config seqs that **don't** satisfy (at least 1 of) these

$$R_{\text{bad-start}} \cup R_{\text{bad-window}} \cup R_{\text{bad-reject}}$$

- Important:
 - R_2 must be polynomial in length to have poly time reduction!

$R_{\text{bad-start}} = S_0 \cup S_1 \cup \cdots \cup S_n \cup S_b \cup S_\#$

 $R_{\text{bad-start}}$ = all strings not beginning with start config of M with w

• $w = w_1, ..., w_n$ (length n)

 $\Delta = \Gamma \cup Q \cup \{\#\}$

• $S_0 = \Delta_{-q0} \Delta^* = \text{all strings that don't start with } q_0$

 Δ_{-x} = all chars in Δ except for x

- $S_i = \Delta^i \Delta_{-wi} \Delta^* = \text{all strings whose } i+1\text{th char isn't } w_i$
 - These are all poly length (can be generated in poly time)
- S_b = all strings that don't have a blank in pos n+2 to 2^{n^k}
 - Could be exponential in length ...

Exponential exponent ... takes $log(2^{n^k})$ space = n^k space

• ... unless we use <u>exponentiation!</u>

$$S_b = \Delta^{n+1} \left(\Delta \cup \varepsilon \right)^{2^{(n^k)} - n - 2} \Delta_{-\sqcup} \Delta^*$$

Bad Reject

$$R_{\text{bad-reject}} = \Delta^*_{-q_{\text{reject}}}$$

Bad Window

• bad(abc, def) means window $abc \rightarrow def$ not valid according to δ

(a)	q_2	q_1	b c	(b)	a a	q_1	b q_2	(c)	a	a a	q_1 b
(d)	#	b	a	(e)	a	b	a	(f)	b	b	Ъ
	#	b	a	(6)	a	b	q_2	(1)	С	b	Ъ
									16		

R_2 Total Length (Time)

Exponential exponent ... takes $log(2^{n^k})$ space = n^k space ... Can be generated in poly time

$$R_{\text{bad-start}} = S_0 \cup S_1 \cup \cdots \cup S_n \cup S_b \cup S_\#$$

•
$$O(n^k)$$

$$S_b = \Delta^{n+1} \left(\Delta \cup \varepsilon \right)^{2^{(n^k)} - n - 2} \Delta_{-\sqcup} \Delta^*$$

•
$$R_{\text{bad-reject}} = \Delta^*_{-q_{\text{reject}}}$$

• *0*(1)

$$R_{\text{bad-window}} = \bigcup \Delta^* abc \, \Delta^{(2^{(n^k)}-2)} def \, \Delta^*$$

- $\operatorname{bad}(abc, def)$
- $O(n^k)$

Total Time: $O(n^k)$

EXPSPACE-Completeness

DEFINITION

A language B is **EXPSPACE-complete** if

THEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

A Nonexistent Polynomial Time Algorithm

 $EQ_{\mathsf{REX}\uparrow} = \{\langle Q,R \rangle | \ Q \ \text{and} \ R \ \text{are equivalent regular}$ expressions with exponentiation}

- ☑ 1. Prove proper containment of two complexity classes,
 - e.g, **P** ⊂ **EXPSPACE**

- ☑ 2. Prove completeness of a language in the larger class,
 - e.g, $EQ_{REX\uparrow} \in \mathbf{EXPSPACE}$ and $EQ_{REX\uparrow}$ is $\mathbf{EXPSPACE}$ -hard THEOREM

HEOREM

 $EQ_{\mathsf{REX}\uparrow}$ is EXPSPACE-complete.

- ☑ 3. Conclude that the language cannot be in the smaller class
 - e.g, $EQ_{\mathsf{RFX}\uparrow} \notin \mathbf{P}$,
 - i.e., $EQ_{REX\uparrow}$ has no poly time decider!

No Quiz 12/8

Fill out course evaluation