UMB CS622
An Intractable Problem

Wednesday, December 8, 2021

%/{/{0«/{0@#{@/{&?

~ HW-10-in
 Due Tues12/7-1:59pmEST

* HW 11 out
« Due Tues 12/14 11:59pm EST

« Course evaluation at end of class today

last Time: NONEXIStent Algorithms

« It's hard to prove that something doesn’t exist

-

* For algorithms/deciders, the best we can say is usually:
* “There’s no known poly time algorithm that decides ... e.g., SAT”

last Tire: Proving a Nonexistent Algorithm

m=) 1. Prove proper containment of two complexity classes,

ccg IfACB B

2. Prove completeness of a language in the larger class,
« e.g and if L e Band L is B-hard

3. Conclude that the language cannot be in the smaller class
« g thenL €A, ie., Lhas no decider of some complexity!

last Tire: Hierarchy Theorems

THEOREM --

Space hierarchy theorem For any space constructible function f: N— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

NI C PSPACE
PSPACE C EXPSPACE

THEOREM

Time hierarchy theorem For any time constructible function ¢: N'— N/,
a language A exists that is decidable in O(#(n)) time but not decidable in time

o(t(n)/logt(n)).
P C EXPTIME

last Tine: A NONexistent Algorithm

TQBF = {(¢)| ¢ 1s a true fully quantified Boolean formula}
1. Prove proper containment of two complexity classes,

+ e.g, NL c PSPACE

2. Prove completeness of a language in the larger class,

° eg’ TQBFE PSPACE and TQBF iS PSPACE_hard THEOREM e emsmsmnmsnmsassnsansansanas
TQBF is PSPACE-complete.

3. Conclude that the language cannot be in the smaller class
* e.g, TQBF & NL,
* |.e., TQBF has no logspace NTM decider!

What about a nonexistent poly time algorithm?

Thm: EQx,, is Intractable! (not in P!)

EQrext = {{@, R)| Q and R are equivalent regular

expressions with exponentiation }

A Nonexistent Polynomial Time Algorithm

EQrext = {{@, R)| Q and R are equivalent regular

expressions with exponentiation }

1. Prove proper containment of two complexity classes,

+ e.g, PcC77? @ N

2. Prove completeness of a language in the larger class,
e e.8, EQrexr € 77?7 and EQgey; 1S 22?-hard

3. Conclude that the language cannot be in the smaller class

* .8 EQrext € P,
* i.e., EQreyy has no poly time decider!

A Nonexistent Polynomial Time Algorithm

EQrext = {{@, R)| Q and R are equivalent regular

expressions with exponentiation }

=) 1. Prove proper containment of two complexity classes,

 e.g, P c EXPSPACE :

2. Prove completeness of a language in the larger class,
* e.g, EQrex; € EXPSPACE and EQgexr IS EXPSPACE -hard THEOREM -

EQrexs is EXPSPACE-complete.
3. Conclude that the language cannot be in the smaller class

* .8 EQrext € P,
* i.e., EQreyy has no poly time decider!

P c EXPSPACE

P € PSPACE, because

« = A poly time algorithm uses at most poly space

« & But a poly space algorithm can take more than poly time
« Because space can be reused

« And Space Hierarchy Theorem says: PSPACE c EXPSPACE

Space hierarchy theorem For any space constructible function f: N'— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

* S0 P € PSPACE c EXPSPACE

A Nonexistent Polynomial Time Algorithm

EQrext = {{@, R)| Q and R are equivalent regular

expressions with exponentiation }

V1. Prove proper containment of two complexity classes,

 e.g, P c EXPSPACE :

mm)2. Prove completeness of a language in the larger class,
* e.g, EQrex; € EXPSPACE and EQgexr IS EXPSPACE -hard THEOREM -

EQrexs is EXPSPACE-complete.
3. Conclude that the language cannot be in the smaller class

* .8 EQrext € P,
* i.e., EQreyy has no poly time decider!

Flaskback: Regular Expressions

R is a regular expression it R is

1. a for some a in the alphabet ¥,
2. g,

0,

3.
4. (R1 U R5), where Ry and R, are regular expressions,

5. (R1 0 R2), where R; and R are regular expressions, or
6. (R7), where R; is a regular expression.

Fiskbeck: ReGEXPr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 o R2), where R and Rs a1
(RY), where R; is a regular exp 0%§ Nor= }

-) @
. J @)

. /

RegExpr->NFA is in PSPACE

e From HW10, Problem # 2

EQ.:» is in PSPACE

* Prove not EQy, IS In PSPACE
 From HW10, Problem # 3

* And prove PSPACE closed under complement
* From HW10, Problem # 1

EQy:. is in NPSPACE (= PSPACE)

thshback: NONdeterministic Space Usage
ALLnea = {(A)] Aisan NFA and L(A) = ©*}

Nondeterministic decider for ALLnra Machine tracks
— S — _—— — — | “current” states of NFA:
| N = “On input (M), where M is an NFA: q states = 24 possible
| 1. Place a marker on the start state of the NFA. combinations
| 2. Repeat 27 times, where ¢ is the number of states of M: 50 Eponeia. Lre)
Additionally, |3 l\Top(Eleterministically select an input Symboloand change Fhe M Each loop uses only
need a counter positions of the markers on M’s states to simulate reading | 0(q) space!
to count to 2¢: that symbol.
feglliss 4. Accept if stages 2 and 3 reveal some string that M rejects; that
bl =q is, if at some point none of the markers lie on accept states of
extra space . s |
C— M. Otheiwise,_'r’eject. - I

So the whole machine runs in (nondeterministic) linear O(q) space!

EQy:. is in NPSPACE (= PSPACE)

Track 2 sets of

| N = «“On input (N, No), where Ny and N5 are NFAs: “current” states
: 1. Place a marker on each of the start states of N; and Ns. |
| 2. Repeat 2791792 times, where ¢; and ¢o are the numbers of states
in N7 and Ns:
3. Nondeterministically select an input symbol and change the
positions of the markers on the states of N; and N> to simu-
late reading that symbol.

|
4. If at any point a marker was placed on an accept state of one :
|

| of the finite automata and not on any accept state of the other
finite automaton, accept. Otherwise, reject.”

— AR —_—]

Machine runs in:
- nondeterministic O(q) space
- deterministic O(g?) space

EQqcy iS in PSPACE

EQrex = {(Q, R)| Q and R are equivalent regular
expressions }

From HW10, Problem # 4
1. Convert regular expressions to NFAs (PSPACE)

2. Check if NFAs are equivalent (PSPACE)

Regular Expressions + Exponentiation

Let 1 be the exponentiation operation.

 If RIs a regular expression, then
k

_A

Rk:RTk:?{ORo---ofi

* |.e,, exponentiation = concatenation k times

 So regular expressions with exponentiation ...
e ... still equivalent to regular langs!

Thm: EQx,, is Intractable! (not in P!)

EQrex+ = 1(Q, R)| @ and R are equivalent regular

expressions with exponentiation }

THEOREM = s,

EQRrexs 1s EXPSPACE-complete.

EXPSPACE-Completeness

DEFINITION
A language B is EXPSPACE-complete it

mmmm) . B € EXPSPACE, and
2. every A in EXPSPACE is polynomial time reducible to B.

THEOREM = s,

EQRrexs 1s EXPSPACE-complete.

EQ.cv; is in EXPSPACE

EQrext+ = {({Q, R)| Q and R are equivalent regular

expressions with exponentiation }

Similar to EQgey decider from HW10, Problem #4

From HW10

1.

2.

E = “On input (R, Ry), where R; and R are regular expressions with

exponentiation:

Convert R; and R, to equivalent regular expressions B; and Bs
that use repetition instead of exponentiation.

Convert B; and B to equivalent NFAs N; and Ns, using the
conversion procedure given in the proof of Lemma 1.55.

Use the deterministic version of algorithm N to determine
whether N, and N» are equivalent.”

Uses
exponentially
more space

EXPSPACE-Completeness

DEFINITION
A language B is EXPSPACE-complete it

1. B € EXPSPACE, and
mmms) 2. every A in EXPSPACE is polynomial time reducible to B.

THEOREM = s,

EQRrexs 1s EXPSPACE-complete.

EQqcyr |s EXPSPACE-Hard

EQrex+ = 1(Q, R)| @ and R are equivalent regular

expressions with exponentiation }

thstback: Undecidability By Checking TM Configs

ALLcre = {(G)| GisaCFG and L(G) = ¥*}
Proof, by contradiction
« Assume ALLqr; has a decider R. Use it to create decider for Ay

On input <M, w>:
« Construct a PDA P that rejects sequences of M configs that accept w

e Convert Pto a CFG G Any machine that can validate
. TM config sequences could be
e GIve G to R: used to prove undecidability?

* If R accepts, then M has no accepting config sequences for w, so reject
* If R rejects, then M has an accepting config sequence for w, so accept

thstback: Reducing every NP language to SAT

Cbcell /\ @start A ¢move /\ ¢accept

We know NP languages have a poly time NTM M!
So reduce M accepting config sequences to a
satisfiable formula!

Reducing every EXPSPACE lang to EQgpyq

Some EXPSPACE lang = {w | w is 7?7}
N f

Need to reduce some w to 2 equivalent
regular expressions???

We know the language has an exp space decider!

o EQrexs = {{Q, R)| Q and R are equivalent regular

expressions with exponentiation}

Qo | W

1

-21,12‘ soc ‘mn‘ u ‘ soc ‘ L

#

#

#

20(n"k)

start configuration

second configuration

nkth configuration

Reducing every EXPSPACE lang to EQgpyq

Ro eqll‘cllS Fhad-start Y £¥had-window U Rbad—reject

A B

o EQrexs = {{Q, R)| Q and R are equivalent regular
expressions with exponentiation}

Some EXPSPACE lang = {w | wis 777}
N f / ‘
//\
. * R, = A¥ A=TUQu {#}

R, = non-rejecting M config seqs for w

= If M accepts w,
M=(Q %, T, 90, Quccept Treject) there are no rejecting M config seqs for wso R, = R,
< If M rejects w,
We know the language has an exp space decider! || there are rejecting M config seqs for wso R, # R,

Rejecting Conflg Sequences

A rejecting sequence of M configs on w:

e Starts in start state g, with w on the tape
« Each step must be valid according to 6

- Ends in config with\state g,

- R, generates config seqs that don't satisfy (at least 1 of) these

Rpad-start Y fbad-window U Rbad—reject

* Important:
* R, must be polynomial in length to have poly time reduction!

Rpad-start = So U ST U == U5, US, U Sy

Ry, 4.cre = all strings not beginning with start config of M with w
*w=w,,..,w, (length n) A=TuQu{#
* So=A A% =all strings that don’t start with g, [A«=allcharsinA exceptiorx
« S.= ATA_ . A* = all strings whose i+1th char isn't w,

 These are all poly length (can be generated in poly time)

« S, = all strings that don’t have a blank in pos n + 2 to 27"

« Could be exponential in length ... Exponential exponent ... takes
. . n’k — nk
e ... unless we use exponentiation! log(2™"") space = n" space

n K
Sb — A"H‘l (A L 8)2() —n—2 A—I_l A*

Bad Reject

K
Rbad—rej ect = A

— reject

Bad Window

* bad(abc, def) means window abc — def not valid according to 6

Rbad—window —

nk
) A% abe ACT def A

bad(abc,def)
Ci C’i+1
r — A\ 4 —A]
s... | #| . Jalb]e] .. |#] ldlelr] ... |#]...

<

e

|

n k

|

| start configuration

| second configuration

| nkth configuration

#|qo|w- -wz‘ ‘wn‘ u‘ ‘u
alb|c
de|f

#

20(n"k)
(@) : ®

(d

ala
(©
ala

(®)

RZ TOta l Le N gth (Tl [e) Exponential exponent ... takes

log(2""K) space = n* space ...
Can be generated in poly time

e Rhadstare =50US1U - US, USyU Sy
Ak
. 0(n) Sp= AL (AU T2 AL AY

. Rbad-rej ect = AT

— {reject

* 0(1)
nk
B ralrringlery — U A™ abe A(Q(=) def A*
* bad(abe,def)
« 0(n")

Total Time: O(n*)

EXPSPACE-Completeness

DEFINITION

A language B is EXPSPACE-complete it

V]1. B € EXPSPACE, and
V] 2. every A in EXPSPACE is polynomial time reducible to B.

THEOREM = s,
EQRrexs 1s EXPSPACE-complete. -

A Nonexistent Polynomial Time Algorithm

EQrext = {{@, R)| Q and R are equivalent regular

expressions with exponentiation }

V1. Prove proper containment of two complexity classes,

 e.g, P c EXPSPACE :

M 2. Prove completeness of a language in the larger class,
* e.g, EQrex; € EXPSPACE and EQgexr IS EXPSPACE -hard THEOREM -

EQrexs is EXPSPACE-complete.
v]13. Conclude that the language cannot be in the smaller class

* €8, EQrext € P,
* i.e., EQreyy has no poly time decider!

No Quiz 12/8

Fill out course evaluation

