An Intractable Problem

Wednesday, December 8, 2021

“I can't find an efficient algorithm, but neither can all these furious people.”
Announcements

• HW 10 in
 • Due Tues 12/7 11:59pm EST

• HW 11 out
 • Due Tues 12/14 11:59pm EST

• Course evaluation at end of class today
Last Time: Nonexistent Algorithms

• It’s hard to prove that something doesn’t exist

• For algorithms/deciders, the best we can say is usually:
 • “There’s no known poly time algorithm that decides ... e.g., SAT”
Last Time: Proving a Nonexistent Algorithm

1. **Prove proper containment** of two complexity classes,
 • e.g., if $A \subset B$

2. **Prove completeness** of a language in the larger class,
 • e.g., and if $L \in B$ and L is B-hard

3. **Conclude** that the language cannot be in the smaller class
 • e.g., then $L \notin A$, i.e., L has no decider of some complexity!
Last Time: Hierarchy Theorems

Theorem

Space hierarchy theorem For any space constructible function \(f: \mathbb{N} \rightarrow \mathbb{N} \), a language \(A \) exists that is decidable in \(O(f(n)) \) space but not in \(o(f(n)) \) space.

NL \nsubseteq PSPACE

PSPACE \nsubseteq EXPSPACE

Theorem

Time hierarchy theorem For any time constructible function \(t: \mathbb{N} \rightarrow \mathbb{N} \), a language \(A \) exists that is decidable in \(O(t(n)) \) time but not decidable in time \(o(t(n)/\log t(n)) \).

P \nsubseteq EXPSPACE
Last Time: A Nonexistent Algorithm

1. **Prove proper containment** of two complexity classes,
 - e.g., $\text{NL} \subset \text{PSPACE}$

2. **Prove completeness** of a language in the larger class,
 - e.g., $\text{TQBF} \in \text{PSPACE}$ and TQBF is PSPACE-hard

3. **Conclude** that the language cannot be in the smaller class
 - e.g., $\text{TQBF} \notin \text{NL}$,
 - i.e., TQBF has no logspace NTM decider!

What about a nonexistent poly time algorithm?
Thm: EQ_{REX^\uparrow} is Intractable! (not in P!)

$EQ_{REX^\uparrow} = \{(Q, R) \mid Q$ and R are equivalent regular expressions with exponentiation$\}$
A Nonexistent Polynomial Time Algorithm

1. Prove proper containment of two complexity classes,
 - e.g, $P \subset \cdots$

2. Prove completeness of a language in the larger class,
 - e.g, $EQ_{\text{REX}^*} \in \cdots$ and EQ_{REX^*} is \cdots-hard

3. Conclude that the language cannot be in the smaller class
 - e.g, $EQ_{\text{REX}^*} \notin P$,
 - i.e., EQ_{REX^*} has no poly time decider!
A Nonexistent Polynomial Time Algorithm

1. Prove proper containment of two complexity classes,
 - e.g., $P \subseteq \text{EXPSPACE}$

2. Prove completeness of a language in the larger class,
 - e.g., $EQ_{\text{REX}^\uparrow} \in \text{EXPSPACE}$ and EQ_{REX^\uparrow} is EXPSPACE-hard

3. Conclude that the language cannot be in the smaller class
 - e.g., $EQ_{\text{REX}^\uparrow} \notin P$,
 - i.e., EQ_{REX^\uparrow} has no poly time decider!
\(P \subset \text{EXPSPACE} \)

- \(P \subseteq \text{PSPACE} \), because
 - \(\Rightarrow \) A poly time algorithm uses at most poly space
 - \(\Leftarrow \) But a poly space algorithm can take more than poly time
 - Because space can be reused

- And Space Hierarchy Theorem says: \(\text{PSPACE} \subset \text{EXPSPACE} \)

 Space hierarchy theorem For any space constructible function \(f: \mathbb{N} \rightarrow \mathbb{N} \), a language \(A \) exists that is decidable in \(O(f(n)) \) space but not in \(o(f(n)) \) space.

- So \(P \subseteq \text{PSPACE} \subset \text{EXPSPACE} \)
A Nonexistent Polynomial Time Algorithm

1. Prove proper containment of two complexity classes,
 • e.g., $P \subset \text{EXPSPACE}$

2. Prove completeness of a language in the larger class,
 • e.g., $EQ_{\text{REX}} \in \text{EXPSPACE}$ and EQ_{REX} is EXPSPACE-hard

3. Conclude that the language cannot be in the smaller class
 • e.g., $EQ_{\text{REX}} \notin P$,
 • i.e., EQ_{REX} has no poly time decider!
Flashback: Regular Expressions

A regular expression is if R is

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
6. (R_1^*), where R_1 is a regular expression.
Flashback: **RegExpr → NFA**

Regular expression R is a **regular expression** if R is:

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.
RegExpr→NFA is in PSPACE

• From HW10, Problem # 2
EQ_{NFA} is in PSPACE

- Prove not EQ_{NFA} is in PSPACE
 - From HW10, Problem # 3

- And prove PSPACE closed under complement
 - From HW10, Problem # 1
$\overline{EQ_{NFA}}$ is in $\text{NPSPACE} (= \text{PSPACE})$
Flashback: Nondeterministic Space Usage

\[ALL_{\text{NFA}} = \{ \langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \} \]

Nondeterministic decider for \(ALL_{\text{NFA}} \)

\(N = \) “On input \(\langle M \rangle \), where \(M \) is an NFA:

1. Place a marker on the start state of the NFA.
2. Repeat \(2^q \) times, where \(q \) is the number of states of \(M \):
 1. Nondeterministically select an input symbol and change the positions of the markers on \(M \)’s states to simulate reading that symbol.
3. Accept if stages 2 and 3 reveal some string that \(M \) rejects; that is, if at some point none of the markers lie on accept states of \(M \). Otherwise, reject.”

Additionally, need a counter to count to \(2^q \):

- requires \(\log{(2^q)} = q \) extra space

Machine tracks “current” states of NFA:

- \(q \) states = \(2^q \) possible combinations (so exponential time)

Each loop uses only \(O(q) \) space!

So the whole machine runs in (nondeterministic) linear \(O(q) \) space!
\(\overline{EQ_{NFA}} \) is in \(\text{NPSPACE} (= \text{PSPACE}) \)

\[N = \text{"On input } \langle N_1, N_2 \rangle, \text{ where } N_1 \text{ and } N_2 \text{ are NFAs:}\]

1. Place a marker on each of the start states of \(N_1 \) and \(N_2 \).
2. Repeat \(2^{q_1 + q_2} \) times, where \(q_1 \) and \(q_2 \) are the numbers of states in \(N_1 \) and \(N_2 \):
3. Nondeterministically select an input symbol and change the positions of the markers on the states of \(N_1 \) and \(N_2 \) to simulate reading that symbol.
4. If at any point a marker was placed on an accept state of one of the finite automata and not on any accept state of the other finite automaton, \textit{accept}. Otherwise, \textit{reject}.”

Machine runs in:
- nondeterministic \(O(q) \) space
- deterministic \(O(q^2) \) space

Track 2 sets of "current" states
EQ_{REX} is in **PSPACE**

From HW10, Problem # 4

1. Convert regular expressions to NFAs (**PSPACE**)

2. Check if NFAs are equivalent (**PSPACE**)

$EQ_{REX} = \{(Q, R) | Q$ and R are equivalent regular expressions$\}$
Regular Expressions + Exponentiation

Let \(\uparrow \) be the *exponentiation operation*.

- If \(R \) is a regular expression, then

\[
R^k = R \uparrow k = \underbrace{R \circ R \circ \cdots \circ R}_k
\]

- I.e., exponentiation = concatenation \(k \) times

- So regular expressions with exponentiation ...
 - ... still equivalent to regular langs!
Thm: EQ_{REX^\uparrow} is Intractable! (not in \mathbf{P}!)

$EQ_{\text{REX}^\uparrow} = \{ (Q, R) \mid Q$ and R are equivalent regular expressions with exponentiation $\}$

Theorem

EQ_{REX^\uparrow} is EXPSPACE-complete.
EXPSPACE-Completeness

Definition

A language B is *EXPSPACE-complete* if

1. $B \in \text{EXPSPACE}$, and
2. every A in EXPSPACE is polynomial time reducible to B.

Theorem

EQ_{REX}^\uparrow is EXPSPACE-complete.
$E_{Q_{REX}^\uparrow}$ is in \textbf{EXPSPACE}

$E_{Q_{REX}^\uparrow} = \{ (Q, R) | Q \text{ and } R \text{ are equivalent regular expressions with exponentiation} \}$

Similar to $E_{Q_{REX}}$

\textbf{Problem #4}

\begin{itemize}
 \item \begin{itemize}
 \item $E = \text{“On input } (R_1, R_2)\text{, where } R_1 \text{ and } R_2 \text{ are regular expressions with exponentiation:

 1. Convert } R_1 \text{ and } R_2 \text{ to equivalent regular expressions } B_1 \text{ and } B_2
 \text{ that use repetition instead of exponentiation.}

 2. Convert } B_1 \text{ and } B_2 \text{ to equivalent NFAs } N_1 \text{ and } N_2, \text{ using the conversion procedure given in the proof of Lemma 1.55.}

 3. Use the deterministic version of algorithm } N \text{ to determine whether } N_1 \text{ and } N_2 \text{ are equivalent.”
 \end{itemize}
 \end{itemize}

\textbf{From HW10}
EXPSPACE-Completeness

Definition
A language B is *EXPSPACE-complete* if

1. $B \in \text{EXPSPACE}$, and
2. every A in EXPSPACE is polynomial time reducible to B.

Theorem
$E_{Q_{REX^\uparrow}}$ is EXPSPACE-complete.
$EQ_{\text{REX}\uparrow}$ is EXPSPACE-Hard

$EQ_{\text{REX}\uparrow} = \{\langle Q, R \rangle \mid Q$ and R are equivalent regular expressions with exponentiation\}$
Flashback: Undecidability By Checking TM Configs

\[ALL_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \} \]

Proof, by contradiction

- Assume \(ALL_{CFG} \) has a decider \(R \). Use it to create decider for \(A_{TM} \):

On input \(<M, w>\):

- Construct a PDA \(P \) that rejects sequences of \(M \) configs that accept \(w \)
- Convert \(P \) to a CFG \(G \)
- Give \(G \) to \(R \):
 - If \(R \) accepts, then \(M \) has no accepting config sequences for \(w \), so reject
 - If \(R \) rejects, then \(M \) has an accepting config sequence for \(w \), so accept

Any machine that can validate TM config sequences could be used to prove undecidability?
Flashback: Reducing every NP language to SAT

We know NP languages have a poly time NTM M! So reduce M accepting config sequences to a satisfiable formula!
Reducing every \textbf{EXPSPACE} lang to EQ_{REX^\uparrow}

Some \textbf{EXPSPACE} lang $= \{w \mid w \text{ is ???}\}$

Need to reduce some w to 2 equivalent regular expressions???

We know the language has an exp space decider!
Reducing every **EXPSPACE** lang to EQ_{REX^\uparrow}

R_2 equals $R_{\text{bad-start}} \cup R_{\text{bad-window}} \cup R_{\text{bad-reject}}$

Some **EXPSPACE** lang = \{w | w is ???\}

$R_1 = \Delta^*$, \quad \Delta = \Gamma \cup Q \cup \{\#\}$

$R_2 = \text{non-rejecting } M \text{ config seqs for } w$

\Rightarrow if M accepts w, there are no rejecting M config seqs for w so $R_1 = R_2$

\Leftarrow if M rejects w, there are rejecting M config seqs for w so $R_1 \neq R_2$

We know the language has an exp space decider!
Rejecting Config Sequences

A rejecting sequence of M configs on w:
- **Starts** in start state q_0 with w on the tape
- Each step must be valid according to δ
- Ends in config with state q_{reject}

- R_2 generates config seqs that **don't satisfy** (at least 1 of) these
 $$R_{\text{bad-start}} \cup R_{\text{bad-window}} \cup R_{\text{bad-reject}}$$

Important:
- R_2 must be polynomial in length to have poly time reduction!
\[R_{\text{bad-start}} = S_0 \cup S_1 \cup \cdots \cup S_n \cup S_b \cup S_# \]

\(R_{\text{bad-start}} \) = all strings not beginning with start config of \(M \) with \(w \)

- \(w = w_1, \ldots, w_n \) (length \(n \))
- \(S_0 = \Delta_{-q_0} \Delta^* \) = all strings that don’t start with \(q_0 \)
- \(S_i = \Delta^i \Delta_{-wi} \Delta^* \) = all strings whose \(i+1 \)th char isn’t \(w_i \)
 - These are all poly length (can be generated in poly time)
- \(S_b = \) all strings that don’t have a blank in pos \(n + 2 \) to \(2^{n^k} \)
 - Could be exponential in length ...
 - ... unless we use exponentiation!

\[S_b = \Delta^{n+1} (\Delta \cup \varepsilon)^{2(n^k) - n - 2} \Delta_{-\cup} \Delta^* \]

\(\Delta = \Gamma \cup Q \cup \{\#\} \)

\(\Delta_x = \) all chars in \(\Delta \) except for \(x \)

Exponential exponent ... takes \(\log(2^{n^k}) \) space = \(n^k \) space
Bad Reject

\[R_{\text{bad-reject}} = \Delta^*-q_{\text{reject}} \]
Bad Window

- \text{bad}(abc, def) means window \(abc \rightarrow def\) not valid according to \(\delta\)
R_2 Total Length (Time)

- $R_{\text{bad-start}} = S_0 \cup S_1 \cup \cdots \cup S_n \cup S_b \cup S_\#$

- $O(n^k)$

- $R_{\text{bad-reject}} = \Delta^*_{\text{reject}}$

- $O(1)$

- $R_{\text{bad-window}} = \bigcup_{\text{bad}(abc,def)} \Delta^* abc \Delta^{(2(n^k) - 2)} \text{def} \Delta^*$

- $O(n^k)$

Exponential exponent ... takes \(\log(2^{n^k}) \) space = \(n^k \) space ... Can be generated in poly time

Total Time: $O(n^k)$
EXPSPACE-Completeness

DEFINITION

A language B is *EXPSPACE-complete* if

1. $B \in \text{EXPSPACE}$, and
2. every A in EXPSPACE is polynomial time reducible to B.

THEOREM

EQ_{REX^\uparrow} is EXPSPACE-complete.
A Nonexistent Polynomial Time Algorithm

1. **Prove proper containment of two complexity classes,**
 - e.g., $P \subseteq \text{EXPSPACE}$

2. **Prove completeness of a language in the larger class,**
 - e.g., $EQ_{\text{REX}^\uparrow} \in \text{EXPSPACE}$ and EQ_{REX^\uparrow} is EXPSPACE-hard

3. **Conclude** that the language cannot be in the smaller class
 - e.g., $EQ_{\text{REX}^\uparrow} \notin P$,
 - i.e., EQ_{REX^\uparrow} has no poly time decider!
No Quiz 12/8

Fill out course evaluation