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Quicksort

SORT = On input 4, where A Is an array length n:
* Let:
« pivot =A[0]
« partitionl =all x € 4, x < pivot
« partition2 =all x € 4, x > pivot

* Return SORT(partitionl) o [pivot | o SORT(partition2)

“Divide and conquer”

Worst case run time (should be O(n log n)?):
 Time for each recursive call (to partition elements) = 0(n)

* # recursive calls = O(n) (if list is already sorted!)
Total: O(n?)




Quicksort (with randomness)

.SORT = On input 4, where A is an array length n:

* Let:
: e« pivot =A[random()] “coin flips”
« partitionl =all x € 4, x < pivot
« partition2 =all x € 4, x > pivot

+ Return SORT(partition1) o [pivot ] o SORT(partition2)

Randomness can help make
worst case less likely to happen

Worst case run time (should be O(n log n)?):
. . . or wrong answer
» Time for each recursive call (to partition) = O(n) (this is what we will look at)

* # recursive calls = O(n) (if the worst pivot is picked every time!)
Total: still O(n?) ' (but much less likely)



A Coin-Flipping (Probabilistic) TM

DEFINITION

A probabilistic Turing machine M is a type of nondeterministic
Turing machine in which each nondeterministic step is called a
coin-flip step and has two legal next moves. We assign a proba-
bility to each branch b of M’s computation on input w as tollows.
Detine the probability of branch b to be

Pr[b] = 27F,

where k is the number of coin-flip steps that occur on branch b.

Nondeterministic
computation
One branch

for each coin
( l flip result

* accept



A Coin-Flipping (Probabilistic) TM

This is the low-level model.... ... but most probabilistic TM definitions Nondeteftfii.nimc
just say “randomly select ...” O T one branch
DEFINITION ( ) ]tﬁ:)erzgzliom
A probabilistic Turing machine M is a type of nondeterministic I
Turing machine in which each nondeterministic step is called a e
coin-flip step and has two legal next moves. We assign a proba- : \'
bility to each branch b of M’s computation on input w as follows.
Define the probability of branch b to be ciect !/ \,
Pr[b] = 27F,
where k is the number of coin-flip steps that occur on branch b. 1
Define the probability that M accepts w to be * accept
Sum probability
Pr[M accepts w] = Z Pr[b]. of all accepting
e e branches

accepting branch

Pr[M rejects w] = 1 — Pr[M accepts w]



A Probabilistic TM Example

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. If piseven, accept if p = 2; otherwise, reject.
2. Selectay,...,a, randomly in Z .
3. Foreach i from 1 to k:
4.  Compute a’~" mod p and reject if different from 1.
5. Let p— 1 = s - 2! where s is odd.
6 aic . a a2 modulo p.
7

1 A ey

0 1 2 4
Compute the sequence af? , af? , af? $2
If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”



Probabilistic TM: Chance of Wrong Answer

Error Rate
(can depend on
length of input n)

M decides language A with ervor probability € it
1. w € A implies Pr|M accepts w] > 1 — ¢, and



Probabilistic TM: Chance of Wrong Answer

Error Rate
(can depend on
length of input n)

M decides language A with ervor probability € it

1. w € A implies Pr[M accepts w| > 1 — ¢, and
2. w ¢ Aimplies Pr[M rejects w] > 1 — .



Balls in a Jar Analogy

Goal: determine the majority color of balls in a jar

Example Input:
J has 2/3 blue and 1/3 red balls
Error rate e=1/3

2/3 blue

_Probabilistic Algorithm = On input J, where J is a jar of balls:

Randomly choose a ball fromJ
Return the color of the chosen ball

11




BPP Complexity Class

Count worst case
# steps in any one
branch (like NTM)

DEFINITION

BPP is the class of languages that are decided by probabilistic poly-
nomial time Turing machines with an error probability of %.

Arbitrary constant
(anything between
0 and 0.5 works)



Balls in a Jar Analogy: Reducing Error

Goal: determine the majority color of balls in a jar

Example:

J has 2/3 blue and 1/3 red balls
Error rate € =

P[choosing = 5 red balls in 9 tries]

2/3 blue

13




Law of Large Numbers

Law of large numbers

From Wikipedia, the free encyclopedia

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of
performing the same experiment a large number of times. According to the law, the average of the
results obtained from a large number of trials should be close to the expected value and will tend to
become closer to the expected value as more trials are performed.!]

14



Amplification Lemma

Let € be a fixed constant strictly between 0 and 5. Then for any polynomial p(n),
a probabilistic polynomial time Turing machine M; that operates with error
probability € has an equivalent probabilistic polynomial time Turing machine
My that operates with an error probability of 27P("), Convert an M, to M,

with less error

PROOF IDEA M5 simulates M; by running it a polynomial number of times
and taking the majority vote of the outcomes. The probability of error decreases
exponentially with the number of runs of M; made.



Amplification Lemma

Let € be a fixed constant strictly between 0 and 5. Then for any polynomial p(n),
a probabilistic polynomial time Turing machine M that operates with error
probability € has an equivalent probabilistic polynomial time Turing machine
My that operates with an error probability of 277(%),

: PROOF  Given TM M; deciding a language with an error probability of € < %
- and a polynomial p(n), we construct a TM M, that decides the same language

with an error probability of 2~ p(n)

My = “On input z:
: 1. Calculate £ (see analysis below).
2. Run 2k independent simulations of M; on input z.
3. If most runs of M; accept, then accept; otherwise, reject.”

16



: PROOF  Given TM M, deciding a language with an error probability of € < %
- and a polynomial p(n), we construct a TM M, that decides the same language :
with an error probability of 277("), :

l M * . : My = “On input 2:
Am DLITI cation Lemma: ki e e s beow.
* : 2. Run 2k ipdlependent simulations of M; on input x.
: 3. If mosyruns of M, accept, then accept; otherwise, reject.”

-------------------------------------------------------------------------------------------

If M, is run 2k times (err €), let w + ¢ = 2k where:
w=c=k |e<¥,s0e<1-€

e ¢c=# correct results |
 w=#wrong results i, el .
- . If M, runs in poly time,
PrObablllty of this run: EW(l'E)C 0.04 then ]\/[2 runs in po[y time’
with much smaller error

Wroneg results: Want: Pr{wrong result] < 2-,(1 pesTEE RS

* Arun’s result is wrong when: w>c¢ ]
Solve fork:

* (4€(1-€))k=2r0
¢ k — lOg(4€(1_E))2'p(n) log both sides

« Overall, Pr[wrong result]
= ZW,C Pr[run wherew =] = ZW,C e”(1-€)°

« Most likely wrong result: w=c=k
. Pr[Wrong resu[t] 22k = # combinations of w and ¢ = lOgZZ'p(n)/lOg2(4€(1'€)) loiab

<2 ek(1-€)k = 22kek(1-€)k= (4€(1-€))k /| Chernoff bound | = -p(n)/log,(4€(1-€)) log.a/log.b



Prime Numbers

« A prime number is an integer > 1 with factors 1 and itself
« A composite number is a nonprime > 1

« Extremely important in cryptography, e.g.,, generating keys

VER Y




Primality: Applications

« Cryptography impossible without an efficient primality test

PRIVATE KEY

#H

a very large avery large
secret prime secret prime
number number

s

PUBLIC KEY

Hxfi=

#

the product of those
two very large prime
numbers used to make
the private key, which
is very, very hard to
reverse back

s

ubuntu@ubuntu-VirtualBox: ~

ubuntu@ubuntu-virtualBox:~5 ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/fubuntu/.ssh/id_rsa): my_key
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my_key.
Your public key has been saved in my_key.pub.

fingerprint is:

|

|

|

|

_________________ +
ubuntu@ubuntu-VirtualBox:~$ I

setvhufionnt  MNIJLL, TOLBF, 8);
it (prime_test[in, out, prime_tests == @ ? 180 : prime_tests,

generator_wanted, checkpoint,
start _lineno, lines_to _process) != @)
tatal("modulus screening failed");

ssh-keygen.c



Primality Test Algorithms

« EXPTIME: Try all possible factors

« POLYTIME: AKS algorithm (discovered in 2004)
« Long and difficult to understand

* O(log'*(n))

* Probabilistic POLYTIME: Miller-Rabin, Solovay-Strassen

» Simple(r) to understand
« And more efficient!

Note:
 poly time primality tests don’t seach for factors
» (so factoring still not poly time)




Primality: Applications

« Cryptography impossible without an efficient primality test

PRIVATE KEY

HH

a very large avery large
secret prime secret prime
number number

)

PUBLIC KEY

Hxfi=

#

the product of those
two very large prime
numbers used to make
the private key, which
is very, very hard to
reverse back

s

anmm

ubuntu@ubuntu-VirtualBox: ~

ubuntu@ubuntu-virtualBox:~5 ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/fubuntu/.ssh/id_rsa): my_key

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my_key. =

Your public key has been saved in my_key.pub. SSh keygen .C
The key fingerprint is:

s (5

WAOWA LA LA WA LA LA LA LA WA

LUn I o T o W Y - W LN

JI{!

setvhufionnt  MNIJLL, TOLBF, 8);

2985 it (prime_test[in, out, prime_tests == @ ? 180 : prime_tests,
2986 generator_wanted, checkpoint,

start _lineno, lines_to _process) != @)
tatal("modulus screening failed");

* perform a Miller-Rabin primality test
* on the list of candidates
* (checking both g and p)

# The result is a list of so-call

*/

int

sate" primes

prime test(FILE *in, FILE *out, u_int32 t trials, u_int32 t generator_wanted,

{

char *checkpoint _file, unsigned long start_lineno, unsigned long num_lines)



Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

2. Select al,.. .., ag randomly in ZF. Format's Little Theorem
: 3. Foreachifrom 1 to k: :

Primality “tests” 4. _-Compute a’~ " mod p and reject if different from 1. 2??
(comes from 5. Letp — 1 = s - 2" where s is odd. :
number theory) 6. Compute the sequence a$2",as2 a5, ..., a52 modulo p. :
; 7.  Ifsome element of this sequence is not 1, find the last element

that is not 1 and reject if that element is not —1.
8. All tests have passed at this point, so accept.”



Fermat's Little Theorem

THEOREM ...........................................................................

If pis prime and a € Z, then a?~' =1 (mod p).

Primality “test”



Modular Equivalence

Definition:
« Written: x =y (mod p)
- Two numbers x and y are “equivalent (or congruent) modulo p” if ...

e ...x-y=kp, forsome k
* |.e, the difference is a multiple of p

* ...xmod p=ymodp
* l.e, they have the same remainder when divided by p

Example

* 38 =14 (mod 12)

 Because: 38-14=24=2-12

« Or because: 38/12 has remainder 2, and 14/12 has remainder 2

For every number x, x = some y (mod p) wherey € Z, = {0,...,p — 1}




Alternatively, a?-1-1 is divisible by p
THEOREM  sorreeresressssmrcmmermnnnemssstasssssassntasnsss s ansnnssnnsnnsss

If pis prime and a € Z, then a?~' =1 (mod p).
Must be true for all a

Primality “test”, given number x:

- Contrapositive (true): if a*-1 is not divisible by x, then x is ...
... hot prime!

- Converse (not always true): if a¥!-1 is divisible by x, then x is ...
... maybe prime? (called a pseudoprime!)

..,p—1}

Fermat's Little Theorem Zp =1L

7p_]-}



THEOREM ...........................................................................

If pis prime and a € Z, then a?~' =1 (mod p).

+
Zr={l,....,p—1}

Fermat's Little Theorem

Example # 1 Example # 3 (converse)
. p=7 (prime) -ﬂ:15kompmm£)
*lta=4
*VYace {1, ceny 6} 15-1
1 o e o 4151.1 = 414.1 = 268,435,455
a”'-11s divisible by 7 . 268,435,455 / 15 = 17,895,697
*Eg, fa=2, « So 15 passes the primality “test”
« 271-1=20-1=64-1=63=7"9 but Is not prime!

Example # 2 (contrapositive)
* p =6 (composite)
eifa=2
e 261.1=25-1=32-1=31
« 31 is not divisible by 6 so 6 is not prime




THEOREM ...........................................................................

If pis prime and a € Z, then a?~' =1 (mod p).

Pseudoprime Algorithm 25— (L. p—1)

p

Checking all g, takes exponential
time, so randomly sample instead

---------------------------------------------------------------------------------------------------------------------------------------
n

. PSEUDOPRIME = “On input p:
: 1. Selectay,...,ar randomly in ZJ.

2. Compute " mod p for each i. :
3. Ifall computed values are 1, accept; otherwise, reject.”g

If machine rejects, then a?! # 1 (mod p) for some q,

« So pis composite (a; is a “compositeness witness”)
« Error rate: 0%

If machine accepts, then a?! =1 (mod p) for all g,

« p could be composite or prime

 Error Rate:
« depends on Pr[pis a non-prime pseudoprime]

Need another primality “test”

Too high!



Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
5 1. If piseven, accept if p = 2; otherwise, reject.
2. Selectay,...,a, randomly in Z¥.

: 3. Foreach i from 1 to k:
Primality “test” #2 4. Compute o' mod p and reject if different from 1.

: 5 Letp — 1 = s - 2! where s is odd.
6
7

0 1 2 4
Compute the sequence af? a2 | a$? $2

ai“ . a a2 modulo p.

2 tiad') 7 AR ]

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”



Primality Test #2: Modular Square Root

If r>=a (mod p) ...
..then ris a *“modular square root” of a (mod p)

* If pis prime ...
e ... then the modular square root of 1 (mod p) =1 or -1

 If pis a composite pseudoprime...
e ...then 1 (mod p) has > 4 possible modular square roots

Example
» Modular square root of 1 (mod 15) =1 or -1 or 4 or -4




Fermat Test + Modular Square Root

- If pis prime, modular sqrt of 1 (mod p) =1 or -1
- If pis a composite pseudoprime, 1 (mod p) has > 4 sqgrts

If P! =1 (mod p) (from Fermat test), then modular sqrt = a»-1)/2
 If sqrt =1, keep taking square root, because a»-1)/2 = 1 (mod p)
*\i.e,, keep dividing exponent by 2

« If sqrt = -1, consider test “passed”
e, number is prime

e If sqrt # +1, reject

Computing modular square root:
* Let p-1 =524
 Then modular square root of aP-) = gs2"d = gs2™(d-1) (keep decreasing power of 2)




Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

: 2. Selectay,...,a, randomly in Z 1. : '
modular exponentiation | 3. For eac}i 7@ frr;mkl to k: ’ ’ First compute Fermat's tes:t, =D @7 melpSt
is poly time : 4. Computg\’af ~" mod p and reject if different from 1. :
Repeated squaring | 5-  Letp—1=s-2" where s is odd. Then compute (repeated) sqrt, reject if = +1

Is poly time 6 Compute the sequence>a§'20, af‘QI : af'22, ey af'zz modulo p. :

: 7.  Ifsome element of this sequence is not 1, find the last element

So this machine that is not 1 and reject if that element is not —1. '
runs in 8. All tests have passed at this point, so accept.”

oo e o) | [

poly time If both tests pass for all a, then accept as prime




DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

=) 1. w € A implies Pr[M accepts w] > 1 — ¢, and
2. w ¢ Aimplies Pr[M rejects w] > 1 —e.

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

: 2. Selectay,...,a, randomly in Z¥.

All a#* mod p = 1 (Fermat) |3.—Fqr each i from 1 to k:

: 4 Compute a? ' mod p and reject if different from 1.

5. Letp — 1 = s - 2! where s is odd. :

6 f'gn, af‘QI : af'22, ey af'zl modulo p. And sqrt ap ! =1
7 If some element of this sequence is not 1, find the last element

that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”

Compute the sequence a

If p is an odd prime number, Pr[PR[ME accepts p} = 1.



DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

1. w € A implies Pr[M accepts w| > 1 — ¢, and
m) 2. w ¢ A implies Pr[M rejects w] > 1 — e.

;PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.
Select ay, ..., a) randomly in Z}. Pr [ al1s a Witness} >

[N [

For each i from 1 to k:

Compute a?~" mod p and reject if different from 1.

2
3
4
5. Let p— 1 = s - 2! where s is odd.
6
7

0 1 2 1
Compute the sequence a$? , af? , a$*? a$? modulo p. :

7 ) 7 | 1

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1. ;

8. All tests have passed at this point, so accept.”

If p is an odd composite number, Pr| PRIME accepts p | < 27F



Pr|a is a witness | > 2

 More Number Theory!
* Chinese Remainder Theorem!

* Sipser shows how to find a real witness for every false witness
*S0e<1/2

 Actual error rate of Miller-Rabin: e<1/4




DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

1. w € A implies Pr[M accepts w| > 1 — ¢, and
m) 2. w ¢ A implies Pr[M rejects w] > 1 — e.

;PRIME = “On input p: :

: 1. Ifpiseven, accept if p = 2; otherwise, reject. | If p Is composite, then a
Select ay, ..., a, randomly in ZF. randomly selected a; will be
For each i from 1 to k: a witness 75% of the time

2
3
4.  Compute a’ " mod p and reject if different from 1.
5
6
7

Letp — 1 = s - 2! where s is odd.

0 1 2 4
Compute the sequence a$? , af? , a$*? =

i

#2 ...,ai* modulop. :

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1. :

8. All tests have passed at this point, so accept.”

If p is an odd prime number, Pr[PR[ME accepts p} = 1.

If p is an odd composite number, Pr| PRIME accepts p | < 27F 1-sided error



RP

DEFINITION

RP is the class of languages that are decided by probabilistic poly-
nomial time Turing machines where inputs in the language are
accepted with a probability of at least 1, and inputs not in the lan-

guage are rejected with a probability of 1. | ghe-sided error, like PRIMES

So PRIMES € RP



Probabilistic Complexity Classes

It's unknown if any of these
containments are strict!

PSPACE

Quantum
computing
(quantum TM)
version of BPP



No Quiz 12/13
Thank Tou For a Great Semester!



