UMB (CS622

Randomized Algorithms

Monday, December 13, 2021

TOUR OF ACCOUNTING

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

i
www.dilbert.com scottadams@aol.com

NINE NINE
NINE NINE
NINE NINE

e, Inc.

Syndica

IGI‘NIO@ 2001 United Feature

ARE

THAT'S THE
i PROBLEM
, WITH RAN-
THATS e D
RANDOM? 5
? YOU CAN

NEVER BE
SURE.

%/{/{0«/{0@%@/{5&’

* HW 11
* Due Tues 12/14 11:59pm EST

e Last class! (&)

Quicksort

SORT = On input 4, where A Is an array length n:
* Let:
« pivot =A[0]
« partitionl =all x € 4, x < pivot
« partition2 =all x € 4, x > pivot

* Return SORT(partitionl) o [pivot | o SORT(partition2)

“Divide and conquer”

Worst case run time (should be O(n log n)?):
 Time for each recursive call (to partition elements) = 0(n)

* # recursive calls = O(n) (if list is already sorted!)
Total: O(n?)

Quicksort (with randomness)

.SORT = On input 4, where A is an array length n:

* Let:
: e« pivot =A[random()] “coin flips”
« partitionl =all x € 4, x < pivot
« partition2 =all x € 4, x > pivot

+ Return SORT(partition1) o [pivot] o SORT(partition2)

Randomness can help make
worst case less likely to happen

Worst case run time (should be O(n log n)?):
. . . or wrong answer
» Time for each recursive call (to partition) = O(n) (this is what we will look at)

* # recursive calls = O(n) (if the worst pivot is picked every time!)
Total: still O(n?) ' (but much less likely)

A Coin-Flipping (Probabilistic) TM

DEFINITION

A probabilistic Turing machine M is a type of nondeterministic
Turing machine in which each nondeterministic step is called a
coin-flip step and has two legal next moves. We assign a proba-
bility to each branch b of M’s computation on input w as tollows.
Detine the probability of branch b to be

Pr[b] = 27F,

where k is the number of coin-flip steps that occur on branch b.

Nondeterministic
computation
One branch

for each coin
(l flip result

* accept

A Coin-Flipping (Probabilistic) TM

This is the low-level model.... ... but most probabilistic TM definitions Nondeteftfii.nimc
just say “randomly select ...” O T one branch
DEFINITION ()]tﬁ:)erzgzliom
A probabilistic Turing machine M is a type of nondeterministic I
Turing machine in which each nondeterministic step is called a e
coin-flip step and has two legal next moves. We assign a proba- : \'
bility to each branch b of M’s computation on input w as follows.
Define the probability of branch b to be ciect !/ \,
Pr[b] = 27F,
where k is the number of coin-flip steps that occur on branch b. 1
Define the probability that M accepts w to be * accept
Sum probability
Pr[M accepts w] = Z Pr[b]. of all accepting
e e branches

accepting branch

Pr[M rejects w] = 1 — Pr[M accepts w]

A Probabilistic TM Example

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. If piseven, accept if p = 2; otherwise, reject.
2. Selectay,...,a, randomly in Z .
3. Foreach i from 1 to k:
4. Compute a’~" mod p and reject if different from 1.
5. Let p— 1 = s - 2! where s is odd.
6 aic . a a2 modulo p.
7

1 A ey

0 1 2 4
Compute the sequence af? , af? , af? $2
If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”

Probabilistic TM: Chance of Wrong Answer

Error Rate
(can depend on
length of input n)

M decides language A with ervor probability € it
1. w € A implies Pr|M accepts w] > 1 — ¢, and

Probabilistic TM: Chance of Wrong Answer

Error Rate
(can depend on
length of input n)

M decides language A with ervor probability € it

1. w € A implies Pr[M accepts w| > 1 — ¢, and
2. w ¢ Aimplies Pr[M rejects w] > 1 — .

Balls in a Jar Analogy

Goal: determine the majority color of balls in a jar

Example Input:
J has 2/3 blue and 1/3 red balls
Error rate e=1/3

2/3 blue

_Probabilistic Algorithm = On input J, where J is a jar of balls:

Randomly choose a ball fromJ
Return the color of the chosen ball

11

BPP Complexity Class

Count worst case
steps in any one
branch (like NTM)

DEFINITION

BPP is the class of languages that are decided by probabilistic poly-
nomial time Turing machines with an error probability of %.

Arbitrary constant
(anything between
0 and 0.5 works)

Balls in a Jar Analogy: Reducing Error

Goal: determine the majority color of balls in a jar

Example:

J has 2/3 blue and 1/3 red balls
Error rate € =

P[choosing = 5 red balls in 9 tries]

2/3 blue

13

Law of Large Numbers

Law of large numbers

From Wikipedia, the free encyclopedia

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of
performing the same experiment a large number of times. According to the law, the average of the
results obtained from a large number of trials should be close to the expected value and will tend to
become closer to the expected value as more trials are performed.!]

14

Amplification Lemma

Let € be a fixed constant strictly between 0 and 5. Then for any polynomial p(n),
a probabilistic polynomial time Turing machine M; that operates with error
probability € has an equivalent probabilistic polynomial time Turing machine
My that operates with an error probability of 27P("), Convert an M, to M,

with less error

PROOF IDEA M5 simulates M; by running it a polynomial number of times
and taking the majority vote of the outcomes. The probability of error decreases
exponentially with the number of runs of M; made.

Amplification Lemma

Let € be a fixed constant strictly between 0 and 5. Then for any polynomial p(n),
a probabilistic polynomial time Turing machine M that operates with error
probability € has an equivalent probabilistic polynomial time Turing machine
My that operates with an error probability of 277(%),

: PROOF Given TM M; deciding a language with an error probability of € < %
- and a polynomial p(n), we construct a TM M, that decides the same language

with an error probability of 2~ p(n)

My = “On input z:
: 1. Calculate £ (see analysis below).
2. Run 2k independent simulations of M; on input z.
3. If most runs of M; accept, then accept; otherwise, reject.”

16

: PROOF Given TM M, deciding a language with an error probability of € < %
- and a polynomial p(n), we construct a TM M, that decides the same language :
with an error probability of 277("), :

l M * . : My = “On input 2:
Am DLITI cation Lemma: ki e e s beow.
* : 2. Run 2k ipdlependent simulations of M; on input x.
: 3. If mosyruns of M, accept, then accept; otherwise, reject.”

If M, is run 2k times (err €), let w + ¢ = 2k where:
w=c=k |e<¥,s0e<1-€

e ¢c=# correct results |
 w=#wrong results i, el .
- . If M, runs in poly time,
PrObablllty of this run: EW(l'E)C 0.04 then]\/[2 runs in po[y time’
with much smaller error

Wroneg results: Want: Pr{wrong result] < 2-,(1 pesTEE RS

* Arun’s result is wrong when: w>c¢]
Solve fork:

* (4€(1-€))k=2r0
¢ k — lOg(4€(1_E))2'p(n) log both sides

« Overall, Pr[wrong result]
= ZW,C Pr[run wherew =] = ZW,C e”(1-€)°

« Most likely wrong result: w=c=k
. Pr[Wrong resu[t] 22k = # combinations of w and ¢ = lOgZZ'p(n)/lOg2(4€(1'€)) loiab

<2 ek(1-€)k = 22kek(1-€)k= (4€(1-€))k /| Chernoff bound | = -p(n)/log,(4€(1-€)) log.a/log.b

Prime Numbers

« A prime number is an integer > 1 with factors 1 and itself
« A composite number is a nonprime > 1

« Extremely important in cryptography, e.g.,, generating keys

VER Y

Primality: Applications

« Cryptography impossible without an efficient primality test

PRIVATE KEY

#H

a very large avery large
secret prime secret prime
number number

s

PUBLIC KEY

Hxfi=

#

the product of those
two very large prime
numbers used to make
the private key, which
is very, very hard to
reverse back

s

ubuntu@ubuntu-VirtualBox: ~

ubuntu@ubuntu-virtualBox:~5 ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/fubuntu/.ssh/id_rsa): my_key
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my_key.
Your public key has been saved in my_key.pub.

fingerprint is:

|

|

|

|

_________________ +
ubuntu@ubuntu-VirtualBox:~$ I

setvhufionnt MNIJLL, TOLBF, 8);
it (prime_test[in, out, prime_tests == @ ? 180 : prime_tests,

generator_wanted, checkpoint,
start _lineno, lines_to _process) != @)
tatal("modulus screening failed");

ssh-keygen.c

Primality Test Algorithms

« EXPTIME: Try all possible factors

« POLYTIME: AKS algorithm (discovered in 2004)
« Long and difficult to understand

* O(log'*(n))

* Probabilistic POLYTIME: Miller-Rabin, Solovay-Strassen

» Simple(r) to understand
« And more efficient!

Note:
 poly time primality tests don’t seach for factors
» (so factoring still not poly time)

Primality: Applications

« Cryptography impossible without an efficient primality test

PRIVATE KEY

HH

a very large avery large
secret prime secret prime
number number

)

PUBLIC KEY

Hxfi=

#

the product of those
two very large prime
numbers used to make
the private key, which
is very, very hard to
reverse back

s

anmm

ubuntu@ubuntu-VirtualBox: ~

ubuntu@ubuntu-virtualBox:~5 ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/fubuntu/.ssh/id_rsa): my_key

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my_key. =

Your public key has been saved in my_key.pub. SSh keygen .C
The key fingerprint is:

s (5

WAOWA LA LA WA LA LA LA LA WA

LUn I o T o W Y - W LN

JI{!

setvhufionnt MNIJLL, TOLBF, 8);

2985 it (prime_test[in, out, prime_tests == @ ? 180 : prime_tests,
2986 generator_wanted, checkpoint,

start _lineno, lines_to _process) != @)
tatal("modulus screening failed");

* perform a Miller-Rabin primality test
* on the list of candidates
* (checking both g and p)

The result is a list of so-call

*/

int

sate" primes

prime test(FILE *in, FILE *out, u_int32 t trials, u_int32 t generator_wanted,

{

char *checkpoint _file, unsigned long start_lineno, unsigned long num_lines)

Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

2. Select al,.. .., ag randomly in ZF. Format's Little Theorem
: 3. Foreachifrom 1 to k: :

Primality “tests” 4. _-Compute a’~ " mod p and reject if different from 1. 2??
(comes from 5. Letp — 1 = s - 2" where s is odd. :
number theory) 6. Compute the sequence a$2",as2 a5, ..., a52 modulo p. :
; 7. Ifsome element of this sequence is not 1, find the last element

that is not 1 and reject if that element is not —1.
8. All tests have passed at this point, so accept.”

Fermat's Little Theorem

THEOREM ...

If pis prime and a € Z, then a?~' =1 (mod p).

Primality “test”

Modular Equivalence

Definition:
« Written: x =y (mod p)
- Two numbers x and y are “equivalent (or congruent) modulo p” if ...

e ...x-y=kp, forsome k
* |.e, the difference is a multiple of p

* ...xmod p=ymodp
* l.e, they have the same remainder when divided by p

Example

* 38 =14 (mod 12)

 Because: 38-14=24=2-12

« Or because: 38/12 has remainder 2, and 14/12 has remainder 2

For every number x, x = some y (mod p) wherey € Z, = {0,...,p — 1}

Alternatively, a?-1-1 is divisible by p
THEOREM sorreeresressssmrcmmermnnnemssstasssssassntasnsss s ansnnssnnsnnsss

If pis prime and a € Z, then a?~' =1 (mod p).
Must be true for all a

Primality “test”, given number x:

- Contrapositive (true): if a*-1 is not divisible by x, then x is ...
... hot prime!

- Converse (not always true): if a¥!-1 is divisible by x, then x is ...
... maybe prime? (called a pseudoprime!)

..,p—1}

Fermat's Little Theorem Zp =1L

7p_]-}

THEOREM ...

If pis prime and a € Z, then a?~' =1 (mod p).

+
Zr={l,....,p—1}

Fermat's Little Theorem

Example # 1 Example # 3 (converse)
. p=7 (prime) -ﬂ:15kompmm£)
*lta=4
*VYace {1, ceny 6} 15-1
1 o e o 4151.1 = 414.1 = 268,435,455
a”'-11s divisible by 7 . 268,435,455 / 15 = 17,895,697
*Eg, fa=2, « So 15 passes the primality “test”
« 271-1=20-1=64-1=63=7"9 but Is not prime!

Example # 2 (contrapositive)
* p =6 (composite)
eifa=2
e 261.1=25-1=32-1=31
« 31 is not divisible by 6 so 6 is not prime

THEOREM ...

If pis prime and a € Z, then a?~' =1 (mod p).

Pseudoprime Algorithm 25— (L. p—1)

p

Checking all g, takes exponential
time, so randomly sample instead

n

. PSEUDOPRIME = “On input p:
: 1. Selectay,...,ar randomly in ZJ.

2. Compute " mod p for each i. :
3. Ifall computed values are 1, accept; otherwise, reject.”g

If machine rejects, then a?! # 1 (mod p) for some q,

« So pis composite (a; is a “compositeness witness”)
« Error rate: 0%

If machine accepts, then a?! =1 (mod p) for all g,

« p could be composite or prime

 Error Rate:
« depends on Pr[pis a non-prime pseudoprime]

Need another primality “test”

Too high!

Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
5 1. If piseven, accept if p = 2; otherwise, reject.
2. Selectay,...,a, randomly in Z¥.

: 3. Foreach i from 1 to k:
Primality “test” #2 4. Compute o' mod p and reject if different from 1.

: 5 Letp — 1 = s - 2! where s is odd.
6
7

0 1 2 4
Compute the sequence af? a2 | a$? $2

ai“ . a a2 modulo p.

2 tiad') 7 AR]

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”

Primality Test #2: Modular Square Root

If r>=a (mod p) ...
..then ris a *“modular square root” of a (mod p)

* If pis prime ...
e ... then the modular square root of 1 (mod p) =1 or -1

 If pis a composite pseudoprime...
e ...then 1 (mod p) has > 4 possible modular square roots

Example
» Modular square root of 1 (mod 15) =1 or -1 or 4 or -4

Fermat Test + Modular Square Root

- If pis prime, modular sqrt of 1 (mod p) =1 or -1
- If pis a composite pseudoprime, 1 (mod p) has > 4 sqgrts

If P! =1 (mod p) (from Fermat test), then modular sqrt = a»-1)/2
 If sqrt =1, keep taking square root, because a»-1)/2 = 1 (mod p)
*\i.e,, keep dividing exponent by 2

« If sqrt = -1, consider test “passed”
e, number is prime

e If sqrt # +1, reject

Computing modular square root:
* Let p-1 =524
 Then modular square root of aP-) = gs2"d = gs2™(d-1) (keep decreasing power of 2)

Miller-Rabin Probabilistic Primality Test

PRIMES = {n| n is a prime number in binary}

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

: 2. Selectay,...,a, randomly in Z 1. : '
modular exponentiation | 3. For eac}i 7@ frr;mkl to k: ’ ’ First compute Fermat's tes:t, =D @7 melpSt
is poly time : 4. Computg\’af ~" mod p and reject if different from 1. :
Repeated squaring | 5- Letp—1=s-2" where s is odd. Then compute (repeated) sqrt, reject if = +1

Is poly time 6 Compute the sequence>a§'20, af‘QI : af'22, ey af'zz modulo p. :

: 7. Ifsome element of this sequence is not 1, find the last element

So this machine that is not 1 and reject if that element is not —1. '
runs in 8. All tests have passed at this point, so accept.”

oo e o) | [

poly time If both tests pass for all a, then accept as prime

DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

=) 1. w € A implies Pr[M accepts w] > 1 — ¢, and
2. w ¢ Aimplies Pr[M rejects w] > 1 —e.

: PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.

: 2. Selectay,...,a, randomly in Z¥.

All a#* mod p = 1 (Fermat) |3.—Fqr each i from 1 to k:

: 4 Compute a? ' mod p and reject if different from 1.

5. Letp — 1 = s - 2! where s is odd. :

6 f'gn, af‘QI : af'22, ey af'zl modulo p. And sqrt ap ! =1
7 If some element of this sequence is not 1, find the last element

that is not 1 and reject if that element is not —1.

8. All tests have passed at this point, so accept.”

Compute the sequence a

If p is an odd prime number, Pr[PR[ME accepts p} = 1.

DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

1. w € A implies Pr[M accepts w| > 1 — ¢, and
m) 2. w ¢ A implies Pr[M rejects w] > 1 — e.

;PRIME = “On input p:
: 1. Ifpiseven, accept if p = 2; otherwise, reject.
Select ay, ..., a) randomly in Z}. Pr [al1s a Witness} >

[N [

For each i from 1 to k:

Compute a?~" mod p and reject if different from 1.

2
3
4
5. Let p— 1 = s - 2! where s is odd.
6
7

0 1 2 1
Compute the sequence a$? , af? , a$*? a$? modulo p. :

7) 7 | 1

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1. ;

8. All tests have passed at this point, so accept.”

If p is an odd composite number, Pr| PRIME accepts p | < 27F

Pr|a is a witness | > 2

 More Number Theory!
* Chinese Remainder Theorem!

* Sipser shows how to find a real witness for every false witness
*S0e<1/2

 Actual error rate of Miller-Rabin: e<1/4

DEFINITION

BPP is the class of languages that are decided by probabilistic poly-

P R I M E S ‘E B P P nomial time Turing machines with an error probability of 3.

M decides language A with error probability € if

1. w € A implies Pr[M accepts w| > 1 — ¢, and
m) 2. w ¢ A implies Pr[M rejects w] > 1 — e.

;PRIME = “On input p: :

: 1. Ifpiseven, accept if p = 2; otherwise, reject. | If p Is composite, then a
Select ay, ..., a, randomly in ZF. randomly selected a; will be
For each i from 1 to k: a witness 75% of the time

2
3
4. Compute a’ " mod p and reject if different from 1.
5
6
7

Letp — 1 = s - 2! where s is odd.

0 1 2 4
Compute the sequence a$? , af? , a$*? =

i

#2 ...,ai* modulop. :

If some element of this sequence is not 1, find the last element :
that is not 1 and reject if that element is not —1. :

8. All tests have passed at this point, so accept.”

If p is an odd prime number, Pr[PR[ME accepts p} = 1.

If p is an odd composite number, Pr| PRIME accepts p | < 27F 1-sided error

RP

DEFINITION

RP is the class of languages that are decided by probabilistic poly-
nomial time Turing machines where inputs in the language are
accepted with a probability of at least 1, and inputs not in the lan-

guage are rejected with a probability of 1. | ghe-sided error, like PRIMES

So PRIMES € RP

Probabilistic Complexity Classes

It's unknown if any of these
containments are strict!

PSPACE

Quantum
computing
(quantum TM)
version of BPP

No Quiz 12/13
Thank Tou For a Great Semester!

