CS622
Computing With DFAs
Friday, February 2, 2024
UMass Boston Computer Science
Announcements

• HW 1
 • Due: Wed 2/7 12pm (noon)
A Computation Model is ... (from lecture 1)

• Some **definitions** ...

 e.g., A **Natural Number** is either
 - Zero
 - a **Natural Number** + 1

• And **rules** that describe how to **compute** with the **definitions** ...

 To **add** two **Natural Numbers**:
 1. Add the ones place of each num
 2. Carry anything over 10
 3. Repeat for each of remaining digits ...
A Computation Model is ... (from lecture 1)

• Some definitions ...

• And rules that describe how to compute with the definitions ...
A Computation Model is ... (from lecture 1)

• Some definitions ...

\[\text{DEFINITION}\]

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the \textit{states},
2. \(\Sigma\) is a finite set called the \textit{alphabet},
3. \(\delta: Q \times \Sigma \to Q\) is the \textit{transition function},
4. \(q_0 \in Q\) is the \textit{start state}, and
5. \(F \subseteq Q\) is the \textit{set of accept states}.

• And rules that describe how to compute with the definitions ...

???
Computation with DFAs (JFLAP demo)

• DFA:

• Input: “1101”

HINT: always work out concrete examples to understand how a machine works
DFA Computation Rules

Informally

Given
• A DFA (~ a “Program”)
• and `Input` = string of chars, e.g. “1101”

To run the automata / “program”:
• `Start` in “start state”

• Repeat:
 • `Read 1 char from input;`
 • `Change state` according to the `transition` table

• Result of computation =
 • `Accept` if last state is `Accept state`
 • `Reject` otherwise
DFA Computation Rules

Informally

Given

- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:

- **Start** in “start state”

Formally (i.e., mathematically)

- \[M = \]
- \[w = \]

- **Repeat:**
 - Read 1 char from input;
 - Change state according to the **transition** table

- **Result** of computation =
 - Accept if last state is **Accept state**
 - Reject otherwise
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

To run the automata / “program”:
- Start in “start state”

- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table

- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1w_2 \cdots w_n$

A run is represented by variables r_0, \ldots, r_n, the sequence of states in the computation, where:

- $r_0 = q_0$

- M accepts w if
 sequence of states r_0, r_1, \ldots, r_n in Q exists
 with $r_n \in F$
DFA Computation Rules

Informally

Given

- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

To run the automata / “program”:

- Start in “start state”

- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table

Result of computation =

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)
 - A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:
 - \(r_0 = q_0 \)
 - \(r_i = \)
 - if \(i=1 \), \(r_1 = \delta(r_0, w_1) \)
 - if \(i=2 \), \(r_2 = \delta(r_1, w_2) \)
 - if \(i=3 \), \(r_3 = \delta(r_2, w_3) \)

- \(M \) accepts \(w \) if
 - sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists . . .
 - with \(r_n \in F \)
DFA Computation Rules

Informally

Given
• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:
• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise

Formally (i.e., mathematically)

• \(M = (Q, \Sigma, \delta, q_0, F) \)
• \(w = w_1 w_2 \cdots w_n \)
 A run is represented by variables \(r_0, \ldots, r_n \),
 the sequence of states in the computation, where:
 • \(r_0 = q_0 \)
 • \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)

• \(M \) accepts \(w \) if
 the sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists …
 with \(r_n \in F \)
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To **run** the automata / “program”:
- **Start** in “start state”

Repeat:
- Read 1 char from input;
- **Change state** according to the **transition** table

Result of computation =
- **Accept** if last state is **Accept state**
- **Reject** otherwise

Formally (i.e., mathematically)

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(w = w_1 w_2 \cdots w_n \)
- A run is represented by variables \(r_0, \ldots, r_n \), the **sequence of states** in the computation, where:
 - \(r_0 = q_0 \)
 - \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)

M accepts \(w \) if the sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists . . . with \(r_n \in F \)
An Extended Transition Function

Define **extended transition function:**

- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case:** ...
Interlude: Recursive Definitions

```javascript
function factorial( n )
{
    if ( n == 0 )
        return 1;
    else
        return n * factorial( n - 1 );
}
```

- Why is this allowed?
 - It's a “feature” (i.e., an axiom!) of the programming language
- Why does this “work”? (Why doesn’t it loop forever?)
 - Because the recursive call always has a “smaller” argument...
 - ... and so eventually reaches the base case and stops
Recursive Definitions

A **Natural Number** is either:
- **Zero**, or
- the **Successor** of a **Natural Number**

Examples
- Zero
- **Successor of Zero** (= “one”)
- **Successor of Successor of Zero** (= “two”)
- **Successor of Successor of Successor of Zero** (= “three”) ...
Recursive Definitions

Recursive definitions have:
- base case and
- recursive case
 (with a “smaller” object)

This is a recursive definition:
* Node is used before it is fully defined (but must be “smaller”)

```
/* Linked list Node*/

class Node {
  int data;
  Node next;
}
```
Strings Are Defined Recursively

A String is either:
- the **empty string** (\(\varepsilon\)), or
- \(xa\) (non-empty string) where
 - \(x\) is a **string**
 - \(a\) is a “char” in \(\Sigma\)

Remember: all strings are formed with “chars” from some **alphabet** set \(\Sigma\)

\[\Sigma^* = \text{set of all possible strings!}\]
Recursive Functions ⇔ Recursive Data

A **Natural Number** is either:
- **Zero**, or
- the **Successor** of a **Natural Number**

```java
function factorial( n )
{
    if ( n == 0 )
        return 1;
    else
        return n * factorial( n - 1 );
}
```

- **Base case**
- **Recursive case**

Recursive case must have “smaller” argument

The “**shape**” of recursive function definitions is based on ...
The recursive definition of its input data
An Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case**
 \[\hat{\delta}(q, \varepsilon) = \]
An Extended Transition Function

Define **extended transition function**:

- **Domain**:
 - Input state $q \in Q$ (doesn’t have to be start state)
 - Input string $w = w_1w_2 \cdots w_n$ where $w_i \in \Sigma$

- **Range**:
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case** $\hat{\delta}(q, \varepsilon) = q$

- **Recursive Case**
 \[
 \hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)
 \]
 where $w' = w_1 \cdots w_{n-1}$

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q\]
An Extended Transition Function

Define extended transition function:
- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case**
 \[\hat{\delta}(q, \varepsilon) = q \]

- **Recursive Case**
 \[\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n) \]
 where \(w' = w_1 \cdots w_{n-1} \)

\[\delta : Q \times \Sigma \rightarrow Q \text{ is the transition function} \]

A String is either:
- the **empty string** \(\varepsilon \), or
- \(xa \) (non-empty string) where
 - \(x \) is a **string**
 - \(a \) is a “char” in \(\Sigma \)
DFA Computation Rules

Informally

Given

• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:

• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise

Formally (i.e., mathematically)

\[M = (Q, \Sigma, \delta, q_0, F) \]
\[w = w_1 w_2 \cdots w_n \]

A run is represented by variables \(r_0, \ldots, r_n \),
the sequence of states in the computation, where:

• \(r_0 = q_0 \)

• \(r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \ldots, n \)

\[M \text{ accepts } w \text{ if } \text{ sequence of states } r_0, r_1, \ldots, r_n \text{ in } Q \text{ exists } \]
\[\text{with } r_n \in F \]

This is still a little “informal”
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

To run the automata / “program”:
- Start in “start state”

- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table

- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1w_2 \cdots w_n$

A run is represented by variables r_0, \ldots, r_n, the sequence of states in the computation, where:

- $r_0 = q_0$

- $r_i = \delta(r_{i-1}, w_i)$, for $i = 1, \ldots, n$

- M accepts w if $\hat{\delta}(q_0, w) \in F$

 sequence of states r_0, r_1, \ldots, r_n in Q exists … with $r_n \in F$
Definition of Accepting Computations

An **accepting computation**, for DFA $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

1. *starts* in the start state q_0

2. *goes through* a valid sequence of states according to δ

3. *ends* in an accept state

All 3 must be true for a computation to be an **accepting computation**!

M accepts w if $\delta(q_0, w) \in F$
Accepting Computation or Not?

DFA:

- \(\hat{\delta}(q1, 1101) \)
 - Yes
- \(\hat{\delta}(q1, 110) \)
 - No (doesn’t end in accept state)
- \(\hat{\delta}(q2, 101) \)
 - No (doesn’t start in start state)
Alphabets, Strings, Languages

• An **alphabet** is a **non-empty finite set** of symbols

 \[\Sigma_1 = \{0,1\} \]

 \[\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \]

• A **string** is a **finite sequence** of symbols from an alphabet

 01001 abracadabra \(\varepsilon\)

 Empty string (length 0)

• A **language** is a **set** of strings

 \[A = \{\text{good, bad}\} \]

 \[\emptyset \]

 Empty set is a language

 \[A = \{w \mid w \text{ contains at least one } 1 \text{ and an even number of } 0s \text{ follow the last } 1\} \]

 Languages can be infinite

 “the set of all ...”

 “such that ...”
Computation and Languages

• The **language** of a machine is the **set** of all strings that it **accepts**

• E.g., A DFA M **accepts** w if $\hat{\delta}(q_0, w) \in F$

• Language of $M = L(M) = \{w \mid M$ accepts $w\}$

"the set of all ..." "such that ..."
Machine and Language Terminology

DFA M accepts w^{string}

M recognizes language A^{Set of strings}

if $A = \{ w \mid M$ accepts $w \}$
Computation and Classes of Languages

• The **language** of a machine = **set of all strings** that it accepts

 • E.g., every DFA is associated with a language

• A **computation model** = **set of machines** it defines

 • E.g., all possible DFAs are a computation model

• Thus: a **computation model** = **set of languages**
Regular Languages: Definition

If a **deterministic finite automata (DFA)** recognizes a language, then that language is called a **regular language**.

* A **language** is a set of strings.

\[
M \text{ recognizes language } A \text{ if } A = \{w | M \text{ accepts } w\}
\]
A Language, Regular or Not?

- If given: a DFA M
 - We know: $L(M)$, the language recognized by M, is a **regular language**

 If a DFA recognizes a language, then that language is called a **regular language**.

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!
 - How do we determine, i.e., prove, that A is a regular language?
An Inference Rule: Modus Ponens

Premises
- If P then Q
- P is true

Conclusion
- Q must also be true

Example Premises
- If there is an DFA recognizing language A, then A is a regular language
- There is an DFA M where $L(M) = A$

Conclusion
- A is a regular language!
A Language, Regular or Not?

• If given: a DFA M
 • We know: $L(M)$, the language recognized by M, is a regular language

If a DFA recognizes a language, then that language is called a regular language.

• If given: a Language A
 • Is A a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?

Create an DFA recognizing A!