CS622
Computing With DFAs, Formally

Monday, February 5, 2024
UMass Boston Computer Science

\[\delta : Q \times \Sigma \rightarrow Q \] is the transition function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]
Announcements

• HW 1
 • **Due:** Wed 2/7 Mon 2/12 12pm (noon)

• TAs and (new!) office hours

Office hours will be held weekly **in-person**, in McCormack, 3rd Floor, at these times:

• Thu 2:00-3:30pm EST (Jean Gerard), room 0139
• Thu 3:30-5:00pm EST (Richard Chang), room 0139
• Fri 2:00-3:30pm EST (Prof Chang), room 0201-03

Office hours will be held weekly **via Zoom** during these times:

• Thu 3:30-5:00pm EST (Prof Chang) (see Blackboard for Zoom link)
• Sat 12:00-1:30pm EST (Anna Bosnova) (see Blackboard for Zoom link)

Drop-ins are fine, but emailing in advance if you can would be helpful.

These will usually be group meetings, but one-on-ones are available upon request.
Computation with DFAs (JFLAP demo)

- DFA:

- Input: “1101”

HINT: always work out concrete examples to understand how a machine works
DFA Computation Rules

Informally

Given

• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:

• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise
DFA Computation Rules

Informally

Given

- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:

- **Start** in “start state”

Formally (i.e., mathematically)

- \(M = \)
- \(w = \)

Repeat:

- Read 1 char from input;
- Change state according to the transition table

Result of computation =

- Accept if last state is **Accept state**
- Reject otherwise
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:
- **Start** in “start state”

Repeat:
- Read 1 char from input;
- Change state according to the transition table

Result of computation =
- Accept if last state is **Accept** state
- Reject otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

A run is represented by variables \(r_0, \ldots, r_n \), the **sequence of states** in the computation, where:

- \(r_0 = q_0 \)

- \(M \) accepts \(w \) if

 sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists \(\ldots \)

 with \(r_n \in F \)
Informally

Given
- A DFA (i.e., a “Program”)
- and Input = string of chars, e.g. “1101”

To run the automata / “program”:
- Start in “start state”

Repeat:
- Read 1 char from input;
- Change state according to the transition table

Result of computation =
- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

\[M = (Q, \Sigma, \delta, q_0, F) \]

\[w = w_1 w_2 \cdots w_n \]

A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:

\[r_0 = q_0 \]

\[r_i = \begin{cases} \delta(r_0, w_1) & \text{if } i=1, \\ \delta(r_1, w_2) & \text{if } i=2, \\ \delta(r_2, w_3) & \text{if } i=3 \end{cases} \]

\[M \text{ accepts } w \text{ if sequence of states } r_0, r_1, \ldots, r_n \text{ in } Q \text{ exists } \]

\[\text{with } r_n \in F \]
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To run the automata / “program”:
- **Start** in “start state”

Repeat:
- **Read 1 char from input;**
- **Change state** according to the transition table

Result of computation =
- **Accept** if last state is **Accept state**
- **Reject** otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:

- \(r_0 = q_0 \)
- \(r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \ldots, n \)

\(M \) accepts \(w \) if

sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists . . .

with \(r_n \in F \)
Informally
Given
• A DFA (~ a “Program”)
• and Input = string of chars, e.g. “1101”

To run the automata / “program”:
• Start in “start state”

• Repeat:
 • Read 1 char from input;
 • Change state according to the transition table

• Result of computation =
 • Accept if last state is Accept state
 • Reject otherwise

Formally (i.e., mathematically)

\[M = (Q, \Sigma, \delta, q_0, F) \]
\[w = w_1w_2 \cdots w_n \]

This is still a little “informal”

A run is represented by variables \(r_0, \ldots, r_n \), the sequence of states in the computation, where:

• \(r_0 = q_0 \)

• \(r_i = \delta(r_{i-1}, w_i) \), for \(i = 1, \ldots, n \)

This is still a little “informal”

• \(M \) accepts \(w \) if sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists ... with \(r_n \in F \)
An Extended Transition Function

Define **extended transition function:**

- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case:** ...
Interlude: Recursive Definitions

```java
function factorial(n) {
  if (n == 0) {
    return 1;
  } else {
    return n * factorial(n - 1);
  }
}
```

- Why is this allowed?
 - It’s a “feature” (i.e., an axiom!) of the programming language
- Why does this “work”? (Why doesn’t it loop forever?)
 - Because the recursive call always has a “smaller” argument ...
 - ... and so eventually reaches the base case and stops

- Base case
- Recursive case
- Function is called before it is fully defined!
- Recursive call with “smaller” argument
Recursive Definitions

A Natural Number is either:
- Zero, or
- the Successor of a Natural Number

Examples
- Zero
- Successor of Zero (= “one”)
- Successor of Successor of Zero (= “two”)
- Successor of Successor of Successor of Zero (= “three”) ...

Base case

Recursive case

Use of definition before it is fully defined!

“smaller” argument
Recursive Definitions

Recursive definitions have:
- **base case** and
- **recursive case**
 (with a “smaller” object)

```java
/* Linked list Node*/
class Node {
  int data;
  Node next;
}
```

This is a **recursive definition**: `Node` is used before it is fully defined (but must be “smaller”)

A node followed by a list

Left sub-tree is a binary tree

Right sub-tree is a binary tree
Strings Are Defined Recursively

A String is either:
- the empty string (ε), or
- xa (non-empty string) where
 - x is a string
 - a is a “char” in Σ

Remember: all strings are formed with “chars” from some alphabet set Σ

Σ^* = set of all possible strings!
A **Natural Number** is either:

- **Zero**, or
- the **Successor** of a **Natural Number**

```java
function factorial(n)
{
    if (n == 0)
        return 1;
    else
        return n * factorial(n - 1);
}
```

Recursive functions are **recursive** because its input data is recursively defined!
An Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \)

- **Domain**:
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input **string** \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range**:
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case** \(\hat{\delta}(q, \varepsilon) = \)

A String is either:
- the **empty string** \((\varepsilon) \), or
- \(xa \) (non-empty string) where
 - \(x \) is a **string**
 - \(a \) is a “char” in \(\Sigma \)

Recursive Input Data needs Recursive Function
An Extended Transition Function

Define **extended transition function**:

- **Domain:**
 - Input state \(q \in Q \) (doesn’t have to be start state)
 - Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case** \(\hat{\delta}(q, \varepsilon) = q \)
- **Recursive Case**
 \[
 \hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)
 \]
 where \(w' = w_1 \cdots w_{n-1} \)
An Extended Transition Function

Define **extended transition function**:

- **Domain:**
 - Input state $q \in Q$ (doesn’t have to be start state)
 - Input string $w = w_1w_2 \cdots w_n$ where $w_i \in \Sigma$
- **Range:**
 - Output state (doesn’t have to be an accept state)

(Defined recursively)

- **Base case**
 $\hat{\delta}(q, \varepsilon) = q$

- **Recursive Case**
 $\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)$
 where $w' = w_1 \cdots w_{n-1}$

$\delta: Q \times \Sigma \to Q$ is the **transition function**
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To **run** the automata / “program”:
- **Start** in “start state”

- **Repeat:**
 - Read 1 char from input;
 - Change state according to the transition table

- **Result** of computation =
 - Accept if last state is **Accept state**
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1w_2 \cdots w_n$

A run is represented by variables r_0, \ldots, r_n, the sequence of states in the computation, where:

- $r_0 = q_0$

- $r_i = \delta(r_{i-1}, w_i)$, for $i = 1, \ldots, n$

- M accepts w if the sequence of states r_0, r_1, \ldots, r_n in Q exists with $r_n \in F$

This is still a little “informal”
DFA Computation Rules

Informally

Given
- A **DFA** (~ a “Program”)
- and **Input** = string of chars, e.g. “1101”

To **run** the automata / “program”:
- **Start** in “start state”

 - **Repeat:**
 - **Read** 1 char from input;
 - **Change** state according to the **transition** table

- **Result** of computation =
 - **Accept** if last state is **Accept state**
 - **Reject** otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

 A run is represented by variables \(r_0, \ldots, r_n \),
 the **sequence of states** in the **computation**, where:

 - \(r_0 = q_0 \)
 - \(r_i = \delta(r_{i-1}, w_i), \) for \(i = 1, \ldots, n \)

- \(M \) **accepts** \(w \) if \(\hat{\delta}(q_0, w) \in F \)

 sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \) exists . . .

 with \(r_n \in F \). 121
Definition of Accepting Computations

An **accepting computation**, for DFA $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

1. **starts** in the **start state** q_0

2. **goes through** a **valid sequence of states** according to δ

3. **ends** in an **accept state**

All 3 must be true for a computation to be an **accepting computation**!

M accepts w if $\delta(q_0, w) \in F$
Accepting Computation or Not?

DFA:

- $\hat{\delta}(q_1, 1101)$
 - Yes
- $\hat{\delta}(q_1, 110)$
 - No (doesn’t end in accept state)
- $\hat{\delta}(q_2, 101)$
 - No (doesn’t start in start state)
Alphabets, Strings, Languages

• An **alphabet** is a **non-empty finite set of symbols**

 \[\Sigma_1 = \{0,1\} \]

 \[\Sigma_2 = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\} \]

• A **string** is a **finite sequence** of symbols from an **alphabet**

 01001 abracadabra \(\varepsilon\)

 Empty string (length 0)

• A **language** is a **set** of strings

 \(A = \{\text{good, bad}\} \)

 \(\emptyset \) \(\{ \} \)

 Empty set is a language

 \(A = \{w|w \text{ contains at least one 1 and an even number of 0s follow the last 1}\} \)

 “the set of all ...”

 “such that ...”

Alphabet specifies “all possible strings”

(impossible to have strings with non-alphabet chars)

Languages can be infinite
Computation and Languages

• The **language** of a machine is the **set** of all strings that it **accepts**

• E.g., A DFA M **accepts** w if $\delta(q_0, w) \in F$

• Language of $M = L(M) = \{w | M$ accepts $w\}$

"the set of all ..." "such that ..."
Machine and Language Terminology

DFA: M accepts w → string

M recognizes language A ← Set of strings

if $A = \{w | M \text{ accepts } w\}$
Computation and Classes of Languages

- The **language** of a machine = set of all strings that it accepts
 - E.g., every DFA is associated with a language

- A **computation model** = set of machines it defines
 - E.g., all possible DFAs are a computation model

Thus: a **computation model** = set of languages
Regular Languages: Definition

If a **deterministic finite automata (DFA)** recognizes a language, then that language is called a **regular language**.
A Language, Regular or Not?

• If given: a DFA M
 • We know: $L(M)$, the language recognized by M, is a **regular language**

 \[
 \text{If a DFA recognizes a language, then that language is called a regular language.}
 \]
 \[
 \text{(modus ponens)}
 \]

• If given: a **Language** A
 • Is A a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?
An Inference Rule: Modus Ponens

Premises
- If P then Q
- P is true

Conclusion
- Q must also be true

Example Premises
- If there is an DFA recognizing language A, then A is a regular language
- There is an DFA M where $L(M) = A$

Conclusion
- A is a regular language!
A Language, Regular or Not?

• If given: a DFA M
 • We know: $L(M)$, the language recognized by M, is a regular language

If a DFA recognizes a language, then that language is called a regular language.

• If given: a Language A
 • Is A a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?

Prove there is a DFA recognizing A!
Language: strs with odd # 1s

<table>
<thead>
<tr>
<th>Example</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>no</td>
</tr>
</tbody>
</table>

$\Sigma = \{0, 1\}$

If a DFA recognizes a language, then that language is called a **regular language**.

HINT: always work out concrete examples to understand a language

How to prove the language is regular?

Prove there’s a DFA recognizing it!
Designing Finite Automata: Tips

• Input is read only once, one char at a time

• Must decide accept/reject after that

• States = the machine’s **memory**!
 • # states must be decided in advance
 • Think about what information must be remembered.

• Every state/symbol pair must have a transition (for DFAs)

• Come up with examples!
Design a DFA: accept strs with odd # 1s

• **States:**
 • 2 states:
 • seen even 1s so far
 • seen odds 1s so far

• **Alphabet:** 0 and 1

• **Transitions:**

• **Start / Accept states:**
“Prove” that DFA recognizes a language

<table>
<thead>
<tr>
<th>Example</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>no</td>
</tr>
</tbody>
</table>

$\Sigma = \{0, 1\}$

In this class, a table like this is sufficient to “prove” that a DFA recognizes a language.
Submit 2/5 in-class work to gradescope