CS622
Regular Languages
Wednesday, February 7, 2024
UMass Boston Computer Science
Announcements

• HW 1
 • **Due**: Mon 2/12 12pm (noon)
Alphabets, Strings, Languages

- An **alphabet** is a **non-empty finite set of symbols**
 \[\Sigma_1 = \{0,1\} \]
 \[\Sigma_2 = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\} \]

- A **string** is a **finite sequence** of symbols from an alphabet

 \[01001 \quad \text{abracadabra} \quad \varepsilon \]

- A **language** is a **set** of strings

 \[A = \{\text{good, bad}\} \]
 \[\emptyset \quad \{\} \]

 The Empty set is a language

\[A = \{w \mid w \text{ contains at least one } 1 \text{ and an even number of } 0s \text{ follow the last } 1\} \]

Previously

An alphabet defines “all possible strings”

(strings with non-alphabet symbols are impossible)

Empty string (length 0)

(\(\varepsilon\) symbol is not in the alphabet!)

Languages can be infinite

“the set of all ...”

“such that ...”
Computation and Languages

• The **language** of a machine = **set of strings** that it **accepts**

• E.g., A DFA M **accepts** w if $\delta(q_0, w) \in F$
Machine and Language Terminology

- The **language** of a machine = **set of strings** that it **accepts**

- E.g., A **DFA** M **accepts** w **string**
 $
 M \text{ recognizes language } A \quad \text{Set of strings}
 \quad \text{if } A = \{w | M \text{ accepts } w\}$

 “the set of all ...”

 “such that ...”
Machine and Language Terminology

- The **language** of a machine = **set of strings** that it **accepts**

- E.g., A **DFA** M **accepts** w

 M **recognizes language** $L(M)$

 $L(M) = \{ w \mid M \text{ accepts } w \}$

Using L as function mapping Machine \rightarrow Language is common notation
Machine and Language Terminology

• The *language* of a machine = set of strings that it *accepts*

• E.g., A DFA M *accepts* w

M *recognizes language* $L(M)$

• Language of $M = L(M) = \{ w \mid M \text{ accepts } w \}$
Languages Are Computation Models

- The **language** of a machine = set of strings that it **accepts**
 - E.g., a DFA recognizes a language

- A **computation model** = set of machines it defines
 - E.g., all possible DFAs are a computation model

Thus: a **computation model** equivalently = a set of **languages**

This class is **really** about studying sets of languages!
Regular Languages

• first set of languages we will study: regular languages

This class is really about studying sets of languages!
Regular Languages: Definition

If a deterministic finite automata (DFA) recognizes a language, then that language is called a regular language.
A Language, Regular or Not?

• If given: a DFA M
 • We know: $L(M)$, the language recognized by M, is a regular language

 Proof: If a DFA recognizes a language, then that language is called a regular language. (modus ponens)

• If given: a Language A
 • Is A a regular language?
 • Not necessarily!

 Proof: ??????
Proving That a Language is Regular

Prove: A language $L = \{ \ldots \}$ is a regular language

Proof:

Statements

1. DFA $M = (Q, \Sigma, \delta, q_0, F)$
 (TODO: actually define M
 (no unbound variables!)

2. DFA M recognizes L

3. If a DFA recognizes L, then L is a regular language

4. Language L is a regular language

Justifications

1. Definition of a DFA

2. TODO: ???

3. Definition of a regular language

4. Stmts 2 and 3 (and modus ponens)

Modus Ponens

If we can prove these:

- P then Q
- P

Then we've proved:

- Q
A Language: strings with odd # of 1s

- **In-class exercise** (submit to gradescope):

<table>
<thead>
<tr>
<th>String</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>No</td>
</tr>
</tbody>
</table>

∑ = \{0,1\}

If a DFA **recognizes** a language, then that language is called a **regular language**.

Come up with string examples (in a table), **both**
- in the language
- and not in the language

How to prove the language is regular?
Prove there’s a DFA recognizing it!
Proving That a Language is Regular

Prove: A language $L = \{ \ldots \}$ is a regular language

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DFA $M = (Q, \Sigma, \delta, q_0, F)$</td>
<td>1. Definition of a DFA</td>
</tr>
<tr>
<td>(TODO: actually define M)</td>
<td></td>
</tr>
<tr>
<td>(no unbound variables!)</td>
<td></td>
</tr>
<tr>
<td>2. DFA M recognizes L</td>
<td>2. TODO: ???</td>
</tr>
<tr>
<td>3. If a DFA recognizes L, then L is a regular language</td>
<td>3. Definition of a regular language</td>
</tr>
<tr>
<td>4. Language L is a regular language</td>
<td>4. Stmts 2 and 3</td>
</tr>
<tr>
<td></td>
<td>(and modus ponens)</td>
</tr>
</tbody>
</table>
Designing Finite Automata: Tips

• Input is read only once, one char at a time (can't go back)

• Must decide accept/reject after that

• States = the machine's "memory!"
 • # states must be decided in advance
 • Think about what information must be "remembered".

• Every state/symbol pair must have a defined transition (for DFAs)

• Come up with examples to help you!
Design a DFA: accept strs with odd # 1s

• **States:**
 • 2 states:
 - seen even 1s so far
 - seen odds 1s so far

• **Alphabet:** 0 and 1

• **Transitions:**

• **Start / Accept states:**
Proving That a Language is Regular

Prove: A language \(L = \{ \ldots \} \) is a regular language

Proof:

Statements

1. DFA \(M = \ldots \) \\
 See state diagram \\
 (only if problem allows!)

2. DFA \(M \) recognizes \(L \)

3. If a DFA recognizes \(L \), then \(L \) is a regular language

4. Language \(L \) is a regular language

Justifications

1. Definition of a DFA

2. TODO: ???

3. Definition of a regular language

4. Stmts 2 and 3 (and modus ponens)
“Prove” that DFA recognizes a language

In-class exercise (part 2):

<table>
<thead>
<tr>
<th>String</th>
<th>In the language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>01</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>1101</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>no</td>
</tr>
</tbody>
</table>

$\Sigma = \{0, 1\}$

Confirm the DFA:
- Accepts strings in the language
- Rejects strings not in the language

In this class, a table like this is sufficient to “prove” that a DFA recognizes a language.
Proving That a Language is Regular

Prove: A language $L = \{ \ldots \}$ is a regular language

Proof:

Statements

1. DFA $M = \ldots$

 See state diagram (only if problem allows!)

2. DFA M recognizes L

3. If a DFA recognizes L, then L is a regular language

4. Language L is a regular language

Justifications

1. Definition of a DFA

2. See examples table

3. Definition of a regular language

4.Stmts 2 and 3 (and modus ponens)
In-class exercise 2

• Prove: the following language is a regular language:
 • \(A = \{ w \mid w \text{ has exactly three 1's} \} \)

• Where \(\Sigma = \{0, 1\} \),

Definition

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q \) is a finite set called the **states**,
2. \(\Sigma \) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q \) is the **transition function**,
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the **set of accept states**.

Remember:
To understand the language, always come up with string examples first (in a table)! **Both**:
- in the language
- and not in the language

You will need this later in the proof anyways!
Proving That a Language is Regular

Prove: A language $L = \{ \ldots \}$ is a regular language

Proof:

Statements

1. DFA $M = (Q, \Sigma, \delta, q_0, F)$ (TODO: actually define M)
 (no unbound variables!)

2. DFA M recognizes L

3. If a DFA recognizes L, then L is a regular language

4. Language L is a regular language

Justifications

1. Definition of a DFA

2. TODO: ???

3. Definition of a regular language

4. Stmts 2 and 3 (and modus ponens)
In-class exercise Solution

- Design finite automata recognizing:
 - \(\{ w \mid w \text{ has exactly three 1's} \} \)

- States:
 - Need one state to represent how many 1's seen so far
 - \(Q = \{ q_0, q_1, q_2, q_3, q_{4+} \} \)

- Alphabet: \(\Sigma = \{ 0, 1 \} \)

- Transitions:

- Start state:
 - \(q_0 \)

- Accept states:
 - \(\{ q_3 \} \)

So a DFA's computation recognizes simple string patterns?

Yes!

Have you ever used a programming language feature to recognize simple string patterns?
Submit 2/7 in-class work to gradescope