Combining DFAs and Closed Operations

Monday, February 12, 2024
UMass Boston Computer Science
Announcements

• HW 1 in
 • Due Mon 2/12 12pm

• HW 2 out
 • Due Mon 2/19 12pm

• Check previous Piazza posts before posting!
Languages Are Computation Models

• The language of a machine = set of strings that it accepts

 • E.g., a DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognizes language A: if $A = \{w \mid M \text{ accepts } w\}$

• A computation model = set of machines it defines

 • E.g., all possible DFAs are a computation model

Thus: a computation model equivalently = a set of languages

This class is really about studying sets of languages!
Languages Are Computation Models

- The first set of languages we will study: **regular languages**

 If a DFA recognizes a language L, then L is a **regular language**

Previously

Thus: a **computation model** equivalently = a **set of languages**

This class is **really** about studying **sets of languages**!
Is it regular?: strings with odd # 1s

- **States:**
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

- **Alphabet:** 0 and 1

- **Transitions:**

- **Start / Accept states:**

(Part of Proof requires) Creating DFA:

So a DFA's computation recognizes simple string patterns?

Yes!

Have you ever used a programming language (feature) for writing string matching computation?

Regular Expressions! (stay tuned!)
Combining DFAs?

Password Requirements

- Passwords must have a minimum length of ten (10) characters - but more is better!
- Passwords **must include at least 3** different types of characters:
 - upper-case letters (A-Z)
 - lower-case letters (a-z)
 - symbols or special characters (%, &, *, $, etc.)
 - numbers (0-9)
- Passwords cannot contain all or part of your email address
- Passwords cannot be re-used

To match all requirements, combine smaller DFAs into one big DFA?

(We do this with programs all the time)
Password Checker DFAs

To combine more than once, this must be a DFA

M_1: Check special chars

M_2: Check uppercase

M_3: “OR”

M_4: Check length

M_5: “AND”

Want to be able to easily combine DFAs, i.e., composability

We want these operations:

“OR” : DFA \times DFA \rightarrow DFA

“AND” : DFA \times DFA \rightarrow DFA

To combine more than once, operations must be closed!
“Closed” Operations

- Set of Natural numbers = \{0, 1, 2, ...\}
 - Closed under addition:
 - if \(x \) and \(y \) are Natural numbers,
 - then \(z = x + y \) is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no

- Integers = \{..., -2, -1, 0, 1, 2, ...\}
 - Closed under addition and multiplication
 - Closed under subtraction?
 - yes
 - Closed under division?
 - no

- Rational numbers = \{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}
 - Closed under division?
 - No?
 - Yes if \(z \neq 0 \)

A set is **closed** under an operation if: the **result** of applying the operation to members of the set is in the same set

i.e., input set(s) = output set
We Want “Closed” Ops For Regular Langs!

• Set of Regular Languages = \{L_1, L_2, \ldots\}
 • **Closed** under ...?
 • OR (union)
 • AND (intersection)
 • ...

A set is **closed** under an operation if: the **result** of applying the operation to members of the set is in the same set

i.e., input set(s) = output set
Why Care About Closed Ops on Reg Langs?

• Closed operations for regular langs preserve “regularness”

• I.e., it preserves the same computation model!

• Allows “combining” smaller “regular” computations to get bigger ones:

For Example:
OR: Regular Lang \times\ Regular Lang \rightarrow\ Regular Lang

• So this semester, we will look for operations that are closed!
Password Checker: “OR” = “Union”

- M_3: “OR”
 - M_1: Check special chars
 - M_2: Check uppercase

Venn diagram with sets A and B.
Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{fort, south}\}$ $B = \{\text{point, boston}\}$

$$A \cup B = \{\text{fort, south, point, boston}\}$$
Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages).

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set.)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Want to prove this statement

Or this (same) statement
The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set.)
Is Union Closed For Regular Langs?

Theorem

The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Flashback: Mathematical Statements: IF-THEN

Using:
• If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 • Either P is FALSE (not too useful, can’t prove anything about Q), or
 • If P is TRUE, then Q is TRUE (modus ponens)

Proving:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Flashback: Mathematical Statements: IF-THEN

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

If P is TRUE, then Q is TRUE (modus ponens).

Proving:

To prove: $P \rightarrow Q$ is TRUE:
- Prove P is FALSE (usually hard or impossible)
- Assume P is TRUE, then prove Q is TRUE

Would have to prove there are no regular languages (impossible)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Is Union Closed For Regular Langs?

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Do we know anything about A_1 and A_2?

How to create this? Don’t know what A_1 and A_2 are!
Wait! If A Then $B = ?= If B$ Then A

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2

If L is a regular language, then a DFA recognizes L???
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:
 • “If Y then X” (converse)
 • No!
If Regular, Then DFA?

• Prove: If \(L \) is a \textbf{regular language}, then a \textbf{DFA} recognizes \(L \)

• Proof (Sketch)

 Case analysis:
 • Look at all if-then statements of the form:
 • “If ... language \(L \), then \(L \) is a \textbf{regular language}”
 • (At least one is true!)
 • Figure out which one(s) led to conclusion:
 • “\(L \) is a \textbf{regular language}”
 • (There’s only 1!)

 • So it must be that:

If \(L \) is a \textbf{regular language}, then a \textbf{DFA} recognizes \(L \)
- A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where
 1. \(Q\) is a finite set called the **states**,
 2. \(\Sigma\) is a finite set called the **alphabet**,
 3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
 4. \(q_0 \in Q\) is the **start state**, and
 5. \(F \subseteq Q\) is the **set of accept states**.

Regular language \(A_1\) and **Regular language** \(A_2\)

Even if we **don't know** what these languages are, **we still know**

\[
M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \\
M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2,
\]

If \(L\) is a **regular language**, then a **DFA** recognizes \(L\)
Want: M

M_1 recognizes A_1

M_2 recognizes A_2

(to prove $A_1 \cup A_2$ is regular)

Rough sketch idea: M is a combination of M_1 and M_2 that checks whether its input is accepted by either M_1 or M_2

But, a DFA can only read its input once!

Need to somehow simulate “being in” both an M_1 and M_2 state simultaneously

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Is Union Closed For Regular Langs?

Statements
1. \(A_1 \) and \(A_2 \) are regular languages
2. A DFA \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognizes \(A_1 \)
3. A DFA \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognizes \(A_2 \)
4. Construct DFA \(M = (Q, \Sigma, \delta, q_0, F) \) (todo)
5. \(M \) recognizes \(A_1 \cup A_2 \)
6. \(A_1 \cup A_2 \) is a regular language
7. The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6
Union is Closed For Regular Languages

Proof (continuation)

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \),

- states of \(M \):
 \(Q = \{ (r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2 \)

This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F') \), where

1. \(Q \) is a finite set called the **states**,
2. \(\Sigma \) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q \) is the **transition function**,
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the **set of accept states**.

Want: \(M \) that can simultaneously “be in” both an \(M_1 \) and \(M_2 \) state

A state of \(M \) is a pair:
- the **first** part is a state of \(M_1 \) and
- the **second** part is a state of \(M_2 \)

So the states of \(M \) is all possible **combinations** of the states of \(M_1 \) and \(M_2 \)
Union is Closed For Regular Languages

Proof (continuation)

• Given:
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \] recognize \(A_1, \)
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \] recognize \(A_2, \)

• Construct: \(M = (Q, \Sigma, \delta, q_0, F), \) using \(M_1 \) and \(M_2, \) that recognizes \(A_1 \cup A_2 \)

• states of \(M: \)
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the \textit{Cartesian product} of sets \(Q_1 \) and \(Q_2 \)

\[A \text{ finite automaton is a 5-tuple } (Q, \Sigma, \delta, q_0, F), \text{ where } \]
\[q(\alpha) = (\delta_1(r_1, \alpha), \delta_2(r_2, \alpha)) \]

A step in \(M \) is both:
- a step in \(M_1, \) and
- a step in \(M_2 \)
Union is Closed For Regular Languages

Proof (continuation)

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \), \n \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- states of \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the Cartesian product of sets \(Q_1 \) and \(Q_2 \)

- \(M \) transition fn:
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

- \(M \) start state:
 \[(q_1, q_2) \]
 Start state of \(M \) is both start states of \(M_1 \) and \(M_2 \)
Union is Closed For Regular Languages

Proof (continuation)

• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

• Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$

• states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 This set is the Cartesian product of sets Q_1 and Q_2

• M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

• M start state: (q_1, q_2)

• M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Accept if either M_1 or M_2 accept

Q.E.D.?
Is Union Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

\[
A_1 \cup A_2 = (Q, \Sigma, \delta, q_0, F)
\]

Previously...
“Prove” that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$
Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Be careful when choosing examples!

<table>
<thead>
<tr>
<th>String</th>
<th>In lang $A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Don’t know A_1 and A_2 exactly ...
... but we know ...
... they are sets of strings!

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
constructed $M = (Q, \Sigma, \delta, q_0, F)$ recognizes $A_1 \cup A_2$?

In this class, a table like this is sufficient to “prove” that a DFA recognizes a language.
“Prove” that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Let $s_5 \notin A_1$ and $s \notin A_2$

<table>
<thead>
<tr>
<th>String</th>
<th>In lang $A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>???</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>???</td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2, constructed $M = (Q, \Sigma, \delta, q_0, F)$ recognizes $A_1 \cup A_2$?
Proof (continuation)

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),
- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)
- states of \(M \):
 \(Q = \{ (r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2 \)
 This set is the \textit{Cartesian product} of sets \(Q_1 \) and \(Q_2 \)
- \(M \) transition fn:
 \(\delta \left((r_1, r_2), a \right) = \left(\delta_1(r_1, a), \delta_2(r_2, a) \right) \)
- \(M \) start state:
 \((q_1, q_2) \)
- \(M \) accept states:
 \(F = \{ (r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2 \} \)
“Prove” that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_5 \notin A_1$ and $\notin A_2$

<table>
<thead>
<tr>
<th>String</th>
<th>In lang $A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td>Accept</td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td>Accept</td>
</tr>
<tr>
<td>s_3</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>s_4</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>s_5</td>
<td>No</td>
<td>Reject</td>
</tr>
</tbody>
</table>

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
constructed $M = (Q, \Sigma, \delta, q_0, F)$

Accept if either M_1 or M_2 accept
Is Union Closed For Regular Langs?

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. M recognizes $A_1 \cup A_2$

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

6. $A_1 \cup A_2$ is a regular language
7. From stmt #1 and #6

Q.E.D.
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

M_3: “CONCAT”

M_1: recognize numbers

M_2: recognize words
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.

If $A = \{\text{fort, south}\}$ \quad $B = \{\text{point, boston}\}$

$$A \circ B = \{\text{fortpoint, fortboston, southpoint, southboston}\}$$
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M recognizing $A_1 \circ A_2$? (like union)
 - Using DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$.

PROBLEM: Can only read input once, can’t backtrack.
Overlapping Concatenation Example

• Let M_1 recognize language $A = \{ \text{j}en, \text{j}ens \}$
• and M_2 recognize language $B = \{ \text{smith} \}$
• Want: Construct M to recognize $A \circ B = \{ \text{j}en\text{smith, j}ens\text{smith} \}$

• If M sees jen ...
• M must decide to either:
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{jens}, \text{jens} \}$
- and M_2 recognize language $B = \{ \text{smith} \}$
- Want: Construct M to recognize $A \circ B = \{ \text{jenssmith}, \text{jenssmith} \}$

- If M sees jen ...
- M must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{jen, jens\}$
- and M_2 recognize language $B = \{smith\}$
- Want: Construct M to recognize $A \circ B = \{jensmith, jenssmith\}$

- If M sees jen ...
 - M must decide to either:
 - stay in M_1 (correct, if full input is $jensmith$)
 - or switch to M_2 (correct, if full input is $jenSmith$)

- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot **combine** A_1 and A_2’s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don’t know when! (we can only read input once)

- This requires a **new kind of machine**!

- **But** does this mean concatenation is **not closed** for regular langs?