CS 622
Nondeterminism
Wednesday, February 14, 2024
UMass Boston Computer Science
Announcements

• HW 2 out
 • Due Mon 2/19 12pm EST (noon)
 • Due Wed 2/21 12pm EST (noon)
Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages).

The class of regular languages is **closed** under the union operation.

(In general, a set is **closed** under an operation if applying the operation to members of the set produces a result in the same set.)

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Want to prove this statement

Or this (same) statement
Is Union Closed For Regular Langs?

Theorem

The class of regular languages is **closed** under the **union operation**.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

*(In general, a set is **closed** under an operation if applying the operation to members of the set produces a result in the same set)*

Want to prove this statement

Or this (same) statement

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the operations we’re interested in are set operations
Is Union Closed For Regular Langs?

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Flashback: Mathematical Statements: IF-THEN

Using:
- If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 - Either P is FALSE (not too useful, can’t prove anything about Q), or
 - If P is TRUE, then Q is TRUE (modus ponens)

Proving:
- To prove: $P \rightarrow Q$ is TRUE:
 - Prove P is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE
Is Union Closed For Regular Langs?

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

To prove $P \rightarrow Q$ is TRUE: Assume P is TRUE, then prove Q is TRUE.
Wait! If A Then $B = ?= If B$ Then A

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2

1. Assumption
2. Def of Regular Language
3. Def of Regular Language

If a DFA recognizes a language L, then L is a **regular language**

==

If L is a **regular language**, then a DFA recognizes L ??
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:

 • “If Y then X” (converse)
 • No!
If Regular, Then DFA?

If a DFA recognizes a language L, then L is a **regular language**

• Prove: If L is a **regular language**, then a DFA recognizes L

• Proof (Sketch)

 Case analysis:
 • Look at **all** if-then statements of the form:
 • “If ... language L, then L is a **regular language**”
 • (At least one is true, because we know “L is a **regular language**”!)
 • Figure out which one(s) led to conclusion:
 • “L is a **regular language**”
 • (There’s only 1!)

• So it must be that:

 If L is a **regular language**, then a **DFA** recognizes L

“Corollary”
Is Union Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

"Corollary"
DEFINITION

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.

Regular language \(A_1\)
Regular language \(A_2\)

Even if we **don’t know** what these languages are, we **still know**...

\[
M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1),\text{ recognize } A_1, \\
M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),\text{ recognize } A_2,
\]

If \(L\) is a **regular language**, then a **DFA** recognizes \(L\)
Want: M

M_1 recognizes A_1

M_2 recognizes A_2

(to prove $A_1 \cup A_2$ is regular)

Rough sketch Idea: M is a combination of M_1 and M_2 that checks whether its input is accepted by either M_1 or M_2

But, a DFA can only read its input once!

Need to somehow simulate “being in” both an M_1 and M_2 state simultaneously

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Union is Closed For Regular Languages

Proof (continuation)

• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize $A_1,$
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize $A_2,$

• Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$

• states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$

This set is the Cartesian product of sets Q_1 and Q_2

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

A state of M is a pair:
- first part: state of M_1
- second part: state of M_2

states of M: all possible pair combinations of states of M_1 and M_2
Union is Closed For Regular Languages

Proof (continuation)
• Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),
• Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)
• states of \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where \((q) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)

A step in \(M \) is both:
- a step in \(M_1 \), and
- a step in \(M_2 \)
Union is Closed For Regular Languages

Proof (continuation)

• Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)\), recognize \(A_1\),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)\), recognize \(A_2\),

• Construct: \(M = (Q, \Sigma, \delta, q_0, F)\), using \(M_1\) and \(M_2\), that recognizes \(A_1 \cup A_2\)

• states of \(M\): \(Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2\)
 This set is the \textit{Cartesian product} of sets \(Q_1\) and \(Q_2\)

• \(M\) transition fn: \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))\)

• \(M\) start state: \((q_1, q_2)\)
 Start state of \(M\) is both start states of \(M_1\) and \(M_2\)
Union is Closed For Regular Languages

Proof (continuation)

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- states of \(M \):
 \(Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \)
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

- \(M \) transition fn:
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

- \(M \) start state:
 \((q_1, q_2) \)

- \(M \) accept states:
 \[F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} \]

Q.E.D.?
Is Union Closed For Regular Langs?

Statements

1. \(A_1 \) and \(A_2 \) are regular languages
2. A DFA \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognizes \(A_1 \)
3. A DFA \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognizes \(A_2 \)
4. **Construct DFA** \(M = (Q, \Sigma, \delta, q_0, F) \)
5. \(M \) recognizes \(A_1 \cup A_2 \)
6. \(A_1 \cup A_2 \) is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).
“Prove” that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$
Let $s_3 \notin A_1$ and $s_4 \notin A_2$

<table>
<thead>
<tr>
<th>String</th>
<th>$A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Don’t know A_1 and A_2 exactly but we know they are sets of strings!

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2, constructed $M = (Q, \Sigma, \delta, q_0, F)$ recognizes $A_1 \cup A_2$?

In this class, a table like this is sufficient to “prove” that a DFA recognizes a language!
"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$
Let $s_3 \notin A_1$ and $s_4 \notin A_2$
Let $s_5 \notin A_1$ and $\notin A_2$

<table>
<thead>
<tr>
<th>String</th>
<th>In lang $A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
constructed $M = (Q, \Sigma, \delta, q_0, F)$ recognizes $A_1 \cup A_2$?
Union is Closed For Regular Languages

Proof (continuation)

• Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \) recognize \(A_1, \)
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \) recognize \(A_2, \)

• Construct: \(M = (Q, \Sigma, \delta, q_0, F), \) using \(M_1 \) and \(M_2, \) that recognizes \(A_1 \cup A_2 \)

• states of \(M: \) \(Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \)
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

• \(M \) transition fn: \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \)

• \(M \) start state: \((q_1, q_2) \)

• \(M \) accept states: \(F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} \)

Accept if either \(M_1 \) or \(M_2 \) accept
“Prove” that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_5 \not\in A_1$ and $\notin A_2$

<table>
<thead>
<tr>
<th>String</th>
<th>In lang $A_1 \cup A_2$?</th>
<th>Accepted by M?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Yes</td>
<td>Accept</td>
</tr>
<tr>
<td>s_2</td>
<td>Yes</td>
<td>Accept</td>
</tr>
<tr>
<td>s_3</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>s_4</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>s_5</td>
<td>No</td>
<td>Reject</td>
</tr>
</tbody>
</table>

$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,
constructed $M = (Q, \Sigma, \delta, q_0, F)$

Accept if either M_1 or M_2 accept
Is Union Closed For Regular Langs?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications
1. Assumption
2. Def of Regular Language
3. Def of Regular Language
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

M_3: “CONCAT”

M_1: recognize numbers M_2: recognize words
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{fort, south}\}$, $B = \{\text{point, boston}\}$

$$A \circ B = \{\text{fortpoint, fortboston, southpoint, southboston}\}$$
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- **Construct a new machine** M recognizing $A_1 \circ A_2$? (like union)
 - Using DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
M_1 and M_2 recognize A_1 and A_2, respectively.

Want: Construction of M to recognize $A_1 \circ A_2$.

Problem: Can only read input once, can’t backtrack.

Need to switch machines at some point, but when?
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{j}en, \text{j}ens \}$
- and M_2 recognize language $B = \{ \text{smith} \}$
- Want: Construct M to recognize $A \circ B = \{ \text{j}ens\text{smith}, \text{j}ens\text{sm}i\text{th} \}$

- If M sees $\text{j}en$...
- M must decide to either:
Overlapping Concatenation Example

• Let M_1 recognize language $A = \{\text{jen, jens}\}$
• and M_2 recognize language $B = \{\text{smith}\}$
• Want: Construct M to recognize $A \circ B = \{\text{jensmith, jenssmith}\}$

• If M sees jen ...
• M must decide to either:
 • stay in M_1 (correct, if full input is jenssmith)
Overlapping Concatenation Example

• Let M_1 recognize language $A = \{ \text{jens, jenss} \}$
• and M_2 recognize language $B = \{ \text{smith} \}$
• Want: Construct M to recognize $A \circ B = \{ \text{jenssmith, jensssmith} \}$

• If M sees jen ...
 • If M sees jen ...
 • stay in M_1 (correct, if full input is jenssmith)
 • or switch to M_2 (correct, if full input is jenssmith)

• But to recognize $A \circ B$, it needs to handle both cases!!
 • Without backtracking

Concatenation: $A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$
Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

• Cannot **combine** A_1 and A_2’s machine because:
 • Need to switch from A_1 to A_2 at some point ...
 • ... but we don’t know when! (we can only read input once)

• This requires a **new kind of machine**!
• **But** does this mean concatenation is not closed for regular langs?
Nondeterminism
Deterministic vs Nondeterministic

Deterministic computation

- start

- states

- ...

- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation

- start
- ... (states)
- accept or reject

Nondeterministic computation

- ... (multiple states at the same time)

- reject
- ... (new FA)
- accept

DFAs

New FA
A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the \textit{states},
2. Σ is a finite set called the \textit{alphabet},
3. $\delta: Q \times \Sigma \rightarrow Q$ is the \textit{transition function},
4. $q_0 \in Q$ is the \textit{start state}, and
5. $F \subseteq Q$ is the set of \textit{accept states}.
Nondeterministic Finite Automata (NFA)

Definition

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Compare with DFA:

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Difference

Power set, i.e. a transition results in set of states
Power Sets

• A **power set** is the set of all subsets of a set

• **Example:** $S = \{a, b, c\}$

• Power set of $S =$
 • $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 • **Note:** includes the empty set!
Nondeterministic Finite Automata (NFA)

DEFINITION

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

\[
\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}
\]

CAREFUL:
- \(\varepsilon\) symbol is reused here, as a transition label.
- It’s not the empty string!
- And it’s (still) not a character in the alphabet \(\Sigma\)!

Transition label can be “empty”, i.e., machine can transition without reading input.
NFA Example

- Come up with a formal description of the following NFA:

DEFINITION

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \longrightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0, 1\}$,
3. δ is given as

<table>
<thead>
<tr>
<th>$\delta(\delta)$</th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1}$</td>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_2}$</td>
<td>\emptyset</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

4. q_1 is the start state, and
5. $F = \{q_4\}$.
In-class Exercise

• Come up with a formal description for the following NFA
 • \(\Sigma = \{ a, b \} \)

Definition

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
In-class Exercise Solution

Let $N = (Q, \Sigma, \delta, q_0, F)$

- $Q = \{ q_1, q_2, q_3 \}$
- $\Sigma = \{ a, b \}$
- δ ...
- $q_0 = q_1$
- $F = \{ q_1 \}$

\[
\begin{align*}
\delta(q_1, a) &= \{ \} \\
\delta(q_1, b) &= \{ q_2 \} \\
\delta(q_1, \varepsilon) &= \{ q_3 \} \\
\delta(q_2, a) &= \{ q_2, q_3 \} \\
\delta(q_2, b) &= \{ q_3 \} \\
\delta(q_2, \varepsilon) &= \{ \} \\
\delta(q_3, a) &= \{ q_1 \} \\
\delta(q_3, b) &= \{ \} \\
\delta(q_3, \varepsilon) &= \{ \}
\end{align*}
\]
NFA Computation (JFLAP demo): 010110
NFA Computation Sequence

Symbol read

<table>
<thead>
<tr>
<th>Symbol</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q1</td>
</tr>
<tr>
<td>1</td>
<td>q1</td>
</tr>
<tr>
<td>0</td>
<td>q1</td>
</tr>
<tr>
<td>1</td>
<td>q1</td>
</tr>
<tr>
<td>1</td>
<td>q1</td>
</tr>
<tr>
<td>0</td>
<td>q1</td>
</tr>
</tbody>
</table>

NFA accepts input if at least one path ends in accept state

Each step can branch into multiple states at the same time!

So this is an accepting computation
Submit in-class work 2/14

On gradescope