CS 622
Computing with NFAs
Wednesday, February 21, 2024
UMass Boston CS
Announcements

• HW 2 in
 • Due Wed 2/21 12pm EST (noon)

• HW 3 out
 • Due Mon 3/4 12pm EST (noon)
HW 1 Observations

- Problems must be assigned to the correct pages
- Proof format must be a **Statements** and **Justifications** table
- Machine formal descriptions must have a tuple
How to ask for HW help
(there’s no such thing as a stupid question, but ...)

... there is such thing as a less useful question (gets less useful answers)

- “Is this correct?”
- “I don’t get it”
- “Give me a hint?”
- “Do I need to do the thing DFA thing?”

Useful question examples (gets useful answers):
- “I think string xyz and zyx is in language A but I’m not sure? Can you clarify?”
- “I’m don’t understand this notation $A \otimes B \gg C$... and I couldn’t find it in the book”
- “I couldn’t this word’s definition ...”
- “I know I want to change the machine to add an accept state that ... but I can’t figure out how to write it formally. Hint?”
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{fort, south}\}$ and $B = \{\text{point, boston}\}$

$$A \circ B = \{\text{fortpoint, fortboston, southpoint, southboston}\}$$
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- **Cannot** combine A_1 and A_2’s machine to make a DFA because:
 - Unclear when to switch? (can only read input once)
- Need a **different kind of machine**!
Nondeterministic Finite Automata (NFA)

Definition

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function, mapping one state and label to a set of states,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

\[\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\]

- Transition function maps one state and label to a set of states.
- Transition label can be “empty”, \(\varepsilon\), reused as a transition label (i.e., an argument to \(\delta\)).
- It’s not the empty string.
- And, it’s (still) not a character in alphabet \(\Sigma\)!
Deterministic vs Nondeterministic

Deterministic computation

- start
- states
- ...
- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation
- start
- states
- reject
- accept or reject

Nondeterministic computation
- states
- reject
- NFA

Previously

Nondeterministic computation can be in multiple states at the same time
NFA Computation (JFLAP demo): 010110
NFA Computation Sequence (of set of states)

Symbol read

0

1

0

1

0

NFA accepts input if: at least one path ends in accept state

Each step can branch into multiple states at the same time!

So this is an accepting computation
DFA Computation Rules

Informally

Given
- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

A DFA computation (~ “Program run”):
- **Start** in start state

 - Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:
- **Accept** if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1w_2 \cdots w_n \)

A DFA computation is a sequence of states:

- specified by \(\hat{\delta}(q_0, w) \) where:

 - \(M \) accepts \(w \) if \(\hat{\delta}(q_0, w) \in F \)
 - \(M \) rejects otherwise
DFA Computation Rules

Informally

Given

- A DFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

A DFA computation (~ “Program run”):

- **Start** in start state

Repeat:

- Read 1 char from Input, and
- Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1w_2 \cdots w_n \)

A DFA computation is a sequence of states:

- specified by \(\hat{\delta}(q_0, w) \) where:

 - \(M \text{ accepts } w \) if \(\hat{\delta}(q_0, w) \in F \)
 - \(M \text{ rejects } w \) otherwise
Informally

Given

- An NFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

An NFA computation (~ “Program run”):

- **Start** in start state

Repeat:*

- Read 1 char from Input, and
- For each “current” state, go to next states according to transition rules
- ... then combine all “next states”

Result of computation:

- Accept if last set of states has accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

An NFA computation is a ... specified by $\hat{\delta}(q_0, w)$ where:

- M accepts w if ...
- M rejects ...
Informally

Given

- An **NFA** (~ a “Program”)
- and Input = string of chars, e.g. “1101”

A **DFA computation** (~ “Program run”):

- **Start** in **start state**

Repeat:

- Read 1 char from Input, and according to **transition rules**

For each “current” state, go to **next states**

... then combine all “next states”

Result of computation:

- **Accept** if last set of states has accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(w = w_1 w_2 \cdots w_n \)

An **NFA computation** is a **sequence of:**

- sets of states

specified by \(\hat{\delta}(q_0, w) \) where:

- \(M \) accepts \(w \) if ...
- \(M \) rejects ...

Ignoring \(\varepsilon \) transitions, for now!
DFA Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - state \(q \in Q \) (doesn’t have to be an accept state)

Base case

\[\hat{\delta}(q, \varepsilon) = \]
DFA Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - state \(q \in Q \) (doesn’t have to be an accept state)

(Defined recursively)

Base case \(\hat{\delta}(q, \varepsilon) = q \)

Recursive Case \(\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n) \)

where \(w' = w_1 \cdots w_{n-1} \)

A String is either:
- the empty string \(\varepsilon \), or
- \(xa \) (non-empty string) where
 - \(x \) is a string
 - \(a \) is a “char” in \(\Sigma \)
DFA Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - state \(q \in Q \) (doesn’t have to be an accept state)

(Defined recursively)

Base case

\[\hat{\delta}(q, \varepsilon) = q \]

Recursive Case

\[\hat{\delta}(q, w'w_n) = \hat{\delta}(\hat{\delta}(q, w'), w_n) \]

where \(w' = w_1 \cdots w_{n-1} \)

\(\delta: Q \times \Sigma \rightarrow Q \) is the transition function

Recursive Input Data needs Recursive Function

A String is either:
- the **empty string** \((\varepsilon)\), or
- \(xa \) (non-empty string) where
 - \(x \) is a string
 - \(a \) is a “char” in \(\Sigma \)

Single step from “second to last” state and last char gets to last state
Extended Transition Function

\(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - states \(q_s \subseteq Q \)

\(\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q) \) is the transition function
Extended Transition Function

\[\hat{\delta}: Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - states \(Q_s \subseteq Q \)

(Defined recursively)

Base case

\[\hat{\delta}(q, \varepsilon) = \{q\} \]

\(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q) \) is the transition function

Recursively Defined Input needs Recursive Function

A String is either:
- the **empty string** \((\varepsilon)\), or
- \(xa \) (non-empty string) where
 - \(x \) is a **string**
 - \(a \) is a “char” in \(\Sigma \)
Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(q_s \subseteq Q \)

(Defined recursively)

Base case

\[\hat{\delta}(q, \varepsilon) = \{q\} \]

Recursive Case

\[
\hat{\delta}(q, w'w_n) = \hat{\delta}(q', w_n)
\]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]
NFA

Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(qs \subseteq Q \)

(Defined recursively)

Base case
\[\hat{\delta}(q, \varepsilon) = \{q\} \]

Recursive Case
\[\hat{\delta}(q, w_1 \cdots w_n) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]

\(\delta : Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q) \) is the transition function

Recursively Defined Input needs Recursive Function

A String is either:
- the **empty string** (\(\varepsilon \)), or
- **\(xa \)** (non-empty string) where
 - \(x \) is a string
 - \(a \) is a “char” in \(\Sigma \)

For each “second to last” state, take single step on last char

Last char
Extended Transition Function

\[\hat{\delta}: Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

Given
- An NFA (~ a “Program”)
- and Input = string of chars, e.g. “1101”

A DFA computation (~ “Program run”):
- **Start** in start state
- **Repeat:**
 - Read 1 char from Input, and according to transition rules
 - For each “current” state, go to next states...
 - ... then combine all sets of “next states”

Recursive Case

\[\hat{\delta}(q, w' w_n) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]

\[\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q) \text{ is the transition function} \]
NFA Extended δ Example

$\hat{\delta}(q_0, \epsilon) = \{q_0\}$

$\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$

$\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

Base case:
$\hat{\delta}(q, \epsilon) = \{q\}$

Recursive case:
$\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(q, w_n)$

where:
$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\}$

We haven’t considered empty transitions!

Combine result of recursive call with “last step”
Adding Empty Transitions

- Define the set ε-REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- **Base case:** $q \in \varepsilon$-REACHABLE(q)

- **Inductive case:**

 ε-REACHABLE(q) = \{ r | $p \in \varepsilon$-REACHABLE(q) and $r \in \delta(p, \varepsilon)$ \}
\(\varepsilon\text{-REACHABLE} \) Example

\[\varepsilon\text{-REACHABLE}(1) = \{1, 2, 3, 4, 6\} \]
Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - states \(q S \subseteq Q \)

(Defined recursively)

Base case

\[\hat{\delta}(q, \varepsilon) = \varepsilon\text{-REACHABLE}(q) \]

Recursive Case

\[\hat{\delta}(q, w' w_n) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]
Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2\cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(q_s \subseteq Q \)

(Defined recursively)

Base case

\[\hat{\delta}(q, \varepsilon) = \varepsilon\text{-REACHABLE}(q) \]

Recursive Case

\[\hat{\delta}(q, w'w_n) = \varepsilon\text{-REACHABLE}\left(\bigcup_{i=1}^{k} \delta(q_i, w_n) \right) \]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]

“Take single step, then follow all empty transitions”
Summary: NFA vs DFA Computation

DFAs
- Can only be in **one** state
- Transition:
 - Must read 1 char
- Acceptance:
 - If final state is accept state

NFAs
- Can be in **multiple** states
- Transition
 - Has empty transitions
- Acceptance:
 - If **one** of final states is accept state
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof requires: Constructing new machine

- How does it know when to switch machines?
- Can only read input once
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

N is an NFA! It can:
- Keep checking 1st part with M_1 and
- Move to M_2 to check 2nd part

$\varepsilon = \text{"empty transition"} = \text{reads no input}$

Allows N to be in both machines at the same time!
Concatenation is Closed for Regular Langs

Proof (part of)

Let $\mathcal{M}_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1

$\mathcal{M}_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$, $\delta(q, a) = \delta_1(q, a)$ if $q \in Q_1$ and $\delta_2(q, a)$ if $q \in Q_2$. Additionally, $\delta(q_1, \epsilon) = F_2$.

![Diagram showing the construction of M1, M2, and N]
Concatenation is Closed for Regular Langs

Proof (part of)

Let \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \)

DFA \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \)

Construct \(N = (Q, \Sigma, \delta, q_1, F) \) to recognize \(A_1 \circ A_2 \)

1. \(Q = Q_1 \cup Q_2 \)
2. The state \(q_1 \) is the same as the start state of \(M_1 \)
3. The accept states \(F_2 \) are the same as the accept states of \(M_2 \)
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \),

\[
\delta(q, a) = \begin{cases}
\{ \delta_1(q, a) \} & q \in Q_1 \text{ and } q \notin F_1 \\
\{ \delta_2(q, a) \} & q \in Q_2 \\
\{ q \} & q \in F_1 \text{ and } a \neq \varepsilon \\
\varnothing & q \in F_1 \text{ and } a = \varepsilon
\end{cases}
\]

And: \(\delta(q, \varepsilon) = \varnothing \), for \(q \in Q, q \notin F_1 \)
Is Union Closed For Regular Langs?

Proof

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Reg Lang (Coro)
3. Def of Reg Lang (Coro)
4. Def of DFA
5. See examples
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. Q.E.D.
Is Concat Closed For Regular Langs?

Proof?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct an NFA $N = (Q, \Sigma, \delta, q_0, F)$
5. N recognizes $A_1 \cup A_2$, $A_1 \circ A_2$
6. $A_1 \cup A_2$, $A_1 \circ A_2$ is a regular language
7. The class of regular languages is closed under concatenation operation.

Justifications
1. Assumption
2. Def of Reg Lang (Coro)
3. Def of Reg Lang (Coro)
4. Def of NFA
5. See examples
6. ??? Does NFA recognize reg langs?
7. From stmt #1 and #6

Q.E.D.?
A DFA’s Language

- For DFA $M = (Q, \Sigma, \delta, q_0, F')$
- M accepts w if $\hat{\delta}(q_0, w) \in F$
- M recognizes language $\{w \mid M \text{ accepts } w\}$

Definition: A DFA’s language is a regular language
An NFA’s Language?

• For NFA $N = (Q, \Sigma, \delta, q_0, F)$

 • N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$

 • i.e., accept if final states contain at least one accept state

• Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: What kind of languages do NFAs recognize?
Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...
 ... produces an **NFA**

• So to prove concatenation is closed ...
 ... we must prove that **NFAs also recognize regular languages.**

Specifically, we must prove:
NFAs ↔ regular languages
“If and only if” Statements

\[X \leftrightarrow Y = \text{"X if and only if Y"} = X \text{ iff } Y = X \iff Y \]

Represents two statements:

1. \(\Rightarrow \) if \(X \), then \(Y \)
 - "forward" direction

2. \(\Leftarrow \) if \(Y \), then \(X \)
 - "reverse" direction
How to Prove an “iff” Statement

\[X \leftrightarrow Y = \text{“}X \text{ if and only if } Y\text{”} = X \text{ iff } Y = X \iff Y \]

Proof has two (If-Then proof) parts:

1. \(\implies \) if \(X \), then \(Y \)
 - “forward” direction
 - assume \(X \), then use it to prove \(Y \)

2. \(\iff \) if \(Y \), then \(X \)
 - “reverse” direction
 - assume \(Y \), then use it to prove \(X \)