CS 622
Regular Languages Are Closed Under Concatenation
Friday, February 23, 2024
UMass Boston CS
Announcements

- HW 3 out
 - Due Mon 3/4 12pm EST (noon)
DFA Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow Q \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - state \(q \in Q \) (doesn’t have to be an accept state)

\[\delta : Q \times \Sigma \rightarrow Q \text{ is the transition function} \]
\(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \) is the transition function

\[\begin{align*}
\text{Domain (inputs):} \\
\text{state } q \in Q \text{ (doesn't have to be start state)} \\
\text{string } w = w_1 w_2 \cdots w_n \text{ where } w_i \in \Sigma
\end{align*}\]

\[\begin{align*}
\text{Range (output):} \\
qs \subseteq Q
\end{align*}\]
\(\hat{\delta}: Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \) is the transition function

\(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q) \) is the transition function

\(\hat{\delta}(q, \varepsilon) = \{q\} \)

NFA

Extended Transition Function

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2\cdots w_n \) where \(w_i \in \Sigma \)

- **Range** (output):
 - states \(qs \subseteq Q \)

(Defined recursively)

Base case

Recursively Defined Input

needs

Recursive Function

A String is either:

- the **empty string** \((\varepsilon)\), or
- \(xa\) (non-empty string) where
 - \(x\) is a **string**
 - \(a\) is a “char” in \(\Sigma\)
Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(qs \subseteq Q \)

(Defined recursively)

Base case \[\hat{\delta}(q, \varepsilon) = \{q\} \]

Recursive Case

\[\hat{\delta}(q, w'w_n) = \hat{\delta}(q, w') \]

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \]
Extended Transition Function

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(q_s \subseteq Q \)

(Defined recursively)

Base case: \(\hat{\delta}(q, \varepsilon) = \{ q \} \)

Recursive Case: \(\hat{\delta}(q, w' w_n) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \)

where \(w' = w_1 \cdots w_{n-1} \)

\[\hat{\delta}(q, w') = \{ q_1, \ldots, q_k \} \]

\[\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q) \] is the transition function

We haven’t considered empty transitions!

A String is either:
- the **empty string** (\(\varepsilon \)), or
- \(xa \) (non-empty string) where
 - \(x \) is a **string**
 - \(a \) is a “char” in \(\Sigma \)

Recursively Defined Input needs Recursive Function

For each “second to last” state, take single step on last char

Last char
Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Inductive case:**

 $$\varepsilon$-REACHABLE$(q) = \{ r \mid p \in \varepsilon$-REACHABLE$(q)$ and $r \in \delta(p, \varepsilon) \}$$

• A state is in the reachable set if ...

• ... there is an empty transition to it from another state in the reachable set
Extended Transition Function

\(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

- **Domain** (inputs):
 - state \(q \in Q \) (doesn’t have to be start state)
 - string \(w = w_1w_2\cdots w_n \) where \(w_i \in \Sigma \)
- **Range** (output):
 - states \(q_s \subseteq Q \)

(Defined recursively)

Base case \(\hat{\delta}(q, \varepsilon) = \varepsilon\text{-REACHABLE}(q) \)

Recursive Case \(\hat{\delta}(q, w'w_n) = \)

where \(w' = w_1\cdots w_{n-1} \)
\(\hat{\delta}(q, w') = \{q_1, \ldots, q_k\} \)

\(\bigcup_{i=1}^{k} \delta(q_i, w_n) = \{r_1, \ldots, r_{\ell}\} \)
Extended Transition Function

$$\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$$

- **Domain** (inputs):
 - state $q \in Q$ (doesn’t have to be start state)
 - string $w = w_1w_2 \cdots w_n$ where $w_i \in \Sigma$
- **Range** (output):
 - states $q_s \subseteq Q$

(Defined recursively)

Base case \(\hat{\delta}(q, \varepsilon) = \varepsilon\text{-REACHABLE}(q) \)

Recursive Case \(\hat{\delta}(q, w'w_n) = \bigcup_{j=1}^{\ell} \varepsilon\text{-REACHABLE}(r_j) \)

Handling \(\varepsilon \) transitions now!

\[\delta(q, w') = \{q_1, \ldots, q_k\} \]

\[\bigcup_{i=1}^{k} \delta(q_i, w_n) = \{r_1, \ldots, r_{\ell}\} \]

All chars except last

“second to last” set of states

“last” set of states (no \(\varepsilon \))
Summary: NFA vs DFA Computation

DFAs
- Can only be in **one** state
- Transition:
 - **Must read 1 char**
- Acceptance:
 - If **final state is accept state**

NFAs
- Can be in **multiple** states
- Transition
 - **Has empty transitions**
- Acceptance:
 - If **one of final states is accept state**
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages then so is \(A_1 \circ A_2 \).

Proof requires: Constructing new machine

- How does it know when to switch machines?
- Can only read input once
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

N is an NFA! It can:
- Keep checking 1st part with M_1 and
- Move to M_2 to check 2nd part

ϵ = “empty transition” = reads no input

Allows N to be in both machines at the same time!
Concatenation is Closed for Regular Langs

Proof (part of)

Let $DFA \ M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1
DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,
Concatenation is Closed for Regular Langs

\textbf{Proof} (part of)

Let \(\text{DFA } M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognize \(A_1 \)

\(\text{DFA } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognize \(A_2 \)

Construct \(N = (Q, \Sigma, \delta, q, F_1) \) to recognize \(A_1 \circ A_2 \)

1. \(Q = Q_1 \cup Q_2 \)
2. The state \(q_1 \) is the same as the start state of \(M_1 \)
3. The accept states \(F_2 \) are the same as the accept states of \(M_2 \)
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \),

\[
\delta(q, a) = \begin{cases}
\{ \delta_1(q, a) \} & q \in Q_1 \text{ and } q \notin F_1 \\
\{ \delta_1(q, a) \} & q \in F_1 \text{ and } a \neq \varepsilon \\
? & \text{for } q \in F_1 \text{ and } a = \varepsilon \\
\{ \delta_2(q, a) \} & q \in Q_2.
\end{cases}
\]

And: \(\delta(q, \varepsilon) = \emptyset \), for \(q \in Q, q \notin F_1 \)
Concatenation is Closed for Regular Langs

Proof (part of)

Let $DFA \ M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1
$DFA \ M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$\delta(q, a) = \begin{cases}
\{\delta_1(q, a)\} & q \in Q_1 \text{ and } q \notin F_1 \\
\{\delta_1(q, a)\} & q \in F_1 \text{ and } a \neq \epsilon \\
\{q_2\} & q \in F_1 \text{ and } a = \epsilon \\
\{\delta_2(q, a)\} & q \in Q_2.
\end{cases}$$

And: $\delta(q, \epsilon) = \emptyset$, for $q \in Q, q \notin F_1$
Previously

Is Union Closed For Regular Langs?

Proof

Statements

1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$
6. $A_1 \cup A_2$ is a regular language
7. The class of regular languages is closed under the union operation.

Justifications

1. Assumption
2. Def of Reg Lang (Coro)
3. Def of Reg Lang (Coro)
4. Def of DFA
5. See Examples Table
6. Def of Regular Language
7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. Q.E.D.
Is Concat Closed For Regular Langs?

Proof?

Statements
1. A_1 and A_2 are regular languages
2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
4. Construct NFA $M = (Q, \Sigma, \delta, q_0, F)$
5. M recognizes $A_1 \cup A_2$ $A_1 \circ A_2$
6. $A_1 \cup A_2$ $A_1 \circ A_2$ is a regular language
7. The class of regular languages is closed under concatenation operation.

Justifications
1. Assumption
2. Def of Reg Lang (Coro)
3. Def of Reg Lang (Coro)
4. Def of NFA
5. See Examples Table
6. Does NFA recognize reg langs?
7. From stmt #1 and #6

Q.E.D.
A DFA’s Language

- For DFA $M = (Q, \Sigma, \delta, q_0, F)$

- M accepts w if $\delta(q_0, w) \in F$

- M recognizes language $\{w | M$ accepts $w\}$

Definition: A DFA’s language is a regular language
An NFA’s Language?

• For NFA $N = (Q, \Sigma, \delta, q_0, F)$
 - Intersection ...
 - ... with accept states ...
 - ... is not empty set

• N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
 - i.e., accept if final states contains at least one accept state

• Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: What kind of languages do NFAs recognize?
Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...
 ... produces an NFA

• So to prove concatenation is closed ...
 ... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs \Leftrightarrow regular languages
“If and only if” Statements

\[X \Leftrightarrow Y = \text{“X if and only if Y”} = X \text{ iff } Y = X \iff Y \]

Represents two statements:

1. \(\Rightarrow \): if \(X \), then \(Y \)
 - “forward” direction

2. \(\Leftarrow \): if \(Y \), then \(X \)
 - “reverse” direction
How to Prove an “iff” Statement

\[X \iff Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X \Leftrightarrow Y \]

Proof has two (If-Then proof) parts:

1. \(\Rightarrow \) if \(X \), then \(Y \)
 - “forward” direction
 - assume \(X \), then use it to prove \(Y \)

2. \(\Leftarrow \) if \(Y \), then \(X \)
 - “reverse” direction
 - assume \(Y \), then use it to prove \(X \)
A *nondeterministic finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where
1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. $\delta : Q \times \Sigma_e \rightarrow \mathcal{P}(Q)$ is the transition function,
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where
1. Q is a finite set called the *states*,
2. Σ is a finite set called the *alphabet*,
3. $\delta : Q \times \Sigma \rightarrow Q$ is the *transition function*,
4. $q_0 \in Q$ is the *start state*, and
5. $F \subseteq Q$ is the *set of accept states*.
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof: 2 parts

\Rightarrow If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA \rightarrow an equivalent NFA! (see HW 3)

\Leftarrow If an NFA N recognizes L, then L is regular.
⇒ If L is regular, then some NFA N recognizes it

<table>
<thead>
<tr>
<th>Statements</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. L is a regular language</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. A DFA M recognizes L</td>
<td>2. Def of Regular lang (Coro)</td>
</tr>
<tr>
<td>3. Construct NFA $N = \text{convert}(M)$</td>
<td>3. See hw 2 3!</td>
</tr>
<tr>
<td>4. DFA M is equivalent to NFA N</td>
<td>4. See Equiv. table!</td>
</tr>
<tr>
<td>5. An NFA N recognizes L</td>
<td>5. ???</td>
</tr>
<tr>
<td>6. If L is a regular language, then some NFA N recognizes it</td>
<td>6. By Stmts #1 and # 5</td>
</tr>
</tbody>
</table>

Assume the "if" part ...

... use it to prove "then" part
“Proving” Machine Equivalence (Table)

Let: DFA $M = (Q, \Sigma, \delta, q_0, F)$
NFA $N = \text{convert}(M)$
$\hat{\delta}(q_0, w) \in F$ for some string w

<table>
<thead>
<tr>
<th>String</th>
<th>M accepts?</th>
<th>N accepts?</th>
<th>N accepts? Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>Yes</td>
<td>???</td>
<td>See justification #1</td>
</tr>
<tr>
<td>w'</td>
<td>No</td>
<td>???</td>
<td>See justification #2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If M accepts w ...
Then we know ...

There is some sequence of states: $r_1 \ldots r_n$, where $r_i \in Q$ and $r_1 = q_0$ and $r_n \in F$

Then N accepts?/rejects? w because ...

Justification #1?
There is an accepting sequence of set of states in N ... for string w
“Proving” Machine Equivalence (Table)

Let: DFA $M = (Q, \Sigma, \delta, q_0, F)$
NFA $N = \text{convert}(M)$

$\hat{\delta}(q_0, w) \in F$ for some string w
$\hat{\delta}(q_0, w') \in F$ for some string w'

If M accepts w' ...
Then we know ...

<table>
<thead>
<tr>
<th>String</th>
<th>M accepts?</th>
<th>N accepts?</th>
<th>N accepts? Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>Yes</td>
<td>???</td>
<td>See justification #1</td>
</tr>
<tr>
<td>w'</td>
<td>No</td>
<td>???</td>
<td>See justification #2?</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then N accepts?/rejects? w' because ...

Justification #2?
Proving NFAs Recognize Regular Langs

Theorem:
A language \(L \) is regular if and only if some NFA \(N \) recognizes \(L \).

Proof:
\(\Rightarrow \) If \(L \) is regular, then some NFA \(N \) recognizes it.
(Easier)
- We know: if \(L \) is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA \(\rightarrow \) an equivalent NFA! (see HW 3)

\(\Leftarrow \) If an NFA \(N \) recognizes \(L \), then \(L \) is regular.
(Harder)
- We know: for \(L \) to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA \(N \) \(\rightarrow \) an equivalent DFA

“equivalent” = “recognizes the same language”
How to convert NFA→DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea: Let each “state” of the DFA = set of states in the NFA.
Symbol read

NFA computation can be in **multiple** states

DFA computation can only be in **one** state

So encode: a set of NFA states as one DFA state

This is similar to the proof strategy from “Closure of union” where: a state = a pair of states
Convert NFA→DFA, Formally

• Let \(NFA \; N = (Q, \Sigma, \delta, q_0, F) \)

• An equivalent DFA \(M \) has states \(Q' = \mathcal{P}(Q) \) (power set of \(Q \))
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA→DFA

Have: NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

Want: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \)
 A DFA state = a set of NFA states

2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[\delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \]
 A DFA step = an NFA step for all states in the set

3. \(q_0' = \{q_0\} \)

4. \(F' = \{R \in Q' | R \text{ contains an accept state of } N\} \)

No empty transitions
Flashback: Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)
• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Recursive case:**

ε-REACHABLE(q) = \{ r | p \in \varepsilon$-REACHABLE($q$) and $r \in \delta(p, \varepsilon) \}$

A state is in the reachable set if ...

... there is an empty transition to it from another state in the reachable set
NFA \rightarrow DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F')$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$

2. For $R \in Q'$ and $a \in \Sigma$,
 $$\delta'(R, a) = \bigcup_{s \in S} \varepsilon\text{-REACHABLE}(s)$$

3. $q_0' = \{q_0\}$ \varepsilon\text{-REACHABLE}(q_0)

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

With empty transitions

Almost the same, except ...

S = \bigcup_{r \in R} \delta(r, a)$
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA → an equivalent NFA! (see HW 3)

⇐ If an NFA N recognizes L, then L is regular.
 (Harder)
 • We know: for L to be regular, there must be a DFA recognizing it
 • Proof Idea for this part: Convert given NFA N → an equivalent DFA ...
 ... using our NFA to DFA algorithm!
Concatenation is Closed for Regular Langs

PROOF

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1
$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of M_1
3. The accept states F_2 are the same as the accept states of M_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_\varepsilon$,

$$
\delta(q, a) = \begin{cases}
\{\delta_1(q, a)\} & q \in Q_1 \text{ and } q \notin F_1 \\
\{\delta_1(q, a)\} & q \in F_1 \text{ and } a \neq \varepsilon \\
\{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\{\delta_2(q, a)\} & q \in Q_2.
\end{cases}
$$

And: $\delta(q, \varepsilon) = \emptyset$, for $q \in Q$, $q \notin F_1$
Concat Closed for Reg Langs: Use **NFAs Only**

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

$$\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_2(q, a) & q \in F_1 \text{ and } a = \varepsilon \\
\text{????} & q \in Q_2.
\end{cases}$$

If language is regular, then it has an NFA recognizing it...
Flashback: Union is Closed For Regular Langs

Theorem

The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a DFA or NFA?
Flashback: Union is Closed For Regular Langs

Proof

• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

• Construct: a new machine $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2

• states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$

 This set is the Cartesian product of sets Q_1 and Q_2

• M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

• M start state: (q_1, q_2)

• M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$
Union is Closed for Regular Languages

Add new start state, and ε-transitions to old start states
Union is Closed for Regular Languages

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.

Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

2. The state q_0 is the start state of N.

3. The set of accept states $F = F_1 \cup F_2$.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_{q1}, q_{q2}\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
\]
List of Closed Ops for Reg Langs (so far)

- Union

- Concatentation

- Kleene Star (repetition) ?
Kleene Star Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.
If $A = \{\text{good, bad}\}$

$$A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, \ldots} \}$$

Note: repeat zero or more times

(this is an infinite language!)
Kleene Star

New start (and accept) state, ε-transitions to old start state

Old accept states ε-transition to old start state
In-class exercise:

Kleene Star is Closed for Regular Langs

Theorem
The class of regular languages is closed under the star operation.
Kleene Star is Closed for Regular langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1.
Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$

Kleene star of a language must accept the empty string!
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^ε.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_\varepsilon$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_1\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon.
\end{cases}
$$
Next Time: Why These Closed Operations?

- Union
- Concat
- Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these three combining operations!
Submit in-class work 2/26

On gradescope