Proving Languages Non-Regular

UMB CS 622

Wednesday March 9, 2024
Announcements

• HW 4 out
 • Due Mon 3/18 12pm EST (noon)
 • (After spring break)

• Problem 4, Part 2c Update:
 • Prove the statement for
 • 1 base case
 • 1 recursive case

• No class next week! (Spring Break)
Prove: Spider-Man does not exist ???

We know how to: prove a language is regular
Can we: prove a language is not regular?

Proving something not true is different (and usually harder) than proving it true

It’s sometimes possible, but often needs new proof techniques!
Quantified Logical Statements

• “Exists” (Existential)
 • “Easier” to prove TRUE
 • Just need **one** example!

 \[\exists x P(x) \] is true when \(P(x) \) is true for at least **one** value of \(x \).

 “There exists a natural number \(n \) such that, \(n \cdot n = 25 \)”

• “For all” (Universal)
 • “Harder” to prove TRUE
 • Need to prove true for **all** examples

 \[\forall x P(x) \] is true when \(P(x) \) is true for **all** values of \(x \).

 “For all natural numbers \(n \), \(2 \cdot n = n + n \)”
Quantified Logical Statements in CS 622

• “Exists” (Existential)
 • “Easier” to prove TRUE
 • Just need one example!
 • “Harder” to prove FALSE
 • Need to prove false for all examples

• “For all” (Universal)
 • “Harder” to prove TRUE
 • Need to prove true for all examples
 • “Easier” to prove FALSE
 • Just need one (counter)example!

Language L is regular

Language L is not regular?

There exists one DFA that recognizes L

There are no possible DFAs that recognizes L

For all regular languages L, L^* is a regular language

For all strings in a regular language ...

Key is finding such a statement about regular languages!
Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

For all (long enough) strings in the language ...!

... they have this **repeatable structure** (Kleene star)

Why is this true?

Because if you give DFA an input > # states, then some state repeats! i.e., “long enough strings” start to show repeating pattern!
Equivalence of Conditional Statements

• Yes or No? “If X then Y” is equivalent to:

 • “If Y then X” (converse)
 • No!

 • “If not X then not Y” (inverse)
 • No!

 • “If not Y then not X” (contrapositive)
 • Yes!
Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Equivalent (contra-positive): If the “for all” is not true ...
le if just one counterexample string doesn’t have the repeatable structure ...

Contrapositive: “If X then Y” is equivalent to “If not Y then not X”
Kinds of Mathematical Proof

• Deductive Proof
 • Logically infer conclusion from known definitions and assumptions

• Proof by induction
 • Use to prove properties of recursive definitions or functions

• Proof by contradiction
 • Proving the contrapositive
How To Do Proof By Contradiction

3 easy steps:
1. **Assume:** the opposite of the statement to prove
2. **Show:** the assumption leads to a contradiction
3. **Conclude:** the original statement must be true
Pumping Lemma: Non-Regularity Example

This repetition pattern cannot be expressed with a star regular expression?

Let B be the language $\{0^n1^n | n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.
Want to prove: \(0^n1^n\) is not a regular language

Proof (by contradiction):

- **Assume:** \(0^n1^n\) is a regular language
 - So it must satisfy the pumping lemma
 - i.e., all strings \(\geq\) length \(p\) are pumpable
- **Counterexample** = \(0^p1^p\)
 - **In the language**
 - **Greater than length \(p\)**
 - **Should be able to split into \(xyz\) where \(y\) is pumpable**

We must show that there is no possible way to split this string to satisfy the conditions of the pumping lemma!

Reminder: Pumping lemma says: all strings \(0^n1^n \geq\) length \(p\) are splittable into \(xyz\) where \(y\) is pumpable

So find counterexample string \(\geq\) length \(p\) that is not splittable into \(xyz\) where \(y\) is pumpable
Want to prove: 0^n1^n is not a regular language

Possible Split: $y =$ all 0s

Proof (by contradiction):

- **Assume:** 0^n1^n is a regular language
 - So it must satisfy the pumping lemma
 - i.e., all strings ≥ length p are pumpable
- **Counterexample** = 0^p1^p
- **Choose** xyz split so y contains:
 - all 0s
- **Pumping y: produces a string with more 0s than 1s**
 - ... which is not in the language 0^n1^n!
 - If 0^p1^p is not pumpable? (according to pumping lemma)
 - Then 0^n1^n is a not regular language? (contrapositive)
 - This is a contradiction of the assumption?

Pumping Lemma: If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Contrapositive: If not true ...

- So find counterexample string ≥ length p that is not splittable into xyz where y is pumpable
- p 0s
- p 1s
- 00 ... 011 ... 1
- x y ??? z
- BUT ... pumping lemma requires only one pumpable splitting
- This one didn’t work, but proof is not done!
- Is there another way to split into xyz?
Want to prove: 0^n1^n is not a regular language

Possible Split: \(y = \text{all } 1\text{s} \)

Proof (by contradiction):

- **Assume:** 0^n1^n is a regular language
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length \(p \) are pumpable

- **Counterexample** = \(0^p1^p \)

- Choose \(xyz \) split so \(y \) contains:
 - all 1s

\[
\begin{array}{c}
\text{Is there another way} \\
\text{to split into } xyz \text{?}
\end{array}
\]

- Is this string pumpable (repeating \(y \) produces string still in 0^n1^n)?
 - No!
 - By the same reasoning as in the previous slide
Want to prove: $0^n 1^n$ is not a regular language

Possible Split: $y = 0s$ and $1s$

Proof (by contradiction):

• Assume: $0^n 1^n$ is a regular language
 • So it must satisfy the pumping lemma
 • I.e., all strings \geq length p are pumpable

• Counterexample = $0^p 1^p$

• Choose xyz split so y contains:
 • both $0s$ and $1s$

 $$x y z$$

 $$00 \ldots 011 \ldots 1$$

 $$p 0s \quad p 1s$$

• Is this string pumpable (repeating y produces string still in $0^n 1^n$)?
 • No!
 • Pumped string will have equal $0s$ and $1s$ …
 • But they will be in the wrong order: so there is still a contradiction!

Yes! QED

But maybe we didn’t have to …

Did we examine every possible splitting?
The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

p 0s

didn’t have to look at other possible splittings

00 ... 011 ... 1

The repeating part y ... must be in the first p characters!

i.e., “long enough strings” start to show repeating pattern!

y must be in here!
The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Repeating party must be non-empty ... but can be repeated zero times!

Example: $L = \{0^i1^j \mid i > j\}$
Want to prove: $L = \{0^i1^j \mid i > j\}$ is not a regular language

Proof (by contradiction):

- **Assume: L is a regular language**
 - So it must satisfy the pumping lemma
 - I.e., all strings \geq length p are pumpable
- **Counterexample** = $0^{p+1}1^p$
- Choose xyz split so y contains:
 - all 0s
 - (Only possibility, by condition 3)
- Repeat y zero times (pump down): produces string with $\#$ 0s \leq $\#$ 1s
 - ... not in the language $\{0^i1^j \mid i > j\}$
 - So $\{0^i1^j \mid i > j\}$ does not satisfy the pumping lemma
 - So it is a not regular language
 - This is a contradiction of the assumption!
Next Time (and rest of the Semester)

• If a language is not regular, then what is it?

• There are many more classes of languages!