UMB CS 622

Non-CFLs

Wednesday, March 27, 2024
Announcements

• HW 6
 • Due Monday 4/1 12pm noon
Application of this class: Compilers

A program string (chars) (e.g., \(\text{a} : = (5 + 3) ; \ldots \))

DFAs (recognizing regular languages) in here!

Program "words" (e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI ...)

Last Time
Application of this class: Compilers

A program string (chars) (e.g., \(a = (5 + 3) \); ...)

DFAs (recognizing regular languages) in here!

Program “words” (e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI ...)

DPDAs (recognizing DCFLs) in here!

Syntax tree (AST), i.e., a parse tree!

AssignStm
 a
 OpExp
 NumExp
 5
 Plus
 NumExp
 3
Subclasses of CFLs

2 parser design decisions:
1) Parse from left, or from right

2) choose “look ahead” amount

DCFLs

Programming language parsers / compilers are ideally in here
To learn more, take a Compilers Class!

This phase needs computation that goes beyond CFLs
Flashback: Pumping Lemma for Regular Langs

- **Pumping Lemma** describes how strings repeat

- A non-regular language:
 \[\{0^n1^n \mid n \geq 0\} \]

 Kleene star can’t express this pattern: 2nd part depends on (length of) 1st part

- Q: How do CFLs repeat?
Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\[\{0^n#1^n \mid n \geq 0\} \]

Repetition

A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111
How Do Strings in CFLs Repeat?

- Strings in CFLs repeat subtrees in the parse tree.

One repeated subtree means that it can be repeated any number of times.

Linked parts repeat together.

5 substrings.
Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions

1. for each $i \geq 0$, $uv^i xy^i z \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the conditions

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.
A Non CFL example

\[\text{language } B = \{a^n b^n c^n | n \geq 0\} \text{ is not context free} \]

Intuition

• Strings in CFLs can have **two parts** that are “pumped” together
• Language \(B \) requires **three parts** to be “pumped” together
• So it’s not a CFL!

Proof?
Want to prove: $a^n b^n c^n$ is not a CFL

Proof (by contradiction):

• **Assume:** $a^n b^n c^n$ is a CFL
 • So it must satisfy the pumping lemma for CFLs
 • I.e., all strings \geq length p are pumpable
• **Counterexample** = $a^p b^p c^p$

Choose x, split so y contains:
all 0s

Pumping y: produces a string with more 0s than 1s
Which is not in the language $0^p 1^p$
This means that $0^p 1^p$ does not satisfy the pumping lemma
Which means that that $0^p 1^p$ is a not regular language
This is a contradiction of the assumption!

Pumping lemma for context-free languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions

1. For each $i \geq 0$, $uv^i x y^i z \in A$
2. $|vxy| > 0$, and
3. $|vxy| \leq p$.

Reminder: CFL Pumping lemma says:
all strings $a^n b^n c^n \geq$ length p are splittable into $uvxyz$ where v and y are pumppable

Contradiction if:
- A string in the language
- \geq length p
- Is not splittable into $uvxyz$ where v and y are pumpable
Want to prove: $a^n b^n c^n$ is not a CFL

Possible Splits

Proof (by contradiction):

- **Assume:** $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \geq length p are pumpable
 - **Counterexample:** $a^p b^p c^p$

- **Possible Splits** (using condition # 3: $|vxy| \leq p$
 - vxy is all as
 - vxy is all bs
 - vxy is all cs
 - vxy has as and bs
 - vxy has bs and cs
 - (vxy cannot have as, bs, and cs)

So $a^n b^n c^n$ is not a CFL

(justification: contrapositive of CFL pumping lemma)

Pumping lemma for context-free languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions

1. for each $i \geq 0$, $uv^i xy^i z \in A$,
2. $|vxy| > 0$, and
3. $|vxy| \leq p$.

$uvxyz$ cannot be split into $uvxyz$ where v and y are pumpable

vxy ???
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^*\} \)

Be careful when choosing counterexample \(s \): \(0^p10^p1 \)

This \(s \) can be pumped according to CFL pumping lemma:

• CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

So this attempt to prove that the language is not a CFL failed. (It doesn’t prove that the language is a CFL!)
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^*\} \)

- Need another counterexample string \(s \): If \(vyx \) is contained in first or second half, then any pumping will break the match.
 \[0^p 1^p 0^p 1^p\]
 So \(vyx \) must straddle the middle
 But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

Now we have proven that this language is not a CFL!
A Practical Non-CFL

- **XML**
 - ELEMENT \rightarrow <TAG>CONTENT</TAG>
 - Where TAG is any string

- XML also looks like this non-CFL: $D = \{ww \mid w \in \{0,1\}^*\}$

- This means XML is not context-free!
 - **Note:** HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:
- XML is parsed as a CFL, with a CFG
- Then matching tags checked in a 2nd pass with a more powerful machine ...
Next: A More Powerful Machine ...

M_1 accepts its input if it is in language: $B = \{ w\#w \mid w \in \{0,1\}^* \}$

$M_1 =$ “On input string w:

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from arbitrary memory locations!

Infinite memory (initial contents are the input string)