CFL Pumping Lemma

Friday, March 29, 2024
Announcements

• HW 6
 • Due Monday 4/1 12pm noon
Pumping Lemma for CFLS

Pumping lemma for context-free languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions:

1. for each $i \geq 0$, $uv^i xy^i z \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Pumping lemma

If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the conditions:

1. for each $i \geq 0$, $xy^i z \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Two pumpable parts.
But they must be pumped together!

Two pumpable parts, pumped together

One pumpable part
A Non CFL example

\[\text{language } B = \{ a^n b^n c^n \mid n \geq 0 \} \text{ is not context free} \]

Intuition

• Strings in CFLs can have **two parts** that are “pumped” together
• Language \(B \) requires **three parts** to be “pumped” together
• So it’s not a CFL!

Proof?
Want to prove: \(a^n b^n c^n\) is not a CFL

Proof (by contradiction):

- **Assume**: \(a^n b^n c^n\) is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \(\geq\) length \(p\) are pumpable
- **Counterexample** = \(a^p b^p c^p\)

Now we must find a contradiction ...

Contradiction if:
- A string in the language \(\checkmark\)
- \(\geq\) length \(p\) \(\checkmark\)
- Is not splittable into \(uvxyz\) where \(v\) and \(y\) are pumpable

Reminder: CFL Pumping lemma says: all strings \(a^n b^n c^n \geq\) length \(p\) are splittable into \(uvxyz\) where \(v\) and \(y\) are pumpable
Possible Splits

Proof (by contradiction):

- **Assume**: $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \geq length p are pumppable
- **Counterexample** = $a^p b^p c^p$

- **Possible Splits** (using condition #3: $|vxy| \leq p$)
 - vxy is all as
 - vxy is all bs
 - vxy is all cs
 - vxy has as and bs
 - vxy has bs and cs
 - (Because of condition #3, vxy cannot have as, bs, and cs)

So $a^n b^n c^n$ is not a CFL

Contradiction if:
- A string in the language
 - \geq length p
 - Is not splittable into $uvxyz$ where u and y are pumppable

$a^p b^p c^p$ cannot be split into $uvxyz$ where v and y are pumppable!
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^*\} \)

Be careful when choosing counterexample \(s: 0^p 10^p 1 \)
This \(s \) can be pumped according to CFL pumping lemma:

\[
\begin{array}{c}
\underbrace{000 \ldots 000} & 0 & 1 & \underbrace{000 \ldots 0001} \\
\text{u} & \text{v} & \text{x} & \text{y} & \text{z}
\end{array}
\]

Pumping \(v \) and \(y \) (together) produces string still in \(D \) ...

\[
...\text{just like pumping lemma says (no contradiction)!}
\]

\[\checkmark 1. \text{for each } i \geq 0, uv^i xy^i z \in A, \]
\[\checkmark 2. |vy| > 0, \text{ and} \]
\[\checkmark 3. |vxy| \leq p. \]

So this attempt to prove that the language is not a CFL failed.
(It doesn’t prove that the language is a CFL!)
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^*\} \)

- Need another counterexample string \(s \):
 - If \(vyx \) is contained in first or second half, then any pumping will break the match.
 - \(0^p1^p0^p1^p \)
 - e.g., \(0^p1^{p-1}100^{p-1}1^p \)
 - So \(vyx \) must straddle the middle
 - But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

Now we have proven that this language is not a CFL!
A Practical Non-CFL

• **XML**
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string

• XML also looks like this **non-CFL**: \(D = \{ww | w \in \{0,1\}^*\} \)

• This means XML is **not context-free**!
 - **Note**: HTML is context-free because ...
 - ... there are only a **finite** number of tags,
 - so they can be embedded into a **finite** number of rules.

In practice:
• XML is **parsed** as a CFL, with a CFG
• Then matching tags checked in a 2\(^{nd}\) pass with a more powerful machine...
Next: A More Powerful Machine ...

\[M_1 \] accepts its input if it is in language: \[B = \{ w\#w | w \in \{0,1\}^* \} \]

\[M_1 = \text{“On input string } w: \]

1. Zig-zag across the tape to corresponding positions on either side of the \# symbol to check whether these positions contain the same symbol. If they do not, or if no \# is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Infinite memory (initial contents are the input string)

Can move to, and read/write from arbitrary memory locations!