UMB CS 622
Decidability
Monday, April 8, 2024
Announcements

• HW 7 extended
 • Due Mon 4/8 12pm noon
 • Due Wed 4/10 12pm noon

• HW 8 out
 • Due Wed 4/17 12pm noon

• No class Mon 4/15 (Patriots Day)

Quiz Preview (after class)
• What are the required parts of a decider TM definition?
Previously: Turing Machines and Algorithms

- **Turing Machines** can express more “computation” (than other prev machines)
 - Analogy: a TM models a (Python, Java) program (function)

- 2 classes of Turing Machines
 - **Recognizers**: may loop forever
 - **Deciders**: always halt

- **Deciders = Algorithms**
 - I.e., an algorithm is a program that (for any input) always halts
Flashback: HW 1, Problem 1

Define the states and transitions of the DFA:

1. Define \(q_{current} \) as the current state.
2. Define \(\delta(q_{current}, a) \) as the next state.
3. Define \(\hat{\delta}(q_0, w) \) as the accepting computation.

Your task: "compute" how a DFA computes.

Figuring out this HW problem (about a DFA's computation) ... is itself (meta) computation!

What "kind" of computation is it?

Could you write a program (function) to compute it?

A function: DFAaccepts(B, w) returns TRUE if DFA B accepts string w

1) Define "current" state \(q_{current} = \) start state \(q_0 \)
2) For each input char \(a_i \) ... in \(w \)
 a) Define \(q_{next} = \delta_B(q_{current}, a_i) \)
 b) Set \(q_{current} = q_{next} \)
3) Return TRUE if \(q_{current} \) is an accept state (of B)

This is "computing": whether we have accepting computation \(\hat{\delta}(q_0, w) \in F \)!!
The language of DFAaccepts

$$A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$$

How is this language a set of strings???

A function: DFAaccepts(B, w) returns TRUE if DFA B accepts string w
Interlude: Encoding Things into Strings

Definition: A language’s elements / (Turing) machine’s input is always a string

Problem: We sometimes want TM’s (program’s) input to be “something else” ...
 • set, graph, DFA, ...?

Solution: allow encoding “other kinds of input” as a string

Notation: <SOMETHING> = string encoding for SOMETHING
 • A tuple combines multiple encodings, e.g., <B, w> (from prev slide)

Example: Possible string encoding for a DFA?

Or: (Q, Σ, δ, q₀, F)
 (written as string)
Interlude: High-Level TMs and Encodings

A high-level TM description:

1. **Needs to say the type of its input**
 - E.g., graph, DFA, etc.

2. **Doesn’t need to say how input string is encoded**
 - **Assume 1:** input is a valid encoding
 - Invalid encodings implicitly rejected
 - **Assume 2:** TM knows how to parse and extract parts of input

\[M = \text{“On input } \langle B, w \rangle \text{, where } B \text{ is a DFA and } w \text{ is a string:} \]

\[B = (Q, \Sigma, \delta, q_0, F) \]

Details don’t matter! (In this class) Just assume it’s possible
DFAaccepts as a TM recognizing \(A_{DFA} \)

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \]

A function: DFAaccepts\((B, w)\) returns TRUE if DFA \(B\) accepts string \(w\)

1) Define “current” state \(q_{current} = \text{start state } q_0\)
2) For each input char \(a_i \ldots \text{in } w\)
 a) Define \(q_{next} = \delta(q_{current}, a_i)\)
 b) Set \(q_{current} = q_{next}\)
3) Return TRUE if \(q_{current}\) is an accept state

Previously

Remember:

TM ~ program (function)
Creating TM ~ programming

\(M_{DFA} = \)

“On input \(B, w\): \(B\) is a DFA and \(w\) is a string:

Definition of TM \(M\) can use: \(B = (Q, \Sigma, \delta, q_0, F)\)

1) Define “current” state \(q_{current} = \text{start state } q_0\)
2) For each input char \(a_i \ldots \text{in } w\)
 a) Define \(q_{next} = \delta(q_{current}, a_i)\)
 b) Set \(q_{current} = q_{next}\)
3) Accept if \(q_{current}\) is an accept state in \(F\)
The language of \textbf{DFAaccepts}

\[A_{\text{DFA}} = \{ \langle B, w \rangle | \ B \ \text{is a DFA that accepts input string} \ w \} \]

- \(A_{\text{DFA}} \) has a Turing machine
- Is the TM a \textbf{decider} or \textbf{recognizer}?
 - i.e., is it an \textbf{algorithm}?
- To show it’s an algo, need to prove:
 \(A_{\text{DFA}} \) is a decidable language
How to prove that a language is decidable?
How to prove that a language is decidable?

Statements

1. If a **decider** decides a lang L, then L is a **decidable** lang

2. Define **decider** $M = \text{On input } w \ldots$, M decides L

3. L is a **decidable** language

Justifications

1. Definition of **decidable** langs

2. See M def, and Equiv. Table

3. By statements #1 and #2
How to Design Deciders

• **A Decider is a TM** ...
 • See previous slides on how to:
 • write a **high-level TM description**
 • Express **encoded** input strings
 • E.g., \(M = \) On input \(<B, w>\), where \(B \) is a DFA and \(w \) is a string: ...

• **A Decider is a TM** ... that must always **halt**
 • Can only **accept** or **reject**
 • Cannot go into an infinite loop

• **So a Decider** definition must include an extra **termination argument**:
 • Explains how **every step** in the TM halts
 • (Pay special attention to loops)

• **Remember our analogy:** TMs ~ Programs ... so **Creating** a TM ~ Programming
 • To design a TM, think of how to write a program (function) that does what you want
Thm: A_{DFA} is a decidable language

$$A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$$

Decider for A_{DFA}:

Where “Simulate” =
- Define “current” state $q_{current} = \text{start state } q_0$
- For each input char x in w ...
 - Define $q_{next} = \delta(q_{current}, x)$
 - Set $q_{current} = q_{next}$

Decider input must match strings in the language!

“Calling” the DFA (with an input argument)

Remember:
TM \sim program
Creating TM \sim programming
Thm: A_{DFA} is a decidable language

$A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

Decider for A_{DFA}:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.

NOTE: A TM must declare “function” parameters and types ... (don’t forget it)

Undeclared parameters can’t be used! (This TM is now invalid because B, w are undefined!)

... which can be used (properly!) in the TM description
Thm: A_{DFA} is a decidable language

$$A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$$

Decider for A_{DFA}:

$$M = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string:}$$

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

Where “Simulate” =

- Define “current” state $q_{\text{current}} = \text{start state } q_0$
- For each input char x in w...
 - Define $q_{\text{next}} = \delta(q_{\text{current}}, x)$
 - Set $q_{\text{current}} = q_{\text{next}}$

Termination Argument: Step #1 always halts because the simulation input is always finite, so the loop has finite iterations and always halts

Deciders must have a termination argument:
Explain how every step in the TM halts (we typically only care about loops)
Thm: A_{DFA} is a decidable language

$$A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$$

Decider for A_{DFA}:

$$M = \text{“On input } \langle B, w \rangle \text{, where } B \text{ is a DFA and } w \text{ is a string:}$$

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.”

Termination Argument: Step #2 always halts because we are checking only the state of the result (there’s no loop)

Deciders must have a termination argument: Explains how every step in the TM halts (we typically only care about loops)
Thm: \(A_{\text{DFA}} \) is a decidable language

\[A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \]

Decider for \(A_{\text{DFA}} \):

\[M = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string: }
\]

1. Simulate \(B \) on input \(w \).
2. If the simulation ends in an accept state, \textit{accept}. If it ends in a nonaccepting state, \textit{reject}.

Example Str \(\langle B, w \rangle \) | \(B \) on input \(w \)? | \(M \)? | In \(A_{\text{DFA}} \) lang?

<table>
<thead>
<tr>
<th>Example Str</th>
<th>(B) on input (w)?</th>
<th>(M)?</th>
<th>In (A_{\text{DFA}}) lang?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle D_1, w_1 \rangle)</td>
<td>Accept</td>
<td>Accept</td>
<td>Yes</td>
</tr>
<tr>
<td>(\langle D_2, w_2 \rangle)</td>
<td>Reject</td>
<td>Reject</td>
<td>No</td>
</tr>
</tbody>
</table>

This is what a “Equivalence Table” justification should look like!

Columns must match!

A good set of examples needs some Yes’s and some No’s

(New for TMs) “called” machine column(s) "Actual" behavior "Expected" behavior

(typically only needed when called machine could loop)
Thm: A_{NFA} is a decidable language

$A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA}:
Flashback: NFA→DFA

Have: \(N = (Q, \Sigma, \delta, q_0, F) \)

Want to: construct a DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \).

2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[
 \delta'(R, a) = \bigcup_{r \in R} \delta(r, a)
 \]

3. \(q_0' = \{q_0\} \)

4. \(F' = \{ R \in Q' \mid R \text{ contains an accept state of } N \} \)

This conversion is computation!

So it can be computed by a (decider?) Turing Machine
Turing Machine NFA→DFA

On input <N>, where N is an NFA and \(N = (Q, \Sigma, \delta, q_0, F) \)

1. Write to the tape: \(\text{DFA } M = (Q', \Sigma, \delta', q_0', F') \)

Where: \(Q' = \mathcal{P}(Q) \).

For \(R \in Q' \) and \(a \in \Sigma \),

\[
\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)
\]

\(q_0' = \{q_0\} \)

\(F' = \{R \in Q' | R \text{ contains an accept state of } N\} \)

New TM Variation!
Doesn’t accept or reject, Just writes “output” to tape

Why is this guaranteed to halt?
Because a DFA description has only finite parts (finite states, finite transitions, etc)
Thm: A_{NFA} is a decidable language

$A_{\text{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA}:

- $N = \text{“On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:}$$
 \begin{enumerate}
 \item Convert B to an equivalent DFA C using the procedure $\text{NFA} \rightarrow \text{DFA}$
 \item Run TM M on input $\langle C, w \rangle$. (M is the A_{DFA} decider from prev slide)
 \item If M accepts, accept; otherwise, reject.
 \end{enumerate}$

Termination argument: This is a decider (i.e., it always halts) because:
- Step 1 always halts bc there’s a finite number of states in an NFA
- Step 2 always halts because M is a decider
How to Design Deciders, Part 2

Hint:
• Previous theorems are a “library” of reusable TMs
• When creating a TM, try to use this “library” to help you
 • Just like libraries are useful when programming!
• E.g., “Library” for DFAs:
 • NFA \(\rightarrow \) DFA, RegExpr \(\rightarrow \) NFA
 • Union operation, intersect, star, decode, reverse
 • Deciders for: \(A_{DFA}, A_{NFA}, A_{REX}, \ldots \)
Thm: A_{REX} is a decidable language

$$A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \}$$

Decider:

$P = \"\text{On input } \langle R, w \rangle, \text{ where } R \text{ is a regular expression and } w \text{ is a string:} \\\n1. \text{ Convert regular expression } R \text{ to an equivalent NFA } A \text{ by using the procedure } \text{RegExpr\rightarrowNFA}\"$

NOTE: A TM must declare “function” parameters and types ... (don’t forget it)

... which can be used (properly!) in the TM description

Remember:

- TMs ~ programs
- Creating TM ~ programming
- Previous theorems ~ library
Flashback: RegExpr \rightarrow NFA

R is a regular expression if R is
1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.

... so guaranteed to always reach base case(s)

Does this conversion always halt, and why?

Yes, because recursive call only happens on “smaller” regular expressions ...
Thm: A_{REX} is a decidable language

$$A_{\text{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$$

Decider:

\[
P = \text{"On input } \langle R, w \rangle, \text{ where } R \text{ is a regular expression and } w \text{ is a string:}
\]

1. Convert regular expression R to an equivalent NFA A by using the procedure RegExpr\toNFA
2. Run TM N on input $\langle A, w \rangle$ (from prev slide)
3. If N accepts, accept; if N rejects, reject."

Termination Argument: This is a decider because:
- **Step 1:** always halts because converting a reg expr to NFA is done recursively, where the reg expr gets smaller at each step, eventually reaching the base case
- **Step 2:** always halts because N is a decider

When "calling" another TM, must give proper arguments!
Decidable Languages About DFAs

- $A_{DFA} = \{ \langle B, w \rangle | B$ is a DFA that accepts input string $w \}$
 - Decider TM: implements B DFA's extended δ fn

- $A_{NFA} = \{ \langle B, w \rangle | B$ is an NFA that accepts input string $w \}$
 - Decider TM: uses $\text{NFA} \rightarrow \text{DFA}$ algorithm + A_{DFA} decider

- $A_{\text{REX}} = \{ \langle R, w \rangle | R$ is a regular expression that generates string $w \}$
 - Decider TM: uses $\text{RegExpr} \rightarrow \text{NFA}$ algorithm + A_{NFA} decider
Flashback: Why Study Algorithms About Computing

To predict what programs will do (without running them!)

Not possible for all programs! But ...

RANSOMWARE ATTACK

???
Predicting What Some Programs Will Do ...

What if: look at simpler computation models ...
... like DFAs and regular languages!
Thm: E_{DFA} is a decidable language

$E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

E_{DFA} is a language ... of DFA descriptions, i.e., $(Q, \Sigma, \delta, q_0, F)$...

... where the language of each DFA ... must be \emptyset, i.e., DFA accepts no strings

Is there a decider that accepts/rejects DFA descriptions ...

... by predicting something about the DFA’s language (by analyzing its description)

Key question we are studying:
Compute (predict) something about the runtime computation of a program, by analyzing only its source code?

Analogy
DFA’s description: a program’s source code ::
DFA’s language : a program’s runtime computation

Important: don’t confuse the different languages here!
Thm: \(E_{DFA} \) is a decidable language

\[
E_{DFA} = \{ \langle A \rangle | \text{A is a DFA and } L(A) = \emptyset \}
\]

Decider:

\(T = \) “On input \(\langle A \rangle \), where \(A \) is a DFA:

1. Mark the start state of \(A \).
2. **Repeat** until no new states get marked:
 3. Mark any state that has a transition coming into it from any state that is already marked.
 4. If no accept state is marked, accept; otherwise, reject.”

... this is a “reachability” algorithm ...

... check if accept states are “reachable” from start state

Termination argument?

Note: TM \(T \) does not “run” the DFA!

... it computes something about the DFA’s language (runtime computation) by analyzing its description (source code)
Thm: EQ_{DFA} is a decidable language

$EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

I.e., Can we compute whether two DFAs are “equivalent”?

Replacing “DFA” with “program” = A “holy grail” of computer science!
Thm: EQ_{DFA} is a decidable language

$$EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

A Naïve Attempt (assume alphabet \{a\}):

1. Simulate:
 - A with input a, and
 - B with input a
 - Reject if results are different, else ...

2. Simulate:
 - A with input aa, and
 - B with input aa
 - Reject if results are different, else ...
 - ...

This might not terminate! (Hence it’s not a decider)

Can we compute this without running the DFAs?
Thm: EQ_{DFA} is a decidable language

$$EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

Trick: Use Symmetric Difference
Symmetric Difference

\[
L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))
\]

\[
L(C) = \emptyset \text{ iff } L(A) = L(B)
\]
Thm: E_{DFA} is a decidable language

$E_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Construct decider using 2 parts:

1. Symmetric Difference algo: $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$.
 - Construct C = Union, intersection, negation of machines A and B

2. Decider T (from “library”) for: $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
 - Because $L(C') = \emptyset$ iff $L(A) = L(B)$

NOTE: This only works because: regular langs closed under negation, i.e., set complement, union, and intersection
Thm: EQ_{DFA} is a decidable language

$$EQ_{\text{DFA}} = \{ \langle A, B \rangle | \text{A and B are DFAs and } L(A) = L(B) \}$$

Construct **decider** using 2 parts:

1. **Symmetric Difference algo:**

 $$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$$

 - Construct $C = \text{Union, intersection, negation of machines } A \text{ and } B$

2. **Decider T (from “library”) for:**

 $$E_{\text{DFA}} = \{ \langle A \rangle | \text{A is a DFA and } L(A) = \emptyset \}$$

 - Because

 $$L(C) = \emptyset \iff L(A) = L(B)$$

F = “On input $\langle A, B \rangle$, where A and B are DFAs:

1. Construct DFA C as described.
2. Run TM T deciding E_{DFA} on input $\langle C \rangle$.
3. If T accepts, accept. If T rejects, reject.”

Termination argument?
Predicting What Some Programs Will Do ...

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid software engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the Windows Driver Development Kit that uses the SLAM verification engine.

"Things like even software verification, this has been the Holy Grail of computer science for many decades but now in some very key areas, for example, driver verification we're building tools that can do actual proof about the software and how it works in order to guarantee the reliability." Bill Gates, April 18, 2002. Keynote address at WinHec 2002

Overview of Static Driver Verifier Research Platform

Model checking

From Wikipedia, the free encyclopedia

In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification (also known as correctness). This is typically
Summary: Algorithms About Regular Langs

- \(A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \)
 - **Decider:** Simulates DFA by implementing extended \(\delta \) function

- \(A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \} \)
 - **Decider:** Uses NFA\(\rightarrow \)DFA decider + \(A_{DFA} \) decider

- \(A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \} \)
 - **Decider:** Uses RegExpr\(\rightarrow \)NFA decider + \(A_{NFA} \) decider

- \(E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \} \)
 - **Decider:** Reachability algorithm

- \(EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)
 - **Decider:** Uses complement and intersection closure construction + \(E_{DFA} \) decider
Next: Algorithms (Decider TMs) for CFLs?

• What can we predict about CFGs or PDAs?