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Abstract. We introduce ProofViz, an extension to the Cur proof
assistant that enables interactive visualization and exploration of in-
progress proofs. The tool displays a representation of the underlying
proof tree, information about each node in the tree, and the partially-
completed proof term at each node. Users can interact with the proof by
executing tactics, changing the focus, or undoing previous actions. We
anticipate that ProofViz will be useful both to students new to tactic-
based theorem provers, and to advanced users developing new tactics.
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1 Introduction

The Curry-Howard correspondence [3,8] is a fundamental insight connecting
logic and programming. Specifically, a proposition in a logic corresponds to a
type in a programming language, and a proof of that proposition is a program
inhabiting that type. In such a language, type checking corresponds to proof
checking, and in this manner program properties may be directly verified in
the language without resorting to external specification languages or tools. This
influential insight has been applied to a wide variety of features such as polymor-
phism, concurrency, and resource consumption, and has inspired the creation of
numerous languages and proof assistants such as Coq, Agda, Idris, LF, NuPRL,
F*, HOL4, and Lean (Wadler [18] recently surveyed its history in detail). Collec-
tively, these tools are pushing the boundaries of software development and have
even been used to verify parts of some mainstream software [5,19].

These proof assistants still have a steep learning curve, however, and none
of the options for beginners are ideal. Some introductory books, such as The
Little Typer [7], teach theorem proving via straightforward construction of the
aforementioned “proofs as programs”. While this method is direct and does not
hide anything from the learner, it also does not scale well beyond small examples.
Other popular texts [14] rely entirely on a separate “tactic” language to generate
the proofs, despite the fact that such scripts are often “inscrutable” [15] because
they hide much of the proof information from users.
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We present ProofViz, a new kind of graphical IDE for the Cur [1] proof
assistant, that bridges the gap between manual proof construction and tactic-
based proofs. We believe this tool will be especially beneficial for new users of
tactic-based proof assistants because they can more easily see, and thus under-
stand, the parts of an in-progress proof such as the partial proof term, remain-
ing subgoals, and the location of those subgoals in the proof tree. They can also
directly perform actions on the proof such as navigating to proof tree nodes, exe-
cuting or undoing additional tactics, and saving the actions in order to switch
back and forth between our tool and a traditional editor. Our tool can be valu-
able for advanced users as well, e.g., for tasks such as creating and debugging new
tactics, where the ability to see the underlying proof term is crucial. Finally, we
conjecture that having an extensible GUI will enable many more helpful actions
that are not possible in text-based IDEs, such as widescale refactoring of the
proof structure, displaying domain-specific proof information, advanced search-
ing of large proofs, and showing available tactics or hints for possible next steps.

The rest of the paper explains the details, and is organized as follows:

– Section 2 introduces relevant background about the Curry-Howard correspon-
dence and tactic scripts;

– Section 3 presents a larger case study that illustrates how ProofViz smooths
the transition to tactic-based proof assistants;

– Section 4 shows that ProofViz can be useful to advanced users as well; specif-
ically it shows, via two case studies, how ProofViz can aid the development
of new tactics and the maintenance of existing tactics;

– Section 5 discusses Cur, its tactic system, and ProofViz in more technical
detail;

– Section 6 compares the tool to related work; and finally,
– Section 7 evaluates ProofViz, discusses future work and concludes.

2 Background: Tactics vs Proof Terms

According to the Curry-Howard correspondence, a logical proposition corre-
sponds to a type P, and the proposition can be proved by constructing a program
p with type P. For example, implication corresponds to the function type, univer-
sal quantification corresponds to polymorphism, and logical conjunction corre-
sponds to a product type. Thus, a function with type (∀ (P Q) (→ (And P Q)
(And Q P)) in Fig. 1 (top) proves the commutativity of conjunction. Specifically,
if P and Q are any two types, i.e., propositions, then a proof of their conjunction
is a pair data structure that combines a value of type P (i.e. a proof of P) with a
value of type Q. If we have such a pair, then to “prove” the commuted proposition
(And Q P), we simply need to extract the first and second components of the
original proof and combine them in the reverse order.

Such manual proof term construction, however, becomes infeasible as proofs
get larger. Thus, many proof assistant programmers use a separate “tactic” lan-
guage that generates the proof. Figure 1 (bot) shows the same proposition along
with a tactic script that proves it, where each line of the script generates one
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Fig. 1. (top) A program that proves the commutativity of conjunction; (bot) the same
program, generated with a tactic script

piece of the proof term in Fig. 1 (top). Specifically, (intros P Q pq) generates
the lambda parameters, (destruct pq #:as [p q]) extracts the components
of the pair and names them, constructor creates a new pair, and (by-apply
q) and (by-apply p) puts the components into the new pair in reverse order.

Such a tactic script is typically developed in an interactive editor that can
execute the script step-by-step and show a snapshot of the in-progress proof at
each step. Figure 2 shows a few such snapshots for Fig. 1’s proof script. Each
snapshot has two parts: the context above the dotted line shows known assump-
tions, and the goal below the line shows a part of the proposition that is left
to prove. The left snapshot, which shows the state immediately after running
the destruct tactic, has a context above the line containing propositions P and
Q, as well as proofs of those propositions. Below the line, the snapshot shows
that we still must prove the consequent of the implication, i.e., the commuted
conjunction. The right snapshot, which shows the proof state immediately after
running the constructor tactic step, shows (below the line) that we have two
subgoals left to prove, the first of which is q (the second, not shown yet, is p),
which can be proven easily by applying the facts that we know above the line.

But here we begin to see a problem, which is that the tactic script by itself
does not make much sense to a user who later looks at it, because it hides
what is happening: the generation of the proof term. Thus, students who rely
too much on tactics might not fundamentally understand how theorem provers
work. Instead, they might come away thinking that theorem proving is merely
the application of ad-hoc “pattern matching” rules (e.g., a popular textbook [14]
often gives advice like “where the goal to be proved is exactly the same as some
hypothesis in the context or some previously proved lemma ... use the apply
tactic”). Such superficial techniques could hinder learning since they may not
scale to larger proofs where the patterns are not as obvious.
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Fig. 2. Intermediate views of the proof state while stepping through the tactic script
in Fig. 1: (left) the proof state after running the destruct tactic; (right) the proof state
after running the constructor tactic

Ideally, a novice could use an IDE that more naturally bridges the gap
between manual proof construction and tactic scripts. During an undergrad-
uate independent study, the first author was motivated to create and use such a
tool, in order to better understand the connection between logic and programs
that underpins the majority of modern proof assistants.

3 A Case Study: add1+=+add1

This section presents a more complex example that illustrates how ProofViz
smooths the learning curve for beginning proof assistant users. Specifically, we
show how to prove a basic arithmetic theorem:

(∀ (n j) (== (add1 (+ n j)) (+ n (add1 j)))) ; add1+=+add1

3.1 Inductive Proofs, Eliminators, and Equality

This seemingly basic theorem requires that students first learn many additional
features of the language. First, it uses Nat, an inductively defined family. Induc-
tive families [4], as found in languages like Coq, mostly resemble the algebraic
datatypes found in functional languages like Haskell or ML. For example, here is
the definition of Nat from Cur’s standard library, which generates the usual data
and type constructors (following The Little Typer, we use the more descriptive
“add1” name for the successor constructor in this example):

(define-datatype Nat : Type
[z : Nat]
[add1 : (→ Nat Nat)])

Inductive families go beyond plain functional datatypes, however, because they
allow parameterization over both types and terms, e.g., the type of an indexed list
parameterizes over both the type of the list element and includes an additional
Nat value that represents the length of the list.
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Every inductive family definition also generates an eliminator for that type,
which generalizes the pattern matching found in functional languages. Follow-
ing the terminology of Mcbride [11], the eliminator for natural numbers has
the form (elim-Nat n P mz ms) where n is the target to eliminate, P is the
motive that computes the return type of the elimination, and the remaining
arguments are methods corresponding to each case of the data type: the elimi-
nator returns mz when n is zero and calls ms when n is a successor. Method mz
must have type (P z), i.e., the motive applied to zero, while ms must have type
(∀ [k : Nat] (→ (P k) (P (add1 k)))), which mirrors a proof by induc-
tion: for any k, given a proof of (P k), i.e., the induction hypothesis that results
from recursively calling the eliminator with k, we must output a term with type
(P (add1 k)). For example, here is addition, implemented with elim-Nat:

(define +
(λ [n : Nat] [m : Nat]

(elim-Nat
n ; target to eliminate
(λ (n) Nat) ;motive
m ;method for zero case
(λ [n-1 : Nat] [ih : Nat] (add1 ih))))) ;method for successor

The first addend n is the target of elimination and, according to the motive, the
result is always a Nat. Specifically, when n is zero, the result is m; otherwise, the
result is one plus the result of the recursive call (+ n-1 m).

Finally, since propositions are types, inductive families can be used to define
new propositions, where the data constructors are proofs of that proposition.
One such proposition is the equality type ==, which comes with a constructor
(same x) (sometimes called refl or reflexivity) that represents a proof of
(== x x). In other words, we can only construct a proof of equality between
two things that are equal.

3.2 Matching Tactics with Proof Terms

Figure 3a shows a program proving our add1+=+add1 theorem. It calls elim-Nat
with four arguments: a target n, a motive function, and two methods correspond-
ing to the zero and successor cases. When n is zero, the result is (same (add1
j)), which has the equality type we want, i.e., the motive applied to zero:

(∀ (j) (== (add1 j) (add1 j))) ; zero case

When n is not zero, the result of the elim-Nat is the result of applying the
second method to two arguments: n - 1, and the result of recursively calling
the eliminator with n - 1, where the latter exactly corresponds to the inductive
hypothesis in a proof by induction. Using this, we must construct a proof of:

; successor case
(∀ (j) (== (add1 (+ (add1 n-1) j)) (+ (add1 n-1) (add1 j))))
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Fig. 3. The correspondence between a manually constructed proof term and an equiv-
alent tactic script. While these two proofs are written in very different styles, every
part of the manual term corresponds to a tactic. ProofViz allows users to view which
tactic generated each part of a proof term.

which, when simplified, following the definition of the + function above, becomes:

; successor case, simplified
(∀ (j) (== (add1 (add1 (+ n-1 j))) (add1 (+ n-1 (add1 j)))))

We can see that this proposition is exactly the inductive hypothesis, with an
extra add1 around it. To go from the inductive hypothesis to what we need, we
can use cong, which is a theorem about a basic property of functions: (∀(A B)
[x : A] [y : A] [f : (→ A B)] (→ (== x y) (== (f x) (f y)))), i.e.,
applying the same function to equal values produces equal results.

Figure 3a shows the result of manually constructing a proof term following
step-by-step exercises from The Little Typer. The same theorem can also be
proved via a Cur tactic script, as shown in Fig. 3b. The execution of this sequence
constructs a proof term that is remarkably similar to the manually constructed
version. A student, however, cannot see this correspondence, nor can they see
any of the intermediate proof parts mentioned in this subsection.

3.3 Using PROOFVIZ to Understand Induction Tactics

The two sides of Fig. 3 and their colored components summarize the correspon-
dence between tactics and proof terms that we would like to see. Figure 4 presents
ProofViz, which shows this exact correspondence. Briefly, our tool’s user inter-
face contains three panes; the tree view, the node information panel, and the
interaction panel.

– In the tree view (Fig. 5b), the proof’s state is displayed as a tree. A proof
tree has a single node that is marked as its “focus”, which represents the
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current proof subgoal. Subsequently executed tactics will add nodes at this
focus point, and the tool includes controls to collapse all nodes of the tree that
are unrelated to the focus. We are working to further optimize ProofViz’s
interface to allow concise viewing of other information subsets. The various
node types and colors in the tree view are discussed in Sect. 5.2.

– A primary contribution of ProofViz is that each tactic in the proof script
is connected to the part of the proof term that this tactic generates. This
information is shown in the node information panel (Fig. 5c) when a single
node in the tree view is selected. In addition to the list of variables in the
context and the types of these variables, this panel also shows the expected
output type of the node. Some node types have node-specific information or
actions available. For example, “hole” nodes allow for the proof focus to be
set to that node (see Sect. 5.2) and “apply” nodes include a list of expected
types for its subtrees, as well as the output of the combined result.

– The rightmost interactions panel (also in Fig. 5c) allows the user to execute
additional tactics, and the tool allows undoing and redoing an arbitrary num-
ber of these interactions. If an error occurs during tactic evaluation, details
are printed to the console and the proof tree is not modified.

Fig. 4. A view of the interface with a completed proof of add1+=+add1. Note: instead
of elim-Nat, Cur uses a general new-elim for inductive datatypes. The cong and same
equality constructors are also have different names, f-equal and refl, respectively.
ProofViz also shows which tactic generated the selected node, in the middle panel;
the user can explore different nodes of the proof without changing the focus.
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Fig. 5. ProofViz displays all nodes of the proof tree, making it clear to the user how
each tactic affects the generated proof term.
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Overall, our tool enables users, especially students, to gain more insight
into their proofs. For example, with only a conventional view of a proof, the
by-intros tactic appears to just “move” variables from the goal into the con-
text. With the highlighted correspondences shown in Fig. 3, it becomes clear
that by-intros really “wraps” the rest of the proof into a lambda. Instead of
our goal being a function type (i.e., an implication), we’ve now assumed a proof
of the input type (i.e., the antecedent) and now need only to generate a term
with the function’s return type (i.e., the consequent). The parameters of the
lambda are thus in the context as assumptions when generating the body of the
function. Similarly, by-assumption merely corresponds to finding an assump-
tion in the context whose type “fits” correctly, and then using its name directly.
By exploring the tree view and node information panel in ProofViz, a student
can directly see these correspondences and build up their intuition.

Also, our add1+=+add1 example in Fig. 3 involves inductively defined natural
numbers, and thus its proof requires induction. Conventionally, a student might
be told to just “use the by-induction tactic” as a way to deal with such proofs,
but they would not necessarily gain insight into what is actually happening, or
why this tactic works. With ProofViz, as seen in Fig. 5a, a student can see what
by-induction actually does—it creates a new-elim node (in Cur new-elim is
a general eliminator that dispatches to the type-specific ones like elim-Nat),
and sets up the next subgoals which must be proved. Once those subgoals have
proofs, ProofViz shows how they will be assembled into the completed proof
term, as highlighted in Fig. 5b.

Lastly, this example gives insight into why tactics are indeed useful, because
they can help manage the amount of boilerplate that must be written. For exam-
ple, with a manually constructed term, the induction motive, a necessary but
somewhat formulaic part of an inductive proof, must be written by hand. In
contrast, the by-induction tactic uses the goal type to automatically generate
this part of the term. This type of demonstration conveys the effectiveness of
tactics for reducing repetitive code, and may reduce a student’s skepticism about
whether tactics are even useful.

As seen in this example, we believe that ProofViz can mitigate the steep
learning curve associated with proof assistants by showing how each tactic affects
the generated proof tree. We envision a student could begin by merely interacting
with and exploring a pre-written library of such proofs, while a more advanced
student could use ProofViz while writing their own proofs to ensure that the
generated proof term matches their intuition of what each tactic does.

4 Tactic Development with PROOFVIZ

Though we have shown how ProofViz can be useful for beginners, it is not
limited to only such applications. In this section, we show how ProofViz can
help advanced users as well, specifically to develop and debug tactics themselves,
where it is often critical to be able to see how the tactics manipulate and generate
the underlying proof term.
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4.1 Tactic Development: f-equal

While ProofViz does not replace traditional testing of new tactics, it can assist
with debugging in the course of tactic development. Similar to beginners, tactic
developers may find it useful to see exactly how each tactic affects the proof
tree. More specifically, in Fig. 3b, we used f-equal-tac in our proof script to
generate an application of The Little Typer ’s cong theorem but, until recently,
the tactic did not exist! We had to add the tactic ourselves and fortunately, we
had ProofViz available to help us do this more easily.

Figure 6 summarizes our iterative development process. As a first step,
instead of an f-equal-tac tactic, we started with an equivalent, but much more
complicated, call to a by-apply tactic that applies an f-equal (Cur’s name for
the cong theorem) function; this is shown in Fig. 6a. Then, we created a new
tactic that simply does the same thing as the aforementioned by-apply, as seen
in Fig. 6b, but this was very verbose and cumbersome to use. We then iteratively
improved the tactic so that it could infer all the arguments from the expected goal
type, eventually obtaining the simple tactic invocation shown in Fig. 6c. While
the implementation details of the tactic itself are not important for this paper,
what is important is that after each incremental change, we used ProofViz
to verify that the resulting tree structure, subterm types, and generated syntax
were what we expected, as shown in Fig. 6d.

4.2 Tactic Maintenance: by-induction

When developing ProofViz, we also noticed that the by-induction tactic
was behaving strangely, but only when used with certain other tactics. Using
ProofViz and the information it provides, we were able to quickly discover that
the tactic was producing subgoals with incorrect types, as seen in Fig. 7a. Specif-
ically, “Subterm 0” in the figure corresponds to the zero case in our add1+=+add1
proof from Sect. 3 and thus should have type (== (s j) (s j)) (Cur uses the
name s instead of add1 for the successor Nat constructor). Similarly, “Subterm
1” should have a type corresponding to the inductive step in the proof. After
deploying a fix for this, ProofViz then allowed us to quickly validate that the
revised tactic produces correct goal types, as seen in Fig. 7b. Without being able
to see the underlying proof information with ProofViz, debugging and fixing
this tactic would have been much more difficult.

5 Implementation Details

ProofViz works with Cur, a new proof assistant [1] that operates in the Racket
ecosystem [6], with an emphasis on easy extensibility [2]. This capability has
been used to extend Cur with features such as experimental type systems, e.g.,
sized types, and SMT solver integration. Further, these additional components
are modular, meaning that they may be added without changes to any existing
languages and do not break existing code, yet they are not isolated like third
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Fig. 6. The progression of f-equal forms. Initially, the function needed to be called
manually with by-apply. The first version of the tactic kept all arguments explicit,
but later versions of the tactic inferred all of the arguments from the goal. ProofViz
was used to check that each successive version had the correct behavior. Note that the
name f-equal-tac is used for the tactic to distinguish it from the function.

party tools in other systems. This is because the underlying mechanism—Racket
macros—enables easy communication with other components in the ecosystem.

ProofViz is implemented as a similar extension, and thus its implementa-
tion did not require any changes to the core language. It required only minimal
enhancement to ntac, the main tactic system used by Cur programmers, to allow
tagging proof nodes with arbitrary data (discussed further in Sect. 5.2).

5.1 Using PROOFVIZ

Figure 8a shows a basic proof script. A #lang cur on the first line declares the
start of a Cur program. The next require line imports the cur/ntac library,
which contains implementations of many basic tactics commonly used in other
proof assistants. The rest of the program binds id to the term produced by the
subsequent ntac proof script, which proves the identity function type.

To invoke our GUI tool, shown in Fig. 8b, a programmer can simply import
another library, cur/ntac-visual, and then invoke the ntac/visual proof envi-
ronment. This environment is implemented as an ordinary Racket macro. When
run, the program will launch ProofViz, initially displaying the partial proof
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Fig. 7. While developing ProofViz, we found that some tactics produced incorrect
goal types at internal boundaries. We were able to use the tool to easily validate the
fixes.

generated by the listed tactics (Fig. 4 shows a screenshot). Note that our tool is
launched by running the program itself. It is independent of any specific IDE;
the proof script itself could have been edited with any editor.

5.2 Implementation

Internally, most tactic systems represent an in-progress proof as a tree. Each
tactic then transforms this tree, gradually filling in more information until the
proof is complete. There are several varieties of tree nodes in Cur.

A “hole” node represents a node on the tree that must be filled by a value
of a specific type. The ProofViz tree view displays this expected type, and
highlights the node in red. In an interactive tactic-based theorem prover, hole
nodes typically correspond to subgoals. For a proof to be considered complete,
the proof tree must not have any hole nodes.

Tactics may also generate “apply” nodes, which combine the values from
multiple subtrees into one value of an expected type. For example, an induction
tactic applied to the natural numbers will generate an “apply” node with two
subtrees. Initially, both of these subtrees will be hole nodes; one with a goal
type to prove the theorem for the base case, and one with a goal type for the
inductive case. The final piece of an “apply” node is a metafunction to combine
the subterms into a larger term that proves the theorem in general. For induction,
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Fig. 8. The addition of ProofViz to an existing proof script. The user must import
an extra library, and change the invocation of ntac to ntac/visual, a macro provided
by ProofViz.

this combining function takes as input a proof term that proves the base case and
a term that proves the inductive case. Its output is a term that eliminates the
inductive datatype value, with the two input subterms placed in their necessary
positions. The tree view displays the output of the combining function, even
when the apply’s subterms contain holes. The implementation of this is further
discussed in the Apply Outputs subsection below. In the tree view, the places
where subterms are substituted into the output of an apply node are highlighted
in light gray. An “apply” node can also bind variables that may be referenced in
any of its subtrees, by generating a lambda in the output. With induction, for
example, inductive cases will include extra variables in their context with the
induction hypothesis.

However, an apply node can only provide instructions to the tactic system
to assemble pieces of concrete syntax produced by subtrees; these nodes do not
provide bookkeeping information about any new names available in the context.
“Context” nodes serve this purpose, informing ntac that a name is available in
a given subtree. These are typically generated as direct descendants of “apply”
nodes. The tree view panel shows the names and types of all variables that such
context nodes introduce, and highlights such nodes in blue.

An “apply” may also be a leaf node, in which case the combining function
takes no arguments and produces a complete term whose type matches the goal.
Equivalently, an “exact” node contains a syntax literal to appear in the generated
proof term. Exact nodes are highlighted in green.

In summary, apply and exact nodes generate syntax that will become part of
the final proof term, while hole and context nodes solely perform bookkeeping
functions. There is also a fifth node type for bookkeeping, ntt-done, that only
appears at the top level of the proof tree. The tree view displays a short summary
of each of these nodes’ content, allowing the user to see the proof’s internal
structure at a glance.



ProofViz: An Interactive Visual Proof Explorer 129

Apply Outputs. An “apply” node works by declaring the expected types of a
number of subterms. When concrete terms of the correct type are available, the
apply node contains a combining function that accepts all of these subterms and
outputs a new term; this term is of the apply node’s output type. In order to
compactly visualize a proof, ProofViz must be able to show the local transfor-
mations of each apply node in isolation, without needing to provide a term of the
correct type. ProofViz must also show apply nodes in a partially completed
proof, where subterms with the expected type may be unavailable.

It is possible to do this because the combining function of an apply node
treats each subterm as an opaque value. Thus, to display a string representation
of an apply node, the tool creates several placeholder terms that typecheck as the
expected type, but show only as (Subterm n), where n is the index of this term
in the apply node. These placeholders are used as the input to the combining
function when generating the text representation of the apply node. Finally, the
output of the combining function is converted into a string and displayed.

Navigation. To allow for the “Focus Here” functionality, the tool generates a
sequence of navigation instructions from the top of the proof tree. These instruc-
tions are read by a new tactic, navigate, shown in Fig. 9. This tactic starts by
setting the focus at the root of the proof tree and then reads the sequence of
instructions, which has three possible cases:

– The proof tree’s root will always be a marker node, called ntt-done (rep-
resented as top-level in the tree view), with a single subtree. Then the
path-down-done instruction moves the focus to this subtree. This instruc-
tion should only appear in the beginning of the navigate sequence.

– The path-down-context instruction likewise moves the focus to the subtree
of the context node.

– The path-down-apply instruction is parameterized with a numeric index.
Since an apply node can have multiple subtrees, the index is used to determine
which subtree to focus on.

These three navigation instructions are sufficient to jump directly to any
location in the proof tree.

Fig. 9. An example navigation tactic generated by ProofViz. The tactic jumps to
the root of the proof tree, then descends to a specific node given by the instructions in
the navigation tactic.
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Scoping. Since Cur’s AST values include binding information that is computed
from its context in a program, our tool must be slightly careful about scoping. For
example, when display-focus-tree is used, since ntac has already executed
all previous tactics in the proof script outside the context of our tool, if any of
these tactics introduced variables into the context, they may not be referenced
by tactics executed with the tool.

To work around this, if ntac/visual is used, ProofViz executes the proof
script as if they were entered in the tool’s interactions panel, so all bindings
have the proper context. This associates the identifiers with a modified source
location, accounting for the reduced source location information that is available
when executing the tactic input box’s contents.

Fig. 10. The threading model for ProofViz, in display-focus-tree mode, resulting
from constraints on where GUI code and Cur tactics are each allowed to execute.
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Threading. Additionally, to further ensure the proper context, ProofViz must
be careful when executing tactics in a multi-threaded environment. Specifically,
the GUI must run in a second thread because it may start before the main
(proof script) program finishes executing. But tactics, to have the same context
as the rest of the proof script, must be executed in the main thread. Addition-
ally, during GUI updates, ProofViz must call certain Cur library functions to
obtain textual representations of internal tree structures. Due to implementation
restrictions, these functions must be run on the main thread as well.

Thus, the tool uses a bidirectional channel to communicate between the main
thread and GUI thread. While the GUI is open, the main thread waits on a
message from this channel. One such message notifies the main thread that
the GUI window has closed, and includes the current state of the proof tree. If
display-focus-tree was used, the tactic that follows in the proof script receives
this proof state as input. The channel also allows the GUI to send arbitrary code
to execute on the main thread; this channel ensures that subsequent tactics
are evaluated in the correct context. Figure 10 shows the complete threading
behavior of ProofViz.

Tree Node Origin Tracking. Most of the features of ProofViz required no
changes to any other components of Cur or ntac, but the node origin track-
ing feature required the addition of substructures for each node type. These
substructures each add a generic “tag” field, and are interchangeable with the
original structures. ProofViz then uses this extra field to associate each node
of the proof tree with the node that generated it. However, when ntac changes
the focus of the tree proof, an implementation detail in ntac causes tree nodes
to be occasionally deconstructed and reconstructed in the process. The function
that does this was modified to detect whether it had destructed a tagged node,
and to add the tag back to the new node if it did so. We emphasize that no
modifications to Cur’s trusted core were necessary to achieve this.

5.3 Unresolved Challenges

Automatically Generated Names. Several tactics automatically generate
names for internal variables, often with no way to provide manually-written
identifiers. This is typically not an issue, as these names generally would not be
exposed to the user. However, when ProofViz encounters one of these identi-
fiers, it can only display the names that have been given to it. To fix this, indi-
vidual tactics would need to be rewritten to produce meaningful intermediate
names. A notable example of this are the names generated by the by-inversion
tactic, as shown in Fig. 11. In general, we are working to refactor some tactics
so they may be more ideally presented in ProofViz.

Ergonomics and Complexity. Relatedly, large proof trees and proof terms
can lead to a high information density, or to a GUI which requires excessive
scrolling. To combat this, the tree view includes the functionality to collapse
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Fig. 11. A sample proof term generated by by-inversion. Here, it is used instead of
by-apply or f-equal in the add1+=+add1 case study. ProofViz may not be as useful
when exploring tactics in which the generated term itself is difficult to interpret.

subtrees which are unrelated to the current focus, and the information about
an “apply” node only shows how its direct subterms are used locally. Further
work is needed to completely solve the problem, especially as proofs get larger.
Fortunately, our presented use cases—assisting beginning students, and creating
or debugging new tactics—typically involve smaller, more manageable proofs.

6 Related Work

Visualizing proofs as trees is not new. Even textual proof assistant IDEs, e.g.,
Proof General, typically support some tree-structured organization of proofs, via
the “bullet” system. Proof General also includes some tool-support for graphical
visualization [17], which itself is based on a visualization tool in PVS [13]. These
proof script visualization tools, however, seem to be exactly that: a visualization
of the tactic script that is currently entered in the buffer. While this visualization
can help users see the logical organization of a tactic-based proof, this style of
visualization doesn’t help the user relate the tactic script to the generated proof
term, and may be more useful for users who only deal with tactic-based scripts,
rather than the users coming from a no-tactics theorem prover. We believe, as
illustrated by the previous sections, that an explicit correspondence between the
proof term and tactic script is useful for some audiences.
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Proof visualizers also exist for non-dependently-typed theorem provers, such
as the LΩUI [16] tool. The Sparkle [12] theorem prover also provides an IDE-
like editing environment for in-progress proofs of a non-dependent functional
language. It supports proving properties of many functional features such as
laziness, and it interactively shows the context and goals at each point of the
proof. It is not based on the Curry-Howard correspondence, however, and thus
the proofs generated by its tactics are quite different from the proofs one would
construct in a dependently-typed theorem prover based on Curry-Howard.

Several tools visualize the proof tree as a sequent calculus “stack” [9,10], but
these tools usually focus solely on the context and goals of each node in the
proof tree, rather than the proof term that is generated, and thus don’t provide
the same intuition to users transitioning from a manual-construction style.

The Show Proof command in Coq prints out the partial proof term in the
middle of a proof script, but this command lacks the interactivity found in
ProofViz. For example, Show Proof does not allow the user to view which
parts of the proof term are generated by which tactic, and it doesn’t display the
context and goals of each node in the tree. Furthermore, a call to Show Proof
must be manually inserted (and removed) at each location where the user is
interested in seeing the partial term, while ProofViz enables the user to view
and step through all intermediate proof states.

Alectryon [15] aims to allow proof script authors to annotate their proofs
and create interactive documentation, enabling readers of this documentation
to easily step through the proof state at the current focus. This tool doesn’t
directly address the generated proof term, which we believe is important for users
transitioning to tactic-based proof assistants. However, the tool’s motivation
highlights many of the same pitfalls of tactic-based programming that can be
difficult for such users, thus demonstrating the need for these kinds of tools.

Ultimately, other visualization tools do not aim to address the same issues
as ProofViz. Further, they are often tightly coupled with the IDE itself, i.e.,
the tool must be maintained in sync with the IDE. In contrast, ProofViz
is a modular component in the ntac tactic system and is independent of how
programmers edit their programs. Creating our tool required minimal changes to
existing code, and no changes to unrelated tactics. As such, not only is ProofViz
itself extensible and well-positioned for future enhancements, it will seamlessly
accommodate new tactics, and potentially even changes in the core Cur language.

7 Evaluation, Future Work and Conclusion

The full implementation of ProofViz required approximately 1,000 lines of
Racket code. With ProofViz installed, the existing Cur test library of approx-
imately 11,000 lines of code continues to pass. In the course of developing
ProofViz, the first author successfully used the tool for dozens of hours, and
stepped through thousands of proof script lines. It has greatly enhanced their
understanding of dependently typed languages, tactics, and the implementation
of theorem provers.
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ProofViz continues to be a work in progress. One potential enhancement
could be to display available tactics to the user; a related improvement would
be the autocompletion of variable bindings or types. A more involved but useful
addition could be to illustrate the effect of a given tactic on the proof tree by
providing a more direct comparison of the states before and after the tactic is
applied. This feature could utilize our existing functionality for relating proof tree
nodes to the tactics which generated them. ProofViz could also be modified to
automatically save the proof history to a file when closing, instead of printing this
to standard output. Finally, extending the undo functionality to full undo/redo-
trees would prevent items in the redo buffer from being lost when a tactic is
written in the interaction panel. With these and many more enhancements, we
hope we will be able to help many more proof assistant users to come.
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