
M.Sc. Engg. Thesis

DESIGN AND DEVELOPMENT OF A DEEP
LEARNING BASED APPLICATION FOR
DETECTING DIABETIC RETINOPATHY

by
Md. Tarikul Islam Papon

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

May 2019



Dedicated to my loving parents and to my beloved wife

Author’s Contact

Md. Tarikul Islam Papon

Lecturer

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET).

Email: tarikulpapon@cse.buet.ac.bd, tarikulpapon@gmail.com

i



The thesis titled “DESIGN AND DEVELOPMENT OF A DEEP LEARNING BASED AP-
PLICATION FOR DETECTING DIABETIC RETINOPATHY”, submitted by Md. Tarikul
Islam Papon, Roll No. 1015052028 P, Session October 2015, to the Department of Com-
puter Science and Engineering, Bangladesh University of Engineering and Technology, has
been accepted as satisfactory in partial fulfillment of the requirements for the degree of Master
of Science in Computer Science and Engineering and approved as to its style and contents.
Examination held on May 14, 2019.

Board of Examiners

1.
Dr. A.K.M. Ashikur Rahman Chairman
Professor (Supervisor)
Department of CSE, BUET, Dhaka.

2.
Dr. Md. Mostofa Akbar Member
Head and Professor (Ex-Officio)
Department of CSE, BUET, Dhaka.

3.
Dr. Rifat Shahriyar Member
Associate Professor
Department of CSE, BUET, Dhaka.

4.
Abu Wasif Member
Assistant Professor
Department of CSE, BUET, Dhaka.

5.
Dr. Mohammad Rashedur Rahman Member
Professor (External)
Department of Electrical and Computer Engineering,
North South University, Dhaka-1229.

ii



Candidate’s Declaration

This is hereby declared that the work titled “DESIGN AND DEVELOPMENT OF A DEEP

LEARNING BASED APPLICATION FOR DETECTING DIABETIC RETINOPATHY” is

the outcome of research carried out by me under the supervision of Dr. A.K.M. Ashikur

Rahman, in the Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka 1000. It is also declared that this thesis or any part of it

has not been submitted elsewhere for the award of any degree or diploma.

Md. Tarikul Islam Papon

Candidate

iii



Acknowledgment

I express my heartiest gratitude, profound indebtedness and deep respect to my supervisor, Dr.

A.K.M. Ashikur Rahman for his constant supervision of this work. He helped me a lot in every

aspect of this work and guided me with proper directions whenever I sought one. His patient

hearing of my ideas, critical analysis of my observations and detecting flaws (and amending

thereby) in my thinking and writing have made this thesis a success.

I would also want to thank the members of my thesis committee for their valuable sug-

gestions. I thank Dr. Md. Mostofa Akbar, Dr. Rifat Shahriyar, Abu Wasif, and specially the

external member Dr. Mohammad Rashedur Rahman.

In this regard, I remain ever grateful to my loving parents and to my beloved wife Sadia

who always exist as sources of inspiration behind every success of mine I have ever made.

iv



Abstract

Diabetic retinopathy (DR), a complication of diabetes, is one of the leading causes of blindness

globally. Since early detection of DR can reduce the chance of vision loss significantly, regular

retinal screening of diabetic patients is an essential prerequisite. However, due to inefficient

manual detection as well as lack of resources and ophthalmologists, early detection of DR is

severely hindered. Moreover, subtle differences among different severity levels and the presence

of small anatomical components make the task of identification very challenging. The objective

of this study is to develop a robust diagnostic system through integration of state-of-the-

art deep learning techniques for automated DR severity detection. We used the concept of

deep Convolutional Neural Networks (CNNs), which have revolutionized different branches of

computer vision including medical imaging. Our deep network is trained on the largest publicly

available Kaggle data set using our very own novel loss function. After several preprocessing and

augmentation, 159,464 images were used for the training of the model. 10,000 images of Kaggle

data was kept separate for testing purpose. Unlike most retrospective studies which perform

binary classification (DR vs no DR), our model is trained to output five classes of DR severity

as per international standard. An accuracy of 79.57% with a sensitivity of 79.58%, specificity

of 82.81%, precision of 79.57% and F1 score of 0.778 was achieved on the test data. The model

is also validated using two independent databases: Messidor and E-Ophtha to demonstrate its

efficacy and generalization ability. In addition, a general comparison with some existing studies

has been carried out to show that our model’s performance is comparable to the recent state-

of-the-art models. The implementation of such a model to identify DR severity level accurately

can reduce the risk of vision loss drastically by referring the affected to an ophthalmologist for

further screening and treatment.
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Chapter 1

Introduction

Diabetes is a chronic disease that affects the production of insulin in human body or impairs

the body’s ability to process insulin. With the course of time diabetes affects body’s circula-

tory system, integumentary system, reproductive system, and central nervous system- leading

to the damage of retina. Diabetes Retinopathy (DR) is a medical condition where the retina

is damaged because of fluid leaks from blood vessels into the retina. The presence of DR is

quite frequent among diabetes patients [2] and the percentage of diabetes patients worldwide is

expected to increase from 2.8% in 2000 to 4.4% in 2030 [3]. DR is the most common microvas-

cular complication and if left untreated, it may lead to visual impairment or blindness [4].

In 2010, out of the 126.6 million people who were diagnosed with DR, 0.8 million were blind

and 3.7 million was found to be visually impaired due to this deleterious disease [5, 6]. To

make things worse, the number of people affected by DR may reach up to 191 million by 2030.

Furthermore, since there is no prominent visual or perceptible symptom of DR in the earlier

stages, most patients remain unaware of this disease. As such, DR has become a leading cause

of vision loss and a major public health problem.

Many studies have demonstrated that early detection and proper clinical treatment can

reduce the risk of vision loss, mitigating the inimical impacts of the disease [7, 8]. As a re-

sult, early detection of Diabetic Retinopathy (DR) using retinal photography, known as retinal

screening, is crucial because of its potential for reducing the number of cases of blindness.

As mentioned earlier, DR occurs when diabetes damages the blood vessels inside the retina.

1
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Due to the fluid leak into the retina, features such as microaneurysms, haemorrhages, hard

exudates, cotton wool spots or venous loops, neovascularisation are formed [4]. DR is gener-

ally diagnosed by examining retinal images, known as fundus images, for the above-mentioned

features or abnormalities (also known as lesions) by an experienced ophthalmologist. Ophthal-

mologists analyze these images for these lesions and based on the properties of these anatomical

components present in the images, the patient is graded for DR. From a broad perspective,

Diabetic Retinopathy can be classified as Nonproliferative Diabetic Retinopathy (NPDR) and

Proliferative Diabetic Retinopathy (PDR). Among the other different grading conventions of

DR present in the medical community, the severity scale proposed by Wilkinson et. al. [9] is

the most popular and widely used. They proposed five stages of DR in their work:

i No Diabetic Retinopathy

ii Mild Nonproliferative Diabetic Retinopathy (NPDR)

iii Moderate Nonproliferative Diabetic Retinopathy (NPDR)

iv Severe Nonproliferative Diabetic Retinopathy (NPDR)

v Proliferative Diabetic Retinopathy (PDR)

Currently, detecting DR is a time-consuming and manual process which is prone to human

error. An automatic retinal image analysis (ARIA) model can reduce the workload of clinicians

and can provide a cost-effective and easily implementable method. These ARIA models can

improve the efficiency of the grading process by a great deal, consequently increasing the

throughput. The goal of the automatic screening algorithms is to refer the patients to an eye

care provider when the image has a higher DR risk. In this way three purposes can be achieved:

1) Timely referral for treatment in the DR population, 2) Minimization of the vision loss risk,

and 3) Effective use of the healthcare resources for the patients.

Traditionally, these automatic retinal image analysis models involve explicit feature ex-

traction from the fundus images using image processing and machine learning techniques to

identify the lesions. The extracted features from the images are then used for DR classification
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using machine learning models and/or image processing techniques. However, the majority

of these models focus on only feature engineering rather than classification [10]. In addition,

most of the retrospective works identify only a subset of the features whereas DR classification

needs the identification of all the features. Furthermore, this often introduces a generalization

problem because of the difference in datasets. As a result, the performance of the models that

attempted DR classification, in general, has been moderate. Although sensitivities are found

to be high in most work, specificities remain moderate which is not sufficient to deploy in

clinical environments. Moreover, most of the works focus on binary classification (DR vs no

DR) whereas ophthalmologists prefer the grading scale proposed by Wilkinson et. al. [9]

Deep learning (DL) is a class of state-of-the-art machine learning techniques that have

gained exceptional popularity in the last few years [11]. Deep learning models find intricate

patterns between different types of data by deriving relevant necessary representations from

the data without the requirement of manual feature engineering. DL models are made up of

multiple layers with different functions and the algorithm adjusts the functional parameters

based on the ground truth levels. Compared with conventional techniques, DL has achieved

significantly higher performance in many domains, including natural language processing, com-

puter vision [12, 13] and voice recognition [14]. Deep learning has also been successfully applied

to many medical imaging analysis to detect various medical conditions [15, 16, 17]. Convolu-

tional neural network (CNN, or ConvNet), a class of deep neural network, is considered state

of the art for general image classification task because of their outstanding performance [18].

In mathematics, convolution is a mathematical operation on two functions to produce a third

function that expresses how the shape of one is modified by the other [19]. CNN uses many

layers with convolutions that use filters to extract complex features from an image in order to

classify the image [11]. Recently CNNs have been used on fundus images to detect different

ophthalmic diseases including Diabetic Retinopathy [20, 21, 22, 23], Glaucoma [24], Age-related

Macular Degeneration (AMD) [25] and Retinopathy of Prematurity (ROP) [26]. The use of

deep convolutional neural networks, coupled with telemedicine, may be a long-term solution

to screen and monitor patients for primary eye care environments.

In this work, we have developed a novel deep learning based DR severity detection model.
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We used convolutional neural network (CNN) for the detection task. The network is trained

using our own loss function with a large heterogeneous dataset. To our best knowledge, no

existing work has been able to identify the five stages of DR with same level of accuracy as

ours. In addition, the model is also validated on two popular external datasets (Messidor [27]

and E-Ophtha [28]) to demonstrate its robustness.

1.1 Motivation

Liew G. et. al. [29] showed that during the decade when eye screening programs were intro-

duced in the United Kingdom, blindness due to Diabetic Retinopathy was reduced despite the

fact that diabetes population increased during that period. Ophthalmologists also recommend

that the risk of blindness due to DR can be significantly mitigated through screening pro-

grams. However, a vast portion of diabetes patients are not screened annually due to various

factors [30]:

i Inadequate diabetic eye screening programs

In low and middle-income countries, there are very few eye screening programs compared

to the number of possible patients due to long-term financial sustainability. Moreover,

most of these programs are located in big cities or major urban areas. As a result, people

living in rural areas get very little or no opportunities for eye screening.

ii Inadequate resources

Fundus images are generally captured using a specialized camera consisting of an intricate

microscope. These cameras are too costly. As a result, in the low and middle-income

countries, there is a scarcity of this technology. In addition, electronic patient records

are almost non-existent in these countries.

iii Inadequate number of specialists

Currently, there are too few ophthalmologists compared to the number of patients in

most countries. As a result, a specialist has to screen a huge number of images by

himself. There are over 70 million people with diabetes in India whereas the number of
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ophthalmologists is roughly around 12,000 [31]. Early screening and proper treatment of

the patients is very difficult due to this extreme overburdened patient-care system.

iv Lack of awareness among patients

A vast majority of the potential patients are unaware of DR and its fatal consequences.

As mentioned earlier, there is little or no visual symptom of DR at the earlier stages.

Hence, people do not feel the necessity to visit the eye screening programs for regular

checkup.

v Economic status

The prevalence of Diabetic Retinopathy is higher among the people of Africa, South

Asia and Latin America [32]. The vast majority of this population is underprivileged and

remain below the poverty line. As such, they are often unwilling to visit ophthalmologists

on a regular basis.

Generally, DR is diagnosed by a careful investigation of the fundus images by an expe-

rienced ophthalmologist. The images are examined for the existence of the anatomical com-

ponents like microaneurysms, hemorrhages, and exudates. In addition, optic disk and blood

vessels are also examined for anomaly. The whole process is highly subjective and laborious.

Furthermore, since a specialist has to examine a huge number of fundus images, the screening

process is error-prone. Therefore, there is an urgent need to develop a cost-effective, efficient

and easy-to-use automated retinal screening system that can improve the overall ophthalmic

status of the diabetes patients.

1.2 Contribution

The major contributions of this work can be enumerated as:

i. Design and development of a deep learning based model that can identify the five stages

of DR severity from fundus images. The model is trained using a large dataset where

there is high variation among the images like any real-world dataset. Image preprocessing
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and augmentation is performed to improve performance and amend the class imbalance

problem.

ii. A novel custom loss function for training the above-mentioned model. The loss function

is designed in such a way that can capture the essence of the ordered output (severity

levels) as well as penalize the parameters accrodingly.

iii. A web application for identification of the severity of DR from fundus image. One can

upload a fundus image and the application will show the stage of DR for that image using

our pre-trained model.

iv. Validation of the model using two other public databases. By evaluating the performance

of the model on external datasets, the model’s generalization ability is demonstrated. In

addition, comparison with some existing models is also performed through this validation.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 1 gives a brief introduction to the problem. It also

discusses the motivation to investigate the problem as well as the contributions of this work.

Chapter 2 presents the necessary background of Diabetic Retinopathy (DR) and discusses

the relevant researches to detect DR severity. Chapter 3 elaborately discusses all the steps

involved to develop, train and test the model. The results obtained along with comparison

with some existing studies are presented in details in Chapter 4. Finally, Chapter 5 provides

some concluding remarks and possible future researches along this direction.



Chapter 2

Background

Diabetic Retinopathy (DR) affects mainly patients with diabetes type 1 and some with diabetes

type 2. As mentioned in the previous chapter, this disease is mainly caused by damage to the

small blood vessels that oxygenate the retina. Patients with DR develop blurred vision, spotty

vision, night vision problems and in some cases, total blindness [33]. Early detection of sight-

threatening DR allows laser therapy to be performed to prevent or delay visual loss.

This chapter provides the background for the different components involved in the research.

The chapter starts with the details of fundus image and the anatomical components of DR in

Section 2.1, followed by Section 2.2 which describes the popular classification scheme used for

identifying DR severity. The section also discusses different symptoms for different stages of

DR. Section 2.3 presents a brief study of the existing works in the literature. These works

are categorized based on the use of feature engineering. Finally, a brief discussion on the

effectiveness of using deep learning based approaches for DR classification is summarized at

the end of Section 2.3.2.

7
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2.1 Fundus Image and Features of Diabetic Retinopathy

Fundus imaging is the most commonly used imaging technique to capture retinal images.

Typically, ‘fundus’ refers to the back of the pupil. A specialized fundus camera consisting of

an intricate microscope attached to a flash enabled camera are generally used to capture a

magnified and upright view of the fundus. Fundus image of a healthy retina (no DR) can be

seen in Figure 2.1.

Figure 2.1: Fundus image of a healthy retina

Generally, fundus images are analyzed for some specific features, also called lesions, for the

screening of DR. Making a proper assessment of the severity or stage of retinopathy requires

the identification of the following lesions [34, 9] which can be seen in Figure 2.2:
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Figure 2.2: Features for DR Detection [1]

i Microaneurysms represent the earliest visible change of DR. They appear as small

round, red dots, mainly in the posterior part of the eye as shown in Figure 2.2, and

usually increase with the progression of DR [9].

ii Haemorrhages also appear at the earlier stage of DR following microaneurysms. How-

ever, their shapes can be more irregular than microaneurysms. They appear due to the

leakage of blood in the inner nuclear layer [34].

iii Cotton wool spots are grayish or white patches of discoloration in the nerve fiber layer.

The lack of oxygen in the retina, called ischemia, causes this damage in the nerve fiber

layer of the retina [34].
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iv Hard exudates are formed by leaked cellular lipids from abnormal intra-retinal capil-

laries. They usually have a bright yellow color with irregular boundaries and they vary

from small spots to larger patches [9].

v Venous beading is a type of vascular abnormality which occurs in segments in the veins.

The degree of venous beading can be a useful sign of proliferative diabetic retinopathy.

vi Neovascularisation refers to the process of abnormally growing new vessels. These

new vessels grow when there is not enough oxygen provided to the retina. These newly

formed vessels are fragile and bleed easily causing various complications [9].

2.2 Classification of Diabetic Retinopathy

The severity of DR symptom vary significantly between individuals according to the presence

of multiple factors. As mentioned earlier, Diabetic Retinopathy (DR) can be broadly catego-

rized as Nonproliferative Diabetic Retinopathy (NPDR) and Proliferative Diabetic Retinopathy

(PDR). However, a vast majority of the existing works have combined these two classes into one

as Referable Diabetic Retinopathy (rDR) [35, 20, 22]. As a result, they have classified DR into

two binary categories based on just the presence of DR without considering the severity level.

We will discuss more about these works in Section 2.3. On the other hand, ophthalmologists

recommend DR to be classified for screening purposes according to the proposed international

clinical classification system developed by Wilkinson et. al. [9]. This consists of five stages of

disease severity starting from no DR to PDR.

i No DR, where the retina is healthy and the fundus image is normal. Features like

microaneurysm, haemorrhage, exudate, cotton wool, etc. are not present in the image.

ii Mild Nonproliferative Diabetic Retinopathy (NPDR), where a few microaneurysms

appear as small red spots on the superficial layers of the retina [36].

iii Moderate Nonproliferative Diabetic Retinopathy (NPDR), where more lesions

appear as more capillaries become damaged, and the retina become more ischemic due to
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Screening Classification Anatomical Components

No DR No abnormalities

Mild Nonproliferative DR Microaneurysms

Moderate Nonproliferative DR Microaneurysms, haemorrhages, exudates or cotton wool spots

Severe Nonproliferative DR
More prominent microaneurysms, haemorrhages, exudates or cotton

wool spots. In general, the 4-2-1 rule is followed to classify.

Proliferative DR Neovascular growth with the above symtomps.

Table 2.1: Summary of the anatomical components present at different stages of DR

lack of blood flow, and therefore lack of oxygen. Haemorrhages, soft exudates and hard

exudates start to appear in the fundus image [36].

iv Severe Nonproliferative Diabetic Retinopathy (NPDR), where more blood ves-

sels are affected. Features like haemorrhages, soft exudates, and hard exudates become

extremely frequent. However, new blood vessel growth is not yet found in this phase.

According to the proposed international clinical classification of DR, a 4-2-1 rule are

indicative of Severe nonproliferative DR [9]. The 4-2-1 rule is not described in this thesis

because it falls out of the scope of this work. Severe nonproliferative DR can rapidly

advance to PDR or remain static.

v Proliferative Diabetic Retinopathy (PDR), where new vessels (neovascularization)

begin to grow along the inner surface of the retina in response to the need for oxy-

gen. These new vessels are compromised and fragile, which causes severe bleeding and

consequent vision loss.

A summary of this severity grading is presented in Table 2.1. An example of the four stages

NPDR and PDR can be seen in Figure 2.3.
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(a) Mild Nonproliferative DR (b) Moderate Nonproliferative DR

(c) Sever Nonproliferative DR (d) Proliferative DR

Figure 2.3: Four different fundus images, representing 4 different stages of NPDR and PDR
with their respective features labeled.
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2.3 Literature Review

The systems developed for automatic screening of Diabetic Retinopathy can be broadly cate-

gorized into two classes:

1. DR classification with feature extraction

2. DR classification without feature extraction

Our work uses the second approach for DR classification. A brief study of the existing works

is presented in the following subsections.

2.3.1 DR classification with feature extraction

Since image processing can help the specialists to identify different features from fundus image,

there has been an increase in the application of digital image processing techniques for auto-

matic detection of DR [37]. This approach usually employs these image processing techniques

to preprocess the image, followed by machine learning approaches to identify features and

classify DR severity. In some cases, the machine learning step is also replaced by hard-coded

image processing techniques. Some of these works have explicitly focused on feature extraction

only. These features are generally the anatomical components of a retinal image like optic disc,

blood vessels, microaneurysms, haemorrhages, exudates, etc. Figure 2.4 shows a general block

diagram of the steps involved in these systems.

Figure 2.4: Steps involved in DR classification with feature extraction

Identification of optic disc and blood vessel is central for the detection of DR. Tech-

niques like Adaptive thresholding, green channel extraction, morphological operations, contrast
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enhancement (such as histogram equalization), active contour models, principal components

analysis (PCA), and the watershed transform [38] are most commonly used in this regard.

Aravind et al. [39] used green channel extraction, histogram equalization, contrast enhance-

ment, and morphological operations as their preprocessing steps. Later, they used an SVM for

the classification purpose which provided a 90% accuracy, 92% sensitivity, and 80% specificity.

Sinthanayothin et. al. [40] localized the optic disc by identifying the area with the highest

variation in the intensity of adjacent pixels. Although they achieved sensitivity and specificity

of 99.1%, their work was reported to fail for practical datasets with a large number of white

lesions and light artifacts [41]. Ravishankar et. al. [42] used the major vessels to identify the

location of the optic disc with an accuracy of 97.1%. [43] used thresholding and morphological

operations to identify optic disc based on the assumption that optic disc is the brightest part of

a fundus image. However, their assumption is not always true for a practical dataset as shown

in Figure 2.5. Alipour S. H. M et al. [44] used a curvelet-based algorithm in combination with

contrast limited adaptive histogram equalization, illumination equalization, and morphological

operations.

(a) Another region brighter than optic disc (b) Difficult to detect

Figure 2.5: Limitation of segmentation method to detect optic disc

A number of works [45, 46] have used two-dimensional matching filters for identifying

blood vessels. [47] used two-dimensional matching filters along with region-based attributes

by segmenting blood vessels. Welikela et. al. [48] used a genetic algorithm based approach for
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detecting blood vessels. Hayashi et. al. [49] developed a system that can detect blood vessel

intersections and it can identify abnormal widths in blood vessels. Orlando et. al. [50] used a

vessel segmentation method based on fully connected conditional random fields. [51] identified

blood vessels by detecting largely connected components in a binary image. Then they used

an SVM classifier to identify the remaining thin vessels. Lupascu et. al. [52] constructed a

41-D feature vector and trained a feature-based AdaBoost classifier for vessel detection. They

reported an accuracy of 95.97% for a test set of 20 images. Nagaveena et. al. [53] segmented the

blood vessels using adaptive median thresholding. They reported average accuracy, specificity,

and sensitivity of 91%, 96%, and 70% respectively for 40 images. Recently convolutional neural

networks (CNN) have also been used for vessel detection [54, 55, 56].

An important step of exudate detection is the removal of prominent structures of the

retina, such as optic disc and blood vessels. Wang et. al. [57] proposed a novel approach

which combines brightness adjustment procedure with statistical classification method and lo-

cal window-based verification strategy. Hunter et. al. [58] used neural network based exudates

detection where they introduced a hierarchical feature selection algorithm. Their final archi-

tecture achieved a 91% accuracy using a relatively small number of images. Hsu et. al. [59]

showed the importance of domain knowledge to differentiate exudates from other brighter

lesions. Marker controlled watershed algorithm was applied on preprocessed images for the

detection of exudates in [60]. Li et. al. [61] localized optic disc using principal component anal-

ysis (PCA). Then exudates were extracted by a combination of the techniques- region growing

and edge detection. They reported sensitivity and specificity of 100% and 71% for exudate

detection. Color retinal images were segmented using fuzzy c-means clustering in [62]. After

extracting features from the segments, a multilayer neural network classifier was trained to

identify exudates from these segments. They achieved a sensitivity of 93.5% on 300 images.

Like blood vessel detection, convolutional neural networks have also been used recently for

exudate detection [63, 64].

Microaneurysms detection is very crucial for DR detection because they are the ear-

liest recognizable feature of DR. Since their texture and color is very similar to Haemor-

rhages, many existing works have employed similar techniques for their detection. Ege et.
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al. [65] used a Bayesian, a Mahalanobis and k nearest neighbor classifier for identifying mi-

croaneurysms, haemorrhages and exudates. The Mahalanobis classifier attained the best per-

formance where sensitivity was 69%, 83% and 99% for microaneurysms, haemorrhages and

exudates respectively. Linear structuring element after local contrast normalization was used

in [66]. They attained a sensitivity of 85.4% and specificity of 83.1% for microaneurysm de-

tection. Sinthanayothin et. al. [67] developed a fully automated system to detect exudates,

haemorrhages and microaneurysms using of a new technique, called ‘Moat Operator’. They

considered hemorrhages and microaneurysms (HMA) as one group, and hard exudates as an-

other group. The sensitivity and specificity for exudates detection were 88.5% and 99.7%

respectively and sensitivity and specificity for HMA detection was 77.5% and 88.7% respec-

tively. Mizutani et. al. [68] selected candidates for microaneurysm using double ring filter as

well as circular Hough transform. They used rule based classifier and artificial neural network

on the candidates to detect microaneurysms. Larsen et. al. [69] used image processing for

the detection of both haemorrhages and microaneurysms where they reported a specificity of

71.4% and a sensitivity of 96.7%. Some of the recent works have also used machine learning

techniques for detecting hemorrhages and microaneurysms [70, 71]. Convolutional Neural Net-

work (CNN) was employed to detect micoaneurysms and hemorrhages in [72]. They achieved

area under the ROC curve of 0.894 and 0.972 on two different data sets.

2.3.2 DR classification without feature extraction

Due to the recent drastic development of deep learning (DL) techniques, image classification

has attracted a lot of attraction in the last few years. Especially the unprecedented success of

convolutional neural networks (CNNs or ConvNets) has revolutionized the field of image classi-

fication. CNNs have been recently used on fundus images for detecting Diabetic Retinopathy.

Although DL based approaches generally require a large dataset to perform well, this approach

has the inherent advantage of applying classification algorithms directly on the images without

any feature engineering. Performance of some of these studies are extremely good compared

to the performances of the studies reported in the previous subsection.

Abràmoff et. al. [23] developed a hybrid deep learning model (IDX-DR X2.1) and evaluated
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it on the Messidor-2 dataset1. This system used a CNN inspired by AlexNet [73] models. The

network was trained with lesions of DR and it provided three outputs for DR severity: no

DR (or mild DR), referable DR or rDR (moderate nonproliferative DR or worse) and vision-

threatening DR or vtDR (severe NPDR and PDR). They reported a sensitivity of 96.8% and

specificity of 87% for rDR detection. For the vtDR output, the reported specificity was 90.8%.

Extensive feature engineering was performed using CNN in [21] for DR detection. The

feature extraction by the CNN was optimized by selecting regions of interests (ROIs). Dimen-

sionality reduction was applied on these features to select the more significant features. They

trained their CNN on the 35,126 images from the Kaggle dataset2 for five classes of DR sever-

ity. However, they converted their output to binary classification where accuracy of 97.28%,

sensitivity of 100% and specificity of 99% was reported. Although these two works have used

feature engineering, they are presented in this subsection because their classification model has

used deep convolutional neural network.

Binary classification (DR vs no DR) was also implemented in [20]. They used the Inception-

v3 model [74] and stochastic gradient descent algorithm was implemented for optimizing their

system. The model was trained on 128,175 images and it was validated on the EyePACS3 and

Messidor-2 dataset. The system attained a sensitivity of 90.3% and a specificity of 98.1% for

EyePACS and a sensitivity of 87% and a specificity of 98.5% for Messidor-2 and AUC scores

of 0.991 and 0.990 respectively at the operating point selected for high specificity.

Quellec et. al. [75] proposed a method to detect referable DR as well as Lesions with

CNNs. They used one of the solutions from the Kaggle Diabetic Retinopathy Competition4

to detect referable DR. Their proposed model was mainly based on visualization methods of

CNN. Heatmap generation modifications were performed to improve the quality of DR and

lesion detection. They validated their model on Kaggle, DiaretDB15, and E-Ophtha6 datasets

and achieved AUC of 0.954, 0.955 and 0.949 respectively.
1http://latim.univ-brest.fr/indexfce0.html
2https://www.kaggle.com/c/diabetic-retinopathy-detection/data
3http://www.eyepacs.com/data-analysis
4https://www.kaggle.com/c/diabetic-retinopathy-detection
5http://www2.it.lut.fi/project/imageret/diaretdb1/
6http://www.adcis.net/en/third-party/e-ophtha/

http://latim.univ-brest.fr/indexfce0.html
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://www.eyepacs.com/data-analysis
https://www.kaggle.com/c/diabetic-retinopathy-detection
http://www2.it.lut.fi/project/imageret/diaretdb1/
http://www.adcis.net/en/third-party/e-ophtha/
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Gargeya et. al. [35] developed a deep learning architecture for a binary DR classification.

They employed a technique called deep feature learning using the principles of deep residual

learning. From the CNN, they developed a feature vector with 1027 features. Later, a second

level tree-based gradient boosting classifier was implemented on the popular EyePACS dataset

consisting of 75,137 images. They reported a sensitivity of 94% and a specificity of 98% and

an AUC of 0.97 on their local validation dataset. Messidor-2 dataset was also used to validate

the robustness of the system where the model achieved a sensitivity of 96%, a specificity of

87% and an AUC of 0.940.

Colas et. al. [76] also proposed a system to grade 2 stages of DR (no DR and referable

DR). Their algorithm was trained on over 70,000 images from the Kaggle dataset. Although

the original dataset was labelled in 5 classes, they converted them into two classes. No DR

and mild DR was grouped as non-referable and moderate, severe NPDR and proliferative DR

was grouped as referable DR. They reported 94.6% area under the cure with a sensitivity of

96.2% and a specificity of 66.6%.

Ramachandran et. al. [77] used a third-party DR screening system incorporating a deep

neural network to identify referable DR. They evaluated their model on 485 eye images from

the Otago database. Their network achieved AUC of 0.901 with 84.6% sensitivity and 79.7%

specificity for Otago dataset. On the other hand, AUC of 0.980 with a sensitivity of 96.0% and

a specificity of 90.0% was attained for the Messidor dataset.

Takahashi et. al. [78] used GoogleNet [74] architecture to grade 4 stages of DR using 9,939

images. They used 496 images for their validation set and the rest was used for training. The

CNN was trained using two different methods, one with manual staging of three photographs

(AI1) and the other with manual staging of one photograph (AI2). The mean accuracy for AI1

and AI2 was 81% and 77% respectively and the final mean accuracy for 20 fold cross validation

was 80%.

Ting et. al. [79] used two CNNs to detect rDR (mild NPDR and moderate NPDR) and

vtDR (severe NPDR and PDR). The model was validated on the dataset of Singapore National

Diabetes Retinopathy Screening Program (SIDRP) 2014-2015 which contained 71,896 images

from 14,880 patients as well as ten external datasets consisting of 40,752 images. An AUC of
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0.879 with sensitivity and specificity of 89.56% and 83.49% was achieved for detecting rDR.

On the other hand, the model attained a sensitivity of 100%, a specificity of 81.4% and an

AUC for 0.908 for grading vtDR.

Different architectures of CNN was used for DR detection in [80] where they achieved

maximum accuracy of 83.68% on the EyePACS dataset. Raju et al. [81] evaluated the perfor-

mance of a CNN for DR detection on the test dataset of Kaggle having 53,576 images. They

presented the performance as a binary classification, reporting a sensitivity of 80.28% and a

specificity of 92.29%. Lam et. al. [82] explored multinomial classification models and their

model achieved peak test set accuracies of only 57.2% for a five class DR severity detection.

Pratt et. al. [83] designed a CNN to predict the exact DR stage for a five-class DR detec-

tion task. The network was trained on the publicly available Kaggle dataset. Their proposed

technique achieved an accuracy of 75% and sensitivity of 95%. Rakhlin et. al. [84] proposed a

deep CNN based model where they achieved 99% sensitivity and 71% specificity on Messidor-2

dataset for binary classification. They reported average sensitivity of 86% and specificity of

82% on their Kaggle validation dataset.

Most of the works mentioned in this subsection outperform the works mentioned in the

previous subsection for the following reasons:

i Most of the approaches mentioned in the previous subsection have focused on identifying

features rather than detecting DR severity. If the goal is to develop an automatic screen-

ing system, then the system must output the level of DR severity which is the case for

these deep learning techniques.

ii Some of the approaches mentioned in the previous subsection have classified DR based

on a subset of the features. However, the successful detection DR must need to consider

all of the features. Since deep learning techniques are employed on the whole image, they

can learn about the features implicitly, thereby can achieve a much better performance.

iii Feature engineering is an extremely cumbersome and laborious process. Deep learning

techniques circumvent this step and provide more robust performance.
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Methodology

In this work, we have implemented a new system using deep convolutional neural network to

detect the severity of DR. Our model outputs DR severity in one of five classes as proposed by

Wilkinson et. al. [9] which is the preferred classification across ophthalmologists. Our CNN

uses deep architecture to identify this grading of DR.

As a first step, the input images were analyzed for very poor quality images which were

discarded. A test set was then separated. The rest of the images were then preprocessed to

eliminate border, center image, and highlight boundaries as well as edges. Later, the images

were augmented heavily to rectify the class imbalance problem as well as to encode multiple

invariances in our model. Then, these images were used to train our model. Our model

architecture was inspired by the popular VGGNet [85, 86] which is known to perform very

well for image classification. While training the model, we used our custom loss function

which is central to the performance of our model. Different hyper-parameters were used to

find the optimal one. We validated the performance of our proposed model on the test set

and two external datasets: E-Ophtha [28] and Messidor [27]. We also developed a simple web

application that can demonstrate our system. So, the main steps of developing our system

include-

i Data Analysis and Cleaning

ii Image Preprocessing

20
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iii Image Augmentation

iv Model Development

v Model Training

vi Web Application Development

Figure 3.1: Flow Diagram of the Steps Involved
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A flow diagram of the steps involved in our work for DR severity detection from fundus

images is shown in Figure 3.1. In this section, we will be discussing each of these steps in

details.

3.1 Data Analysis and Cleaning

In 2015, the California Healthcare Foundation sponsored a competition [87] to detect diabetic

retinopathy from an existing dataset. The dataset was provided by EyePACS, a free platform

for retinopathy screening. We have used this dataset extensively for both training and testing

our model. This dataset is also popularly known as Kaggle dataset because Kaggle1 hosted

the competition. This dataset is a collection of high-resolution retinal images or fundus images

which were captured under a variety of imaging conditions. There were a total of 88,702 images

in this dataset from 44,351 patients, one image for each eye. So, images were labeled with a

subject id and either left or right. For example, “1_left.jpeg” is the fundus image of the left

eye of patient id 1. Each image was graded from 0 to 4 based on the severity level of DR,

where 0 corresponds to the healthy state and 4 corresponds to the most severe state of DR.

The meaning of this severity level along with the distribution of images among these classes

are presented in Table 3.1.

Image Label DR Severity Count

0 No Diabetic Retinopathy (Healthy Eye) 65343

1 Mild Nonproliferative Diabetic Retinopathy 6205

2 Moderate Nonproliferative Diabetic Retinopathy 13153

3 Severe Nonproliferative Diabetic Retinopathy 2087

4 Proliferative Diabetic Retinopathy 1914

Table 3.1: Summary of the severity level and distribution of data in Kaggle dataset

The original dataset is divided into two parts where the training set comprises of 35,126

images and the test set comprises of 53,576 images. We combined the whole dataset into 88,702
1https://www.kaggle.com/

https://www.kaggle.com/
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images and then selected our training and test dataset later. Total size of this dataset was

roughly 89 GB. One of the major challenges of processing this dataset was the amount of noise

or “bad data” present in the dataset. Generally, Kaggle datasets are very standard, error free

and easy to process. However, this dataset was very challenging because some of the images

were too dark or too bright or too low-contrast. Another crucial challenge was the imbalance

present in the dataset. From Table 3.1, we can see that almost 73.7% of all the images are of

healthy eyes where there is no diabetic retinopathy. We shall discuss about these challenges in

details in the following subsections.

3.1.1 Ungradable Image Detection

The images represented a heterogeneous group of patients with different DR severity levels.

The fundus images were captured with a variety of different camera models from patients of dif-

ferent ethnicities. As a result, there was a huge variation among the images in size, resolution,

aspect ratio, color contrast, and orientation. Subtle signs of retinopathy, like microaneurysms,

can be easily masked on low contrast or blurred, or low-resolution image. It is important for

images to be of good quality in order to provide a reliable diagnosis. In a typical screening

environment, studies have found that 10%-20% of the images suffered from inaccurate diag-

nosis [88]. Generally, poor patient’s fixation, poor focus and camera artifacts are the main

reasons behind the ungradable images. The variation among the images can be visualized in

Figure 3.2. All of these images are from the Kaggle dataset and they have the same severity

level. Despite all the images belong to the same class (no DR), the variation among the images

are conspicuous.

Although the images of Figure 3.2 differ greatly from one another, they are still gradable.

In fact, a vast number of the images of the dataset are like this. A clinician needs to identify

the subtle features like microaneurysms, exudates, and haemorrhages to identify the presence

and severity of DR. The features can still be seen in these images. As a result, image processing

techniques to highlight boundaries and edges will be able to identify some of these lesions from

the images. However, a few images of this dataset are too bad to diagnose properly as shown

in Figure 3.3. As we can see, these images are in extremely bad condition, thereby ungradable.
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Figure 3.2: Variation among the images belonging to the same class. Here all images belong
to class-0 or healthy eye.

Figure 3.3: Example of some ungradable images.
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Figure 3.4: Example of some low-contrast but gradable images

Any machine learning model will suffer greatly because of the presence of this type of “bad

data”. When the model tries to learn its weights’ parameter based on these low-quality images,

the model’s generalization capability can deteriorate for the high-quality images. In the end,

analysis of an image of such low quality may produce unreliable results when the system labels

the image as normal while lesions of DR are still present. So, we needed to discard these

ungradable images.

As we can see from Figure 3.3, most of the ungradable images have very low contrast

and standard deviation. Consequently, we wrote a program to identify these images based

on low contrast and low standard deviation where we found 2,662 such images. It is worth

mentioning that, our goal is to develop a robust system that can identify DR severity even from

“reasonably bad” images. As a result, we made sure that no gradable image gets discarded. So,

we examined each of these images manually and found that 38 of them are gradable despite

having poor contrast. We can see a couple of such images in Figure 3.4. Finally, the number

of discarded images were 2,624.

3.1.2 Training and Test Data Selection

After discarding 2,624 ungradable images, there were 86,078 images left, out of which 63,528

images (73.8%) belonged to class-0 or healthy images. We then randomly selected 5,500 images
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Image Label Initial Count
Ungradable

Image Count

Gradable

Image Count

Test Data

Count

Training Data

Count

Remaining

Image Count

0 65343 1815 63528 5550 34950 23028

1 6205 91 6114 1500 4614 0

2 13153 462 12691 2000 10691 0

3 2087 91 1996 500 1496 0

4 1914 165 1749 500 1249 0

Total 88702 2624 86078 10000 53000 23028

Table 3.2: Training and test data selection

from class-0, 1,500 images from class-1, 2,000 images from class-2, 500 images from class-3 and

500 images from class-4. In this way, a test dataset of 10,000 images was prepared which was

kept completely separate from the rest of the images. While preparing the training dataset

from the remaining images, we selected 34,950 images randomly from class-0 and the remaining

18,050 images from the other classes to rectify the huge class imbalance to some extent. As

a result, a training dataset comprising of 53,000 images were prepared. The remaining 23,028

images of class-0 was discarded. The summary of this selection and the distribution of images

across different classes are shown in Table 3.2.

3.2 Image Preprocessing

The preprocessing of this heterogeneous dataset is a crucial step for the overall performance

of the system because of two primary reasons. (i) Although the dataset contained images

with different resolutions, colors and aspect ratios, ConvNets require a fixed input size for

all the images. Hence, converting all the images to a fixed size is absolutely mandatory. (ii)

Proper preprocessing of the images can aid the ConvNet to learn features and converge quickly.

For example, if the lesions and other features were highlighted in the images, the model can

comprehend the implicit features and tune its parameters accordingly. Our preprocessing

included mainly four steps:
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i Cropping

ii Downsampling

iii Sharpening

iv Clipping

Figure 3.5 demonstrates the effect of each of these steps on a healthy fundus image. We

used OpenCV [89] and ImageMagick [90] for the above-mentioned steps. Details of these steps

are elaborately discussed in this section.

3.2.1 Cropping

All the images of the dataset had a black background where the retina is roughly situated in

the middle. The images had black extensions in all four sides (mostly in left and right) as

shown in Figure 3.5a. Since our key elements lie in the retina, we cropped the images in all

directions to remove the invalid black space so that only the retina is inscribed in a rectangle

as shown in Figure 3.5b.

3.2.2 Downsampling

Image resolution of the dataset varied in a wide range from 5184 × 3486 to 1792 × 1184. As

a result, we standardized the resolution by downsampling all the images to a fixed size in

accordance with the input requirements of our model. The size of the input image for CNN

is of pivotal concern for the performance of the model. Small features like microaneurysms

are the earliest signs of DR. These subtle details can easily get lost when the image is shrunk

too much. On the other hand, large input size requires large GPU computational time. To

further illustrate the effects of image size, we downsampled all the training dataset images to

two different dimensions: 512× 512 and 256× 256 and trained two models.
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(a) Initial image (b) Extra black region cropped

(c) Gaussian-blurred image of 3.5b (d) 3.5c subtracted from 3.5b

(e) Boundary-effect removed from 3.5d (f) Retina centered

Figure 3.5: Steps involved in preprocessing
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3.2.3 Sharpening

Image sharpening is a general technique to increase the sharpness of an image so that small

details can easily be detected. However, our goal was not to sharpen the raw fundus image.

Instead, we tried to highlight only the edges and sharp changes. We used a popular technique

named “Unsharp masking” to achieve our goal. This technique uses a blurred image to create a

sharp image by subtracting the blurred image from the original image. Let us consider f(x, y)

is our original image and f(x, y) is a blurred or smoothed image of f(x, y). Then, we can

obtain a mask using the following equation:

gmask(x, y) = f(x, y)− f(x, y)

gmask(x, y) image contains the discontinuities and sharp changes across the image. When

the goal is to sharpen the original images, this mask is usually added to the original image.

However, we skip this step because we only need the gmask(x, y) image for our CNN. We used

the widely popular “Gaussian Blur” filter to obtain the blurred image f(x, y). Mathematically,

applying a Gaussian blur to an image is the same as convolving the image with a Gaussian

function. The Gaussian function in two dimensions can be represented as:

G(x, y) =
1

2πσ2 e
−x2+y2

2σ2

A Gaussian kernel is a rectangular array of pixels where the pixel values correspond to

the values of Gaussian curve. Example of such a kernel is shown in Figure 3.6. When an

image is convoluted with a Gaussian kernel, the resultant image is a blurred one. We used

OpenCv’s built-in GaussianBlur() function with a kernel size of 5×5. Then, we subtracted the

blurred image from the original image to get our gmask image which was further preprocessed

as described below. A sample blurred image and the resultant sharp image can be seen in

Figure 3.5c and Figure 3.5d respectively. As we can see, blood vessels and other sharp changes

are quite prominently visible in the sharp image.
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Figure 3.6: A sample Gaussian kernel

3.2.4 Clipping

In Figure 3.5d, we can see that the boundary is quite oddly highlighted. Moreover, in some

other images, this boundary depth varies significantly due to camera artifacts. If these images

were used as input for our CNN, it is likely that the CNN will try to learn these variations which

may lead to poor performance. So we clipped these sharp images to 90% of the size to remove

this “boundary effect”. Then, the retina was placed in the center of the image. Figure 3.5e and

3.5f demonstrates the effect of clipping and centering.

3.2.5 Summary

To summarize, our 53,000 training dataset images were first cropped and downsampled to

two different dimensions: 512× 512 and 256× 256. Then, the images were convoluted with a

Gaussian blurring kernel to obtain a blurred image. Later, these blurred images were subtracted

from the original image and a sharp image was found where the discontinuities were highlighted.

Finally, these images were clipped to remove the boundary of retina and then the retina was

centered. Figure 3.5 shows the effects of applying these preprocessing steps on a healthy fundus

image. However, it is essential to know how this preprocessing aids to identify the lesions of

DR. Figure 3.7 shows the fundus images of two DR affected retina as well as their preprocessed

versions. As we can see, lesions like microaneurysms, exudates, and haemorrhages are clearly

visible in the preprocessed image. Any sharp change in the image gets highlighted through this

preprocessing step.
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(a) A sample class-3 fundus image (b) Preprocessed image of 3.7a

(c) A sample class-4 fundus image (d) Preprocessed image of 3.7c

Figure 3.7: Preprocessing helps identify lesions of DR
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(a) Effect of SUACE (b) Effect of CLAHE

Figure 3.8: Effect of applying SUACE and CLAHE on Figure 3.7a

We also tried a few other preprocessing techniques like Speeded Up Adaptive Contrast En-

hancement (SUACE) [91] and Contrast Limited Adaptive Histogram Equalization (CLAHE) [92]

in place for unsharp masking for highlighting discontinuities. Effect of applying SUACE and

CLAHE on Figure 3.7a is shown in Figure 3.8a and 3.8b. In case of SUACE, small abnor-

malities may get lost whereas CLAHE highlights less important features. The final output of

unsharp masking seems much more conducive to CNN training for DR detection.

3.3 Image Augmentation

In our training dataset of 53,000 images, 34,950 images (65.94%) belong to the class of healthy

fundus images whereas only 1249 images (2.36%) belong to the class of Proliferative Diabetic

Retinopathy (PDR), as shown in Table 3.2 . This imbalance ratio is also presented in Figure 3.9.

Because of this highly skewed distribution of data, augmentation is a must. Image augmenta-

tion is a method of applying different image transformations across a data set to increase image

heterogeneity as well as decrease class imbalance while preserving the prognostic characteristics

in the image itself. Detection of DR from fundus image is rotationally invariant. This means

that the identification of DR depends on the presence of different anatomical components, re-

gardless of the orientation. Although we performed image augmentation mainly to rectify the

imbalance problem, it improved the model’s ability to generalize and correctly classify fundus

images of various orientations. We used OpenCV to perform these transformations.



CHAPTER 3. METHODOLOGY 33

Figure 3.9: Skewed Distribution of Data

Our training dataset was augmented in a specific way so that the counts of images from

different classes are similar. Since class 0 already had a very high number of images, no

augmentation was applied to these images. Initially, there were 4,614 images belonging to

class-1. We applied rotations of 45°, 90°, 135°, 180°, 225°and 270°on these images and generated

a total of 27,684 images belonging to class-1. For class-2, we applied rotations of 90°and 180°to

generate 21,382 images for this class. 10 rotations of 30°intervals were applied on the class-3

images and its horizontally flipped versions to generate 29,920 images. On the other hand, 11

rotations of 30°intervals were applied on the class-4 images and its horizontally flipped versions

to generate 27,478 images. Finally, we had a total of 159,464 images (size 15.3 GB) as our

training dataset where images were evenly distributed among five classes. A summary of this

augmentation procedure along with the counts of images from different classes can be seen in

Table 3.3. Figure 3.10 shows some example of image augmentation for a class 4 image. It is

worth mentioning that image augmentation was again performed before training the model.

We shall discuss that in section 3.5.
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Image Label Training Data Augmentation Procedure Generated Image Total Image

0 34950 N/A 0 34950

1 4614 6 rotations (45°interval) 27684 32298

2 10691 2 rotations (90°interval) 21382 32073

3 1496

Horizontal flipping

10 rotations on both original image

and flipped image (30°interval)

29920 31416

4 1249

Horizontal flipping

11 rotations on both original image

and flipped image (30°interval)

27478 28727

Total 53000 88702 106464 159464

Table 3.3: Summary of augmentation procedure

Figure 3.10: Sample augmented images of a class-4 image
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3.4 Model Development

We used deep convolutional neural network (ConvNet or CNN) because of its extraordinary

performance in image recognition, image classification, and computer vision. While training a

ConvNet, architecture is a major concern in terms of both training time and model’s perfor-

mance. Extensive studies have been performed on ConvNet architectures and some of the most

popular architectures are VGGNet [86], AlexNet [73], GoogleNet [74], Inception-Resnet [93]

etc. Wan et. al. [94] performed a comparative analysis of these popular networks’ performance

on fundus images for DR classification and showed that VGGNet performs better for DR de-

tection. As a result, our network was inspired by the architecture of VGGNet. We used Keras2,

an open-source neural-network library written in Python, on top TensorFlow3 for our model

development. In this section, we shall briefly discuss about the background of VGGNet and

our proposed network architecture.

3.4.1 VGGNet

VGGNet was designed by Simonyan et. al. [86] which achieved higher accuracy and general-

ization using increased network depth and smaller filters. The network is an improvement of

AlexNet. VGGNet has 5 convolutional layers, each followed by a max-pooling layer. Each of the

convolution layers comprises of multiple convolution operations. There are 3 fully-connected

layers after the convolution layers and a softmax layer for classification. Figure 3.11 shows the

VGGNet architecture. It was trained on ImageNet [95] dataset.

3.4.2 Proposed Network Architecture

We developed two networks for the two different datasets differing by image sizes: 512 × 512

and 256× 256. The network that was developed for 512× 512 dataset outperformed the other

network by a big margin. Hence, the better network’s architecture is presented in details in

this subsection. The other network differs to this by only the shapes of the layers.
2https://keras.io/
3https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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Figure 3.11: VGG-16 Architecture

The input layer of the network is 512 × 512 because the size of our input. We used

seven convolution layers each consisting of two convolution operations except the last layer

which consists of one convolution operation. Each convolution layer is followed by a max

pooling layer. Like VGGNet, we used two fully connected layers and a softmax layer for DR

classification. We tried kernel filters of sizes 3×3 and 4×4 and found the best result in kernel of

size 3×3. As a result, all the convolution layers of our network have the same kernel size of 3×3

and the stride of 2. Kernel size of 2× 2 is used in all the max-pooling layers. As for activation

function, ReLU was used in all convolution layers for nonlinearity. The final extracted features

were flattened before passing through the fully connected layers. There are two fully connected

layers, having 256 and 128 neurons followed by a softmax layer of 5 neurons for classification.

Dropout of 0.5 was added after all but the last fully connected layers to reduce overfitting.

Table 3.4 illustrates the network architecture of our proposed DR classification system which

contains a total of 2,737,765 trainable parameters.
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Layer Type Filter Size & Number Output Shape Parameters

input N/A (512, 512, 3) N/A

convolution 3× 3× 32 (510, 510, 32) 896

convolution 3× 3× 32 (508, 508, 32) 9248

max-pooling 2× 2 (254, 254, 32) 0

convolution 3× 3× 64 (252, 252, 64) 18496

convolution 3× 3× 64 (250, 250, 64) 36928

max-pooling 2× 2 (125, 125, 64) 0

convolution 3× 3× 96 (123, 123, 96) 55392

convolution 3× 3× 96 (121, 121, 96) 83040

max-pooling 2× 2 (60, 60, 96) 0

convolution 3× 3× 128 (58, 58, 128) 110720

convolution 3× 3× 128 (56, 56, 128) 147584

max-pooling 2× 2 (28, 28, 128) 0

convolution 3× 3× 192 (26, 26, 192) 221376

convolution 3× 3× 192 (24, 24, 192) 331968

max-pooling 2× 2 (12, 12, 192) 0

convolution 3× 3× 256 (10, 10, 256) 442624

convolution 3× 3× 256 (8, 8, 256) 590080

max-pooling 2× 2 (4, 4, 256) 0

convolution 3× 3× 256 (2, 2, 256) 590080

max-pooling 2× 2 (1, 1, 256) 0

fully connected 256 (256) 65792

fully connected 128 (128) 32896

softmax 5 (5) 645

Table 3.4: Proposed Network Architecture.
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3.5 Model Training

Our proposed network in the previous section was 23 layer deep consisting of more than 2.7

million parameters which were randomly initialized. The training was performed on the training

dataset of 159,464 images. The model parameters were optimized by our custom loss function.

A custom metric function was also written to monitor the performance of the network. Related

hyper-parameters were tuned for optimal learning and training was performed with cross-

validation over 10% of the training data. Performance of the model was measured by evaluating

the model on the test images. In this section, we shall briefly discuss about the steps involved

in training the network.

3.5.1 Custom Loss and Metric Function

Although Keras provides various built-in loss functions like categorical cross entropy, root mean

square error, mean absolute error, etc., we need a loss function suitable for ordinal data. Our

output classes are an ordered set of values. For example, it is much worse to misclassify severe

NPDR or PDR as healthy eye than as moderate NPDR. Although both mean square error and

mean absolute error penalizes the distance from mean, these loss functions are more suitable for

regression problem whereas our problem is a multi-class classification problem. On the other

hand, categorical cross entropy is the benchmark of loss functions for classification problem.

However, it cannot capture the essence of ordinal data. So, we blended these two concepts

and developed a new loss function “Mean Absolute Error with Cross-Entropy” or MAEC. The

formula for our MAEC loss function is given by:

MAEC = (1 +MAE)× CCE

where MAE and CCE denote “mean absolute error” and “Categorical Cross Entropy”. They

can be expressed as:

MAE =
1

N

N∑
i=1

|ŷi − yi|
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CCE = − 1

N

N∑
i=0

J∑
j=0

yj.log(ŷj) + (1− yj).log(1− ŷj)

where ŷi is the predicted value and yi is the true value.

Our MAEC loss function helped the model to recognize the learning as a multi-class ordinal

classification problem. We compared its performance with both Categorical Cross Entropy and

Mean Squared Error where MAEC surpassed both of them. The results will be discussed in the

later chapter. We also wrote a custom metrics function f1_score() using scikit-learn4,a machine

learning library, to show the f1 score of the model on validation data after every epoch. Both

accuracy and f1 score was used as the metric of our model while training.

3.5.2 Hyper-parameter tuning

Hyper-parameters are those parameters in a machine learning model which are set before the

training or learning process starts. The values of all the other parameters are generally learned

during the training phase. Hence, proper hyper-parameters selection is a pivotal factor for the

training of any classifier. Our network was trained with Stochastic gradient descent (SGD)

optimization function with 0.90 Nesterov momentum for 120 epochs with data augmentation

at each step. We experimented with different learning rates and found 5× 10−4 to be the best

initial learning rate. The learning rate was decreased to 10−5 after 50 epochs and to 10−6 after

80 epochs. We used batch size of 16, 32 and 64 in our training and found that batch size

of 16 surpassed the other ones. The summary of our training hyper-parameters are given in

Table 3.5.

3.5.3 Training our model

The training of our network was performed using back-propagation algorithm with batch

stochastic gradient descent such that our MAEC function is minimized. The neural network

parameters are updated by propagating the gradient of loss multiplied by learning rate back-

wards. We used 10% of our data for validation purposes. Since the training dataset of 159,464
4https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Hyperparameter Value

Objective Function Mean Absolute Error with Cross-entropy (MAEC)

Optimizer SGD

Momentum 0.9

Learning Rates

5× 10−4 (First 50 epochs)

10−5 (Next 30 epochs)

10−6 (Next 40 epochs)

Batch Size 16

Epoch 120

ReduceLROnPlateau monitor=‘val_loss’, factor=0.5, patience=10, epsilon=0.001

EarlyStopping monitor=‘val_loss’, patience=20

Table 3.5: Hyper-parameters of our network

images were balanced, the validation set was selected randomly. As mentioned earlier in Sec-

tion 3.3, data was already augmented. However, it is better to augment the dataset again while

training to make the model robust. Hence, data augmentation was performed at each step of

the training. We performed the following augmentations randomly:

– Rotation: Images were randomly rotated between 0°to 180°

– Flip: Images were randomly flipped horizontally or vertically

– Crop: Images were randomly cropped to 90-95% of their original size

– Shear: Images were randomly sheared between 20°to 60°

The training was conducted on FloydHub [96] using TensorFlow framework for 120 epochs

which took around six days on a Tesla K80 GPU. We shall discuss about the training and

validation performance metrics in the next chapter.
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3.6 Web Application Development

We developed a simple web application for DR classification where the user can upload a

fundus image from his local computer and the application can show its class based on the pre-

trained model from Section 3.5. We used Flask5, a micro web framework written in python,

for developing this. When the image has been uploaded, we first applied the preprocessing

techniques mentioned in Section 3.2. Both the uploaded images and preprocessed are saved in

the server for future uses. In the backend, our previously trained model was saved as a ‘.h5’

file and it was loaded for predicting the class of the image. Figure 3.12 shows the simple web

application where prediction is performed by our trained model. This type of application will

greatly aid the diagnosis procedure. In addition, the model can also be improved through the

new images by means of unsupervised learning.

3.7 Software and Hardware

In this section, we provide some technical details of the implementation. We used Python 3.5

environment and used of the following libraries, platforms and hardwares:

• Keras v2.2.4, a deep learning library which runs on top of Theano or TensorFlow

• TensorFlow v1.13.1, an open source library for fast numerical computation and machine

learning

• CUDA v9.0, a parallel GPU computing platform and programming model

• CuDNN v7.1, a GPU-accelerated library of primitives for deep neural networks

• OpenCV, a library of Python bindings designed to solve computer vision problems

• ImageMagick, an open-source software for image processing

• NumPy v1.14.3, the fundamental package for scientific computing with python
5http://flask.pocoo.org/

http://flask.pocoo.org/
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Figure 3.12: Web Application for DR Detection
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• Pandas v0.24.1, a data analysis and manipulation library for Python

• scikit-learn, a machine learning library

• Matplotlib v3.0.3, a Python plotting library

• Intel Core i5-6200U 2.3 GHz, 16.0 GB RAM, NVIDIA GeForce GeForce

920M- this machine was used for initial model development and small scale testing

v3.0.3, a Python plotting library

• FloydHub, a cloud-based deep learning platform. We used Intel Xeon (2 core) ma-

chine (8.0 GB RAM) with Tesla K80 (12 GB) GPU support. The final trainings

of our model(s) were performed on FloydHub.



Chapter 4

Results

In this chapter, the performance of our proposed model is described elaborately. First, the

training and validation performance of our model is presented. As mentioned earlier, we

developed a custom loss function called MAEC and the effect of using MAEC will be discussed

in details. Next, various performance metrics of our model on the test data is presented.

Especially, the performance for detecting high severity DR is analyzed briefly. Later, we explore

the qualitative results on the images and the reasons for misclassification. Finally, we evaluate

the performance of our model on two external databases and perform a comparative analysis

with some of the existing works.

4.1 Training and Validation Performance

While training our model described in Section 3.4 with our MAEC loss function, we achieved

the highest validation accuracy of 81.78% and lowest validation loss of 0.5556. On the other

hands, when we trained our model with the loss function Categorical Cross Entropy (CCE)

and Mean Squared Error (MSE) we attained a maximum of 74.82% and 75.88% accuracy. It

is expected that the accuracy of MSE will be better than CCE because of the nature of our

output. Since the output is ordered, MSE can penalize the misclassifications more than CCE.

Training accuracy, validation accuracy, training loss and validation loss for our model trained

with MAEC, CCE and MSE loss function can be seen if Figure 4.1, 4.2 and 4.3 respectively.

44
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It is worth mentioning that, these models were trained with images of size 512 × 512. The

performance of our MAEC loss function is much superior to the other ones because it penalizes

the severe misclassification like MSE and considers the problem as a classification problem like

CCE.

In Section 3.2.2, we mentioned that our dataset was downsampled to two different dimen-

sions: 512× 512 and 256× 256. To analyze the effect of image size, we trained our model with

both these datasets. Performance of the model trained with higher resolution images is much

better than the other one. Figure 4.1 shows the training and validation performance of the

model trained with 512× 512 images where we achieved accuracy of 81.78%. On the contrary,

the other model trained with 256×256 images attained a maximum of 73.77% validation accu-

racy. Training and loss curve can be seen if Figure 4.4. It is to be noted that while training this

model, a technique called “batch normalization” [97] was used to avoid overfitting and improve

robustness. Batch normalization can ameliorate the internal covariate shift problem [97]. The

oscillation of validation accuracy and validation loss resulted because of batch normalization

with high momentum.

To summarize, the performance of our model is greatly affected by the input image size and

loss function. Small features like microaneurysms and haemorrhages are visible on the larger

images. When downsampled, they might disappear hence causing misclassification. However,

it is not feasible to train the model with image size larger than 512× 512, because of the huge

computational cost. The idea of using a custom loss function has been used in machine learning

application before. Since the nature of the output varies from problem to problem, many data

scientists have used their own custom loss function for training and achieved promising results.

The results and analysis discussed in the later sections consider the model trained with 512×512

images using MAEC loss function, if not mentioned otherwise.
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(a) Training and Validation Accuracy for MAEC

(b) Training and Validation Loss for MAEC

Figure 4.1: Accuracy and Loss curve of the model for MAEC loss function
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(a) Training and Validation Accuracy for CCE

(b) Training and Validation Loss for CCE

Figure 4.2: Accuracy and Loss curve of the model for CCE loss function
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(a) Training and Validation Accuracy for MSE

(b) Training and Validation Loss for MSE

Figure 4.3: Accuracy and Loss curve of the model for MSE loss function
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(a) Training and Validation Accuracy for 256× 256 images

(b) Training and Validation Loss for 256× 256 images

Figure 4.4: Accuracy and Loss curve of the model trained with 256× 256 images
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4.2 Performance on Test Data

The model was validated on our test dataset of 10,000 images which was kept separate from the

training dataset as mentioned in Section 3.1.2. The images were preprocessed as per described

in Section 3.2. Out of 10,000 images belonging to five classes, our model could correctly classify

7,957 images which imply an accuracy of 79.57%. Table 4.1 shows the confusion matrix of our

model for our test dataset. Since accuracy is not the most widely used metric for multi-

class classification problem, we used four other metrics: Sensitivity (also known as Recall),

Specificity, Precision and F1 Score which can be defined as:

Sensitivity =
TruePositive

TruePositive+ FalseNegative

Specificity =
TrueNegative

TrueNegative+ FalsePositive

Precision =
TruePositive

TruePositive+ FalsePositive

F1 =
2× TruePositive

2× TruePositive+ FalsePositive+ FalseNegative

Predicted Label

A
ct
ua

lL
ab

el

0 1 2 3 4

0 5366 39 93 0 2

1 829 593 77 0 1

2 390 128 1441 18 23

3 18 1 204 236 41

4 35 0 137 7 321

Table 4.1: Confusion matrix for DR classification on 10000 test images

Since this is a multi-class problem, these values were calculated for each class and are
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Class Sensitivity Specificity Precision F1 Score

0 0.9756 0.717 0.8084 0.8841

1 0.3953 0.9802 0.7792 0.5245

2 0.7205 0.9361 0.7382 0.7293

3 0.472 0.9974 0.9042 0.6202

4 0.642 0.9929 0.8273 0.723

Table 4.2: Performance metrics of the model on test data

presented in Table 4.2. For, calculating the global Sensitivity, Specificity, Precision and F1

Score we used a general formula:

Metric =

∑
|Classi|Metrici∑
|Classi|

where Metrici denotes the value of the metric (Sensitivity, Specificity, Precision and F1

Score) for Class i and |Classi| denotes the total number of instances of Class i. Using the

above-mentioned formula the Sensitivity, Specificity, Precision and F1 Score of our model was

found to be 0.7958, 0.8281, 0.7957 and 0.778 respectively. The summary of various performance

metrics of our model is presented in Table 4.3.

Metric Value

Validation Accuracy 81.78%

Validation Loss 0.5556

Test Accuracy 79.57%

Sensitivity 0.7958

Specificity 0.8281

Precision 0.7957

F1 Score 0.778

Table 4.3: Global performance metrics of the model on test data (multi-class)
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4.3 A Closer Look at Performance

In this section, we shall analyze the performance of our model on the test data. In addition,

some misclassified images along with the possible reasons behind misclassification will also be

discussed. Since this is a 5-class classification problem, accuracy of 79.57% is quite promising.

From our best knowledge, no other work has achieved such accuracy for a 5-class DR severity

detection task. In general, human performance for successful DR grading is around 75%. From

Table 4.1, we can see that our model is unable to correctly identify DR severity for 2,043

images. Most of these misclassifications are caused by camera artifacts, poor image quality

and wrong actual labels. We shall now discuss about the misclassifications of each class in

more details.

The model’s ability to correctly identify class-0 images is quite remarkable which is re-

flected by a sensitivity value of 97.56%. Only 39 images belonging to class-0 was wrongly

misclassified as class-1 images. However, 829 images of class 1 are wrongly classified as class

0. This is because in general, there is very little visual difference between a class-0 image and

class-1 image. The first stage of DR (class-1) usually has very few microaneurysms which are

very hard to identify even for specialists. Figure 4.5 demonstrates this scenario. Both the

images seem like a class-0 image as there are no prominent visual lesions present. However,

the left image belongs to class-0 which is classified as class-1 by our model and the right image

belongs to class-1 which is classified as class-0 by our model. A vast majority of these 829

images belong to this category where there are no visual lesions of DR present, but still, they

are graded as class-1 image. These misclassifications may have occurred because of downsam-

pling the original image, unreliable actual grading and due to the noise present in the images.

The overall performance metrics of our model are greatly affected due to these misclassifica-

tions. Many classification techniques combine these two classes as one because of these reasons.

There are 2 class-0 images predicted as class-4 images and 1 class-1 image predicted as class-4

image. From Figure 4.6a, we can see that both of the class-0 images have such poor quality

that they are almost ungradable. However, it is surprising that the image of Figure 4.6b is

actually graded as a class-1 image. Neovascularization and exudates are clearly visible in the
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(a) Class-0 image classified as class-1 image (b) Class-1 image classified as class-0 image

Figure 4.5: Very little anatomical difference between a class-0 and class-1 image

(a) Poor quality class-0 images classified as class-4 (b) Class-1 classified as class-4

Figure 4.6: Class-0 and class-1 images misclassified as class-4 images

image and as such, the image is classified as a class-4 image by our classifier.

The effect of classifying moderate/severe nonproliferative DR or proliferative DR as no

DR is much more severe than the above-mentioned cases. Our model’s performance on these

cases is quite promising. From Table 4.1, we can see that 390 images of class-2 were wrongly

misclassified as class-0. However, after examining these images, we see that many of them

have camera artifacts present like Figure 4.7a. As a result, despite the symptoms of class-2 DR

present in these images, our classifier cannot classify them properly. Some of these misclassified

images have no lesions of DR present as shown in Figure 4.7b. We assume that the actual labels

are faulty in these cases.

Among the 1000 images belonging to class-3 and class-4, 53 was wrongly classified as class-
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0 and 1 was wrongly classified as class-1. Surprisingly, some of these images had no prominent

symptoms of DR as shown in Figure 4.7c, 4.7e and 4.7h. On the other hand, there are some

rare images in the test set like Figure 4.7g. As we can see, the retina is severely damaged.

However, this type of images was not present in the training set. As a result, our classifier

cannot identify the severity level of DR. Figure 4.7d and 4.7f shows two images which were

misclassified even though visual symptoms of DR is quite conspicuous. Extensive training and

ensembling multiple models may improve the performance of the model in such cases.

To summarize, although our model could not correctly classify 2,043 images to their exact

severity level, overall performance is quite intriguing. Poor quality of the images, faulty actual

labels and indistinguishable difference between class-0 and class-1 images are the main reasons

behind these misclassifications. In the next section, we shall see the performance of our model

on some other datasets where the images are more noise-free and the actual gradings are more

consistent.

4.4 Comparison with Retrospective Models

Since most of the existing works have focused on binary classification (DR vs no DR) and used

different datasets, it is not possible to perform apples to apples comparison. Still, we tried

to compare our model with some existing studies. Hence, we had to convert our multi-class

problem to two-class problem for some comparisons. We also validated our model on two other

datasets: Messidor and E-Ophtha. By using our model on these datasets we can validate

the generalization performance of our model as well as compare it with some studies. In this

section, we shall briefly present our model’s performance as a two-class problem, our model’s

generalization capability and a comparison with some retrospective studies.

4.4.1 Two-class Performance

We converted our problem into two types of binary classification: affected (class 1,2,3,4) vs

healthy (class 0) and vision-threatening DR (vtDR) (class 2,3,4) vs referable DR (rDR) (class

0, 1). The confusion matrix for these two classifications can be seen at Table 4.4 and 4.5.
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(a) Class-2 classified as class-0 (b) Class-2 classified as class-0

(c) Class-3 classified as class-0 (d) Class-3 classified as class-0

(e) Class-3 classified as class-1 (f) Class-4 classified as class-0

(g) Class-4 classified as class-0 (h) Class-4 classified as class-0

Figure 4.7: Examples of some severe misclassifications
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Predicted

A
ct
ua

l

1 0

1 3228 1272

0 134 5366

Table 4.4: Confusion matrix for affected (class 1,2,3,4) vs healthy (class 0) classification

Predicted
A
ct
ua

l

1 0

1 2428 572

0 173 6827

Table 4.5: Confusion matrix for vtDR (class 2,3,4) vs rDR (class 0, 1) classification

We also calculated various performance metrics for these classifications and found out that

performance is high for the later classification scheme which is expected. The performance

metrics are presented in Table 4.6.

Classification Scheme Accuracy Sensitivity Specificity Precision F1 Score

Affected (1, 2, 3, 4 ) vs Healthy (0) 85.94% 0.717 0.9756 0.9601 0.8211

vtDR (2, 3, 4 ) vs rDR (0, 1) 92.55% 0.8093 0.9753 0.9335 0.867

Table 4.6: Performance metrics for two binary classification schemes

4.4.2 Generalization Capability and Comparison

We tested our model using the public E-Ophtha and Messidor databases for external validation.

We used our second binary classification scheme (vision-threatening DR vs referable DR) for

both of these databases. The E-Ophtha database contains 463 images, out of them 268 belong

to healthy classes and 195 belong to DR affected retina. Our model correctly classified 434

images, thus achieving an accuracy of 93.74%, sensitivity of 88.72% and specificity of 98.12%.

The Messidor database contains 1200 images with 297 DR affected images. Accuracy, sensitiv-

ity and specificity of our model on this dataset was 96.83%, 91.58% and 98.23%, respectively.
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In general, the performance on these databases is far more superior than the test set. This is

because Messidor and E-Ophtha databases consist of images of high quality and almost 100% of

them are gradable where Kaggle’s quality is more heterogeneous and estimated as around 75%

gradable. Our model’s remarkable performance on these databases indicates high robustness

and generalization capability of the model.

As mentioned earlier, it is very difficult to perform apples to apples comparison with the

other studies. We attempted to compare the results of our model with some of the existing

studies using the same dataset: Kaggle, Messidor and E-Ophtha. However, it is to be noted

that, although we used the same dataset for validation, some of the studies used only a subset

of the datasets. As a result, the comparison does not reflect the actual performance, rather it is

an approximation. Table 4.7 shows the comparison of our model with five existing works. Our

model was developed focusing on the 5-class DR severity level. Among the retrospective works,

only one such work (Pratt et. al. [83]) is present that is comparable with our original model.

Although they achieved a higher specificity, our model’s accuracy and sensitivity is much better

than theirs. While comparing with the other four models, we found that in general, our model

has a lower sensitivity, but a higher specificity. Had our model been originally trained for such

binary classification, we could have achieved higher sensitivity by sacrificing specificity. In

general, table 4.7 shows that our model has comparable or better results in comparison with

the state-of-the-art works of literature.
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Model
Classification

Scheme

Test/Validation

Dataset
Performance

Our Model’s

Performance

Pratt et. al. [83] 5-Class Kaggle

Accuracy: 75%

Sensitivity: 30%

Specificity: 95%

Accuracy: 79.57%

Sensitivity: 79.58%

Specificity: 82.81%

Gargeya et. al. [35] 2-Class E-Ophtha
Sensitivity: 90%

Specificity: 94%

Sensitivity: 88.72%

Specificity: 98.12%

Ramachandran et. al. [77] 2-Class Messidor
Sensitivity: 96%

Specificity: 90%

Sensitivity: 92.59%

Specificity: 98.23%

Rakhlin et. al. [84] 2-Class Kaggle
Sensitivity: 86%

Specificity: 82%

Sensitivity: 82.93%

Specificity: 97.53%

Colas et. al. [76] 2-Class Kaggle
Sensitivity: 96.2%

Specificity: 66.6%

Sensitivity: 82.93%

Specificity: 97.53%

Table 4.7: Comparison with retrospective studies
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Conclusion

This work describes the development and validation of a novel deep learning based Diabetic

Retinopathy severity detection model. There are very few works existing in the literature that

have attempted to identify the five stages of DR and to our best knowledge, none of them

has achieved better performance than our model. The major challenge was to develop such

a model that can adapt to the huge variation present in a real dataset. Finding the proper

preprocessing techniques and designing the proper network architecture along with tuning the

hyperparameters of the model was pivotal to boost the performance of the model. Another

considerable challenge was the availability of high-performance GPU for training the model.

The key strength of this study includes the use of a large heterogeneous dataset (53,000 training

images), use of large image size (512 × 512), development of a custom loss function (MAEC)

and the robust performance of our model when tested on two external validation data sets.

Some limitations still exist implying possible room for improvement. Our model misclas-

sified a significant number of DR affected images as healthy images in the test set. Although

many of these misclassifications were caused by poor image quality and noisy actual label, some

of the misclassifications were due to the model’s inability to identify the proper severity level.

Had the model been trained with more DR affected images, the performance of identifying

proper severity level might have increased by a significant margin. Recently, ensemble learning

has gained unprecedented popularity because of its ability to improve the overall performance

of a machine learning model. Ensembling multiple networks may enhance our model’s per-
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formance by some margin. Another significant improvement can be the integration of both

feature extraction and deep learning. Very recently, some works have focused on extracting

a subset of features and then using a CNN for detecting DR severity. As part of the future

plan, we hope to identify all the necessary anatomical components related to DR and then

use deep learning techniques on the features for better performance and visualization. In this

work, we have considered each eye separately. However, more often both eyes have the same

DR severity level and by blending the information of both eyes, performance can be improved

to some degree.

To conclude, this deep learning Diabetic Retinopathy severity detection system shows

very promising and robust performance. Such technology offers great potential to improve the

efficacy and accessibility of the DR screening programs, particularly in underdeveloped and

developing nations. However, further investigation is needed before clinically deploying this

system. Proper implementation of such a system coupled with telemedicine, can improve the

overall standard of eye care environments.
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