
CS105 Introduction to
Information Retrieval

Lecture: Yang Mu
UMass Boston

Slides are modified from:
 http://www.stanford.edu/class/cs276/

http://www.stanford.edu/class/cs276/
http://www.stanford.edu/class/cs276/

Information Retrieval

• Information Retrieval (IR) is finding material
(usually documents) of an unstructured
nature (usually text) that satisfies an
information need from within large
collections (usually stored on computers).

– These days we frequently think first of web

search, but there are many other cases:
• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval

Unstructured (text) vs. structured
(database) data in the mid-nineties

Unstructured (text) vs. structured
(database) data today

Basic assumptions of Information
Retrieval

• Collection: A set of documents

– Assume it is a static collection for the moment

• Goal: Retrieve documents with
information that is relevant to the user’s
information need and helps the user
complete a task

The classic search model

Collection

User task

 Info need

Query

Results

Search

engine

Query

refinement

How good are the retrieved docs?

 Precision : Fraction of retrieved docs that
are relevant to the user’s information need

 Recall : Fraction of relevant docs in
collection that are retrieved

Term-document incidence

Unstructured data in 1620

• Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

• One could get all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing
Calpurnia?

• Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near

countrymen) not feasible
– Ranked retrieval (best documents to return)

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains

word, 0 otherwise

Bigger collections

• 500K (distinct words) x 1M (documents)
matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.
– matrix is extremely sparse.

• What’s a better representation?
– We only record the 1 positions.

Inverted Index
The key data structure underlying modern
IR

Inverted index

• For each term t, we must store a list of all
documents that contain t.

– Identify each doc by a docID, a document
serial number

13

Brutus

Calpurnia

Caesar

Inverted index construction

Tokenizer

Friends Romans Countrymen

Linguistic modules

friend roman countryman

Indexer friend

roman

countryman

Friends, Romans, countrymen.

Initial stages of text processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
– We may wish different forms of a root to match

• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius

Caesar I was killed

i’ the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Indexer steps: Sort

• Sort by terms
– And then docID

Core indexing step

Indexer steps: Dictionary &
Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Doc. frequency
information is added.

Why frequency?
Will discuss later.

Query processing with an inverted
index

The index we just built

• How do we process a query?

– Later - what kinds of queries can we process?

20

Our focus

Query processing: AND

• Consider processing the query:

Brutus AND Caesar

– Locate Brutus in the Dictionary;

• Retrieve its postings.

– Locate Caesar in the Dictionary;

• Retrieve its postings.

– “Merge” the two postings (intersect the
document sets):

21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

IR System Components

• Text processing forms index words
(tokens).

• Indexing constructs an inverted index of
word to document pointers.

• Searching retrieves documents that
contain a given query token from the
inverted index.

• Ranking scores all retrieved documents
according to a relevance metric.

