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Information Retrieval 

• Information Retrieval (IR) is finding material 
(usually documents) of an unstructured 
nature (usually text) that satisfies an 
information need from within large 
collections (usually stored on computers). 
 
– These days we frequently think first of web 

search, but there are many other cases: 
• E-mail search 
• Searching your laptop 
• Corporate knowledge bases 
• Legal information retrieval 

 



Unstructured (text) vs. structured 
(database) data in the mid-nineties 



Unstructured (text) vs. structured 
(database) data today 



Basic assumptions of Information 
Retrieval 

• Collection: A set of documents 

– Assume it is a static collection for the moment 

 

• Goal: Retrieve documents with 
information that is relevant to the user’s 
information need and helps the user 
complete a task 



The classic search model 
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How good are the retrieved docs? 

 Precision : Fraction of retrieved docs that 
are relevant to the user’s information need 

 Recall : Fraction of relevant docs in 
collection that are retrieved 

 



Term-document incidence 



Unstructured data in 1620 

• Which plays of Shakespeare contain the words Brutus 
AND Caesar  but NOT Calpurnia? 
 

• One could get all of Shakespeare’s plays for Brutus 
and Caesar, then strip out lines containing 
Calpurnia? 
 

• Why is that not the answer? 
– Slow (for large corpora) 
– NOT Calpurnia is non-trivial 
– Other operations (e.g., find the word Romans near 

countrymen) not feasible 
– Ranked retrieval (best documents to return) 

 



Term-document incidence matrices 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains 

word, 0 otherwise 



Bigger collections 

 

• 500K (distinct words) x 1M (documents) 
matrix has half-a-trillion 0’s and 1’s. 

 

• But it has no more than one billion 1’s. 
– matrix is extremely sparse. 

 

• What’s a better representation? 
– We only record the 1 positions. 

 



Inverted Index 
The key data structure underlying modern 
IR 

 

 



Inverted index 

• For each term t, we must store a list of all 
documents that contain t. 

– Identify each doc by a docID, a document 
serial number 
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Caesar 



Inverted index construction 

Tokenizer 

Friends Romans Countrymen 

Linguistic modules 

friend roman countryman 

Indexer friend 

roman 

countryman 

Friends, Romans, countrymen. 



Initial stages of text processing 

• Tokenization 
– Cut character sequence into word tokens 

• Deal with “John’s”, a state-of-the-art solution 

• Normalization 
– Map text and query term to same form 

• You want U.S.A. and USA to match 

• Stemming 
– We may wish different forms of a root to match 

• authorize, authorization 

• Stop words 
– We may omit very common words (or not) 

• the, a, to, of 



Indexer steps: Token sequence 

• Sequence of (Modified token, Document ID) pairs. 

I did enact Julius 

Caesar I was killed  

i’ the Capitol;  

Brutus killed me. 

Doc 1 

So let it be with 

Caesar. The noble 

Brutus hath told you 

Caesar was ambitious 

Doc 2 



Indexer steps: Sort 

• Sort by terms 
– And then docID  

Core indexing step 



Indexer steps: Dictionary & 
Postings 

• Multiple term entries 
in a single document 
are merged. 

• Split into Dictionary 
and Postings 

• Doc. frequency 
information is added. 

Why frequency? 
Will discuss later. 



Query processing with an inverted 
index 



The index we just built 

• How do we process a query? 

– Later - what kinds of queries can we process? 
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Our focus 



Query processing: AND 

• Consider processing the query: 

Brutus AND Caesar 

– Locate Brutus in the Dictionary; 

• Retrieve its postings. 

– Locate Caesar in the Dictionary; 

• Retrieve its postings. 

– “Merge” the two postings (intersect the 
document sets): 

21 

128 

34 

2 4 8 16 32 64 

1 2 3 5 8 13 21 

Brutus 

Caesar 



IR System Components 

• Text processing forms index words 
(tokens). 

• Indexing constructs an inverted index of 
word to document pointers. 

• Searching retrieves documents that 
contain a given query token from the 
inverted index. 

• Ranking scores all retrieved documents 
according to a relevance metric. 

 


