CS105 Introduction to
Information Retrieval

Lecture: Yang Mu
UMass Boston

Slides are modified from:
http://www.stanford.edu/class/cs276/



http://www.stanford.edu/class/cs276/
http://www.stanford.edu/class/cs276/

Information Retrieval

» Information Retrieval (IR) is finding material
(usually documents) of an unstructured
nature (usually text) that satisfies an
information need from within large
collections (usually stored on computers).

— These days we frequently think first of
, but there are many other cases:



Unstructured (text) vs. structured
(database) data in the mid-nineties

250 -
200 -
150 -
B Unstructured
100 - B Structured
50 -
0 _

Data volume Market Cap



Unstructured (text) vs. structured
(database) data today

250 -
200 -
150 -
B Unstructured
100 - B Structured

50 -

Data volume Market Cap



Basic assumptions of Information
Retrieval

» Collection: A set of documents
— Assume it 1s a static collection for the moment

« (Goal: Retrieve documents with
information that is relevant to the user’s
information need and helps the user
complete a task



The classic search model




How good are the retrieved docs?

: Fraction of retrieved docs that
are relevant to the user’s information need

= Recall : Fraction of relevant docs in
collection that are retrieved



Term-document incidence



Unstructured data in 1620

« Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

* One could get all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing
Calpurma’

* Why is that not the answer?
— Slow (for large corpora)
— NOT Calpurnia is non-trivial

— Other operations (e.fg., find the word Romans near
countrymen) not feasible

— Ranked retrieval (best documents to return)



Term-document incidence matrices

Antony and Cleopatra  Julius Caesar The Tempest  Hamlet Othello Macbeth

Antony 1 1 0 0 1
Brutus
Caesar

Calpurnia

Cleopatra

mercy

L S = T = T Sy Y
O O O B Bk
= B O O O O
P, PO O B
R B O O B O O
O B O O F» O

worser

1 if play contains
word, O otherwise




Bigger collections

* 500K (distinct words) x 1M (documents)
matrix has half-a-trillion 0’s and 1’s.

e But it has no more than one billion 1’s.
— matrix is extremely sparse.

 What'’s a better representation?
— We only record the 1 positions.



Inverted Index

The key data structure underlying modern
IR



Inverted index

* For each term t, we must store a list of all
documents that contain t.

— Identify each doc by a docID, a document
serial number

Brutus

Caesar

Calpurnia

11| —
11| —
11| —

2 11| 31| 45]173]174
2 516 | 16[ 57132
31| 54]101




Inverted index construction

Documents to
be indexed

Token stream

|

Friends, Romans, countrymen.

[ Tokenizer }

|

Modified tokens

Inverted index

Friends Romans Countrymen
Linguistic modules W
1 friend roman countryman
[ Indexer ] friend > | 24—
1 roman m—— > | 12—
countryman m——>|13 16




Initial stages of text processing

Tokenization

— Cut character sequence into word tokens
« Deal with “John’s”, a state-of-the-art solution

Normalization

— Map text and query term to same form
* You want U.S.A. and USA to match

Stemming

— We may wish different forms of a root to match
 authorize, authorization

Stop words

— We may omit very common words (or not)
 the, a, to, of



Indexer steps: Token sequence

» Sequence of (Modified token, Document ID) pairs. " e

glr?act :II

julius 1

caesar 1

| 1

Kiled :

1he :II

capitol 1

brutus 1

DOC 1 DOC 2 ﬁ :lecj 1

ot 5

it 2

be 2

| did enact Julius S [ it 5w et baesar 5

Caesar | was killed Caesar. The noble noble 2

BI’ the (Ii'?lpgd; Brutus hath told you rath :
rutus killed me. e 0

Caesar was ambitious o 2

caesar 2

was 2

ambitious 2



Indexer steps: Sort

 Sort by terms Term doD| Term dociD
. ambitious 2

— And then docID did 1 be 5
enact 1 brutus 1

Julius 1 brutus 2

caesar 1 capitol 1

' 1 caesar 1

was 1 caesar 2

killed 1 caesar 2

4 i 1 did 1

the 1 enact 1

° ° capitol 1 hath 1
Core indexing stetp ortue o 1
me 1 * i 1

SO 2 it 2

let 2 julius 1

it 2 killed 1

be 2 killed 1

with 2 let 2

caesar 2 me 1

the 2 noble 2

noble 2 o] 2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2



Indexer steps: Dictionary &
Postings

term doc. freq. ostings lists

=]

* Multiple term entries & ambitious [ 1] —
in a single document anbiious 2 be | 1 -
are.m.erged.. . s ; brutus | 2 | - [ ~[2]

 Split into Dictionary canito 1 capitol [ 1 | -
and Postings caosar ! caesar | 2 - [=[2]

caesar H

» Doc. frequency cacsar - L 5 T

information is added. enact : — T 5

rath :II ' 1 . j

! ! i1 — [1]

;t‘ 5 it | 1] - [2]

e 1 ivs 1)~ L

killed 1 killed | 1 — |1

let 2 let | 1 —

me 1 ]

noble 2 me | 1 — ;

SO 2 noble 1‘ — i

f E the : o] 1 - [2|
told 2 the | 2 — |1 —>

you 2 5 |

W 1 told | 1 — i

Why frequency? W_g: > ~ 2
Will discuss later. with 2 was | 2 - 1]

with | 1 | — 2]




Query processing with an inverted
index



The index we just built

« How do we process a query? <= Ourfocus

— Later - what kinds of queries can we process?



Query processing: AND

» Consider processing the query:
Brutus AND Caesar

— Locate Brutus in the Dictionary;

 Retrieve its postings.

— Locate Caesar in the Dictionary;

 Retrieve its postings.

— “Merge” the two postings (intersect the

document sets):
> 8
>3

=

2

14

16

" 32

| 64

—>

128

1

" 2

"D

" 8

13

21

>

34

Brutus
Caesar



IR System Components

 Text processing forms index words
(tokens).

 Indexing constructs an inverted index of
word to document pointers.

» Searching retrieves documents that
contain a given query token from the
inverted index.

« Ranking scores all retrieved documents
according to a relevance metric.




