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1. The Least Squares problem 3. Motivation
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Slow! Optimal passes the mean, Use mean constraint to leverage SGD Projection close view in each step
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Linear regression Remarks: 2
1. performs consistently better than SGD in terms of batch optimal. 2. has O(log T) regret bound R;(T) < pye (1 + logT) 3. extensible.

4. Algorithm

CSGD:
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W;,, = arg miny, - 2.1 > ly; — w' x;]||5, s,t. w' X; = y;. The update rule w;,; = P.(W; —n:g;) + 1, where P, = I

WAIT! Is P, € R4*4? YES, but it is rank ONE!
Therefore, we still have a O(d) time complexity algorithm each iteration: Wey1 = W — 1 g — ft(ff(wt — r]tgt))/HftH% + r,.

Note: Any algorithm with time complexity greater than O(nd) 5. Experiments
is not applicable in large scale high dimension cases.
Stochastic Gradient Descent (SGD) with O(d) time each iteration heti
: . . Obtimizats ¢ Synthetic
is an appealing approach, which takes the form ptimization dataset
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where [(w, x;,y;) = > ly; — wlx;||5 is the loss function at step i,
denoted as [(w) for short. e
SGD date r( Ie) ic Classification g £, 1\ 1 MNIST
u ule is:
P B Study dataset
Wii1 = We — NGt ﬁ [—
where g, = al(w). S = SO I e R N (g I o
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212 misclassified samples 1248 misclassified samples
in 3.38 seconds in 112.47 seconds
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