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Abstract

The ultimate goal of distance metric learning is to incorporate abundant discrimi-
native information to keep all data samples in the same classclose and those from
different classes separated. Local distance metric methods can preserve discrim-
inative information by considering the neighborhood influence. In this paper, we
propose a new local discriminative distance metrics (LDDM)algorithm to learn
multiple distance metrics from each training sample (a focal sample) and in the
vicinity of that focal sample (focal vicinity), to optimizelocal compactness and
local separatiblity. Those locally learned distance metrics are used to build local
classifiers which are aligned in a probabilistic framework via ensemble learning.
Theoretical analysis proves the convergence rate bound, the generalization bound
of the local distance metrics and the final ensemble classifier. We extensively
evaluate LDDM using synthetic datasets and large benchmarkUCI datasets.

Keywords: Local learning, distance metrics learning.

1. Introduction

Distance metric learning plays a crucial role in metric-related pattern recogni-
tion tasks including K-means, K-Nearest Neighbors, and kernel-based algorithms
such as SVMs [19, 4, 5, 23, 25]. The learning task falls into two categories: un-
supervised and supervised distance metric learning. In supervised distance metric
learning [21], the ultimate goal is to incorporate the abundant discriminative in-
formation in distance metric learning to keep all the data samples in the same
class close and those from different classes separated. Zhang et al. have shown
that a distance metric incorporating discriminative information from labeled data
usually outperforms the standard Euclidean distance in classification tasks [24].
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Supervised distance metric learning can be further dividedinto global and lo-
cal distance metric learning. The first step is to learn a global distance metric
from training data to satisfy all pairwise constraints simultaneously [26, 20]. The
most representative work is the Xing’s algorithm [20], which learns a distance
metric on a global scale that minimizes the distance betweendata pairs according
to the equivalence constraints while separating data pairsfrom each other accord-
ing to the inequivalence constraints. If data classes exhibit multimodal distribu-
tions, equivalence or inequivalence constraints from different data distributions
may conflict with each other. Therefore, it is difficult to satisfy all the constraints
on a global level. Local distance metric learning is introduced to cope with this
problem by considering the locality of data distribution [15, 18, 9]. These local al-
gorithms only consider neighboring pairwise constraints and avoid adopting those
conflicting constraints.

All aforementioned approaches are all trying to learn a single metric on all
data samples. The deficiencies of learning a single metric include: 1) a single
metric is likely inappropriate for all training samples; 2)a single local metric may
be easily influenced by noisy samples; 3) a single global metric cannot deal with
the multimodal distribution problem. It is recommended to learn multiple metrics
to describe different localities of training samples [10, 18, 6].

In this paper, we propose a multiple distance metric approach, the Local Dis-
criminative Distance Metrics (LDDM) algorithm, from a new perspective. We
learn a set of local discriminative distance metrics from each training sample (de-
noted as a focal sample), and in the vicinity of that focal sample (denoted as the
focal vicinity), to effectively optimize local compactness and local separatiblity.
Those locally learned distance metrics are used to build local classifiers which
are aligned in a probabilistic framework via ensemble learning. The LDDM al-
gorithm makes up the deficiency of the existing multiple distance metric meth-
ods and differs from them in the following aspects: 1) where DANN [10] uses
the optimization process of LDA, LDDM does not need to calculate the inverse
of a matrix and hence avoids the small sample size problem; 2)unlike DANN
and ADAMENN [6], LDDM does not have the adaptive iterative process, and
guarantees a closed form solution; 3) once the training model is learned, the test
computation complexity isO(n) for LDDM, while DANN and ADAMENN have
the same computation complexity in training and test process (i.e., DANN has
computation complexity ofO(nd3), wheren is the dataset size andd is the fea-
ture dimension ); 4) mLMNN [18] requires disjoint clusters on training samples to
train multiple distance metrics, while LDDM does not require clusters for training
samples.
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The proposed LDDM method consists of three key components.
1) Focal vicinity extraction. For each training sample, we extract a focal

vicinity to learn a local discriminative distance metric toensure all the simi-
lar/dissimilar samples fall into/exclude from the vicinity of each focal sample.
This focal vicinity consists of the focal sample, its same class neighborhood, and
its dissimilar class neighborhood.

2) Local distance metrics learning. The LDDM algorithm divides the train-
ing space into a set of focal vicinities and learns a local optimized distance metric
at each focal vicinity to keep training samples either closeto or distant from a
focal sample.

3) Local classifier ensemble. We utilize classifier ensemble learning to build
upon locally learned distance metrics for the final prediction. To overcome the
over-fitting problem, the base classifiers of the ensemble are aligned in a proba-
bilistic framework to form an adjustable model according toeach test sample to
significantly reduce the influence of noise samples.

We theoretically analyze the correctness of the proposed LDDM method and
explain why multiple-distance-metrics approaches shouldperform superiorly to
single-distance-metric approaches while dealing with noisy datasets. We define a
new concept called local-domain-based VC-dimension and prove the convergence
rate bound for a local distance metric, the risk bound of eachlocal distance metric,
and the risk bound of the ensemble local classifiers. We extensively evaluate the
LDDM algorithm with experiments on synthetic datasets and the real-world UCI
datasets.

The rest of the paper is organized as follows: related work isdiscussed in
Section 2. Section 3 explains how to learn local discriminative distance metrics.
The ensemble methods are discussed in detail in Section 4, and theoretical analysis
is provided in Section 5. Experimental studies are discussed in Section 6. Section
7 concludes the paper.

2. Related Works

In general, supervised distance metrics can be categorizedinto global and local
approaches. Local approaches are further classified as single-metric and multiple-
metric approaches. Our proposed LDDM method is in the familyof multiple local
distance metrics. Figure 1 briefly illustrates the categories of the state-of-the-art
distance metric learning methods and their relationships to the proposed LDDM
algorithm.
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Figure 1: The categories of the state-of-the-art distance metric methods and their relationships to
the proposed LDDM method.

The global approaches try to keep all the samples in the same class close
together while separate those from different classes. Xing’s algorithm [20] is
the most representative global method which optimizes these equivalence and in-
equivalence constraints simultaneously using convex optimization. The advantage
of using global approaches is that it may easily capture the distributions of differ-
ent classes if all samples in the same class obey the same distribution, however,
global approaches may fail to learn the appropriate distance metrics if data ex-
hibits a multimodal distribution.

Local approaches use neighborhood information to deal withthe multimodal
distribution problem. Local Fisher Discriminant Analysis(LFDA) [15] assigns
higher weights to the neighborhood pairwise constraints according to locality
information. Large Margin Nearest Neighbor (LMNN) [18] utilizes neighbor-
hood constraints to learn a distance metric with a large margin for inequivalence
constraints. Yanget al. proposed a probability approach [22] to optimize lo-
cal pairwise constraints. Goldbergeret al. [9] utilize a stochastic variant of
KNN classification to compute the expected leave-one-out classification error.
All neighborhood-based single local distance metric methods discussed above
may mistakenly consider neighboring noise samples and easily overlook the entire
structure of the training samples.

If one single distance metric is used to describe the whole training space, the
tradeoff between the learning system and the number of samples may limit the
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learning performance [16]. Many methods adopt multiple distance metrics instead
of a single distance metric. Weinbergeret al. [18] proposed the multiple Large
Margin Nearest Neighbor metrics (mLMNN) method to cluster training samples
and then apply different distance metrics to measure different clusters. Discrim-
inant Adaptive Nearest Neighbor classification (DANN) [10]performs like Liner
Discriminant Analysis (LDA) in each local distance metric for each test sample.
Domeniconiet al. proposed the local ADAptive MEtric Nearest-Neighbor algo-
rithm (ADAMENN) [6], which learns a local distance metric for each test sample
to have neighborhoods elongating along less relevant feature dimensions and con-
stricting along most influential ones. Our proposed LDDM method also belongs
to this category. LDDM differs from all above by learning a distance metric on
each training sample and reducing noise samples’ influence with an ensemble ap-
proach. Another relevant work is that Fromeet al. [8] proposed a patched-based
distance on image classification which also trains an SVM classifier on each train-
ing sample. This method is specifically designed for different image feature types
and differs from all the other distance metric based approaches described in Figure
1. Global and local distance metric approaches have been successfully employed
in Learning Vector Quantization. Schneideret al. successfully learn adaptive dis-
tance metrics between test samples and prototypes in LVQ [13, 14] to achieve
good performance.

The proposed LDDM method introduces the concept of the locallearning
framework [2] [16] into distance metric learning. LDDM creates an adjustable
model, using a set of locally learned distance metrics, instead of one single met-
ric, to best estimate the vicinity of each focal sample. LDDMuses neighborhood
information to extract discriminative information and alllocal distance metrics are
aligned probabilistically for the final prediction to make up for the deficiency of
single local distance metric approaches [3].

3. Learning Discriminative Local Metrics

We propose a new local discriminative distance metric method over a focal
vicinity of the training space by maximizing local discriminative information for
each training sample.

A generic classification task can be stated as follows: givena set ofd-dimensional
training samplesX = [x1,x2, · · · ,xn] and their associated labelsY = [y1,y2, · · · ,yn],
we need to estimate a model to classify unknown test samples.
The distance metricA is in the form of

dA(a,b) = ‖a− b‖A =
√

(a− b)TA(a− b), (1)
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whereA is positive semi-definite, and parameterizes a family of distances [20].
Technically, it allows pseudometrics, such thatdA(a,b) = 0 does not imply
a = b. ReplacingA with WTW in Equation (1) based on the Cholesky de-
composition, we get:

dA(a,b) =
√
(a− b)TWWT (a− b)

=
∥∥WT (a− b)

∥∥ . (2)

What we want to learn is the projection matrixW in Equation (2) to make
a focal samplexi close to the training samples sharing the same class label and
far away from the training samples having different labels.To better keep the
local discriminative information, we construct a focal vicinity instead of using all
of the training data. For the focal samplexi, the focal vicinityXi containsk1
nearest neighbors in the same class andk2 nearest neighbors in the different class,
formally,Xi = [xi,xi

1̃
, · · · ,xi

k̃1

,xi1 , · · · ,xik2
], wherek̃1 represents the index for

samples from the same-class of the focal sample.
In a focal vicinity, the distances between the focal sample and neighborhood

samples in the same class should be as small as possible. Simultaneously, the
distances between the focal sample and neighborhood samples in a different class
are expected to be as large as possible. We define the objective function to satisfy
such a criterion:

argmin
Ai

(
k1∑

p=1

d2
Ai
(xi,xip̃)− β

k2∑

q=1

d2
Ai
(xi,xiq)

)
, (3)

whereβ is a multiplicative factor to balance the influence of equivalence con-
straints and inequivalence constraints with respect to thefocal sample. By defin-
ing the coefficient vector

wi =




k1︷ ︸︸ ︷
1, · · · , 1

k2︷ ︸︸ ︷
−β, · · · ,−β


 (4)

6



According to Equation (4) and the construction ofXi, equation (3) is reduced to:

argmin
Ai

(
k1+k2∑

j=1

d2
Ai
(Xi{1},Xi{j + 1})(wi)j

)
(5)

=argmin
Wi

(
k1+k2∑

j=1

‖Wi (Xi{1} −Xi{j + 1}) ‖22(wi)j

)

=argmin
Wi

tr
(
WT

i XiLiX
T
i Wi

)
,

whereXi{j} is thejth column in the focal vicinity matrixXi, Ai is decided by
Wi based on Equation (2) andLi ∈ R

(k1+k2+1)×(k1+k2+1) is given by

Li =

[∑k1+k2
j=1 (wi)j −wT

i

−wi diag(wi)

]
. (6)

To make the projection matrixWi learned from the focal vicinityXi linear
and orthogonal, we imposeWT

i Wi = Id, whereId is a d × d identity matrix.
Equation (5) is then deformed to:

min tr
(
WT

i XiLiX
T
i Wi

)
s.t.WT

i Wi = Id. (7)

Solutions of Equation (7) can be obtained with the standard eigen-decomposition:

XiLiX
T
i u = λu. (8)

Let the column vectorsu1,u2, · · · ,ud be the solution of Equation (8), ordered
according to eigenvaluesλ1 < λ2 < · · · < λd. The optimal projection matrixWi

is then given by:Wi = [u1,u2, · · · ,u′
d], whered′ < d. OnceWi is calculated,

the local discriminative distance metricAi with respect to focal samplexi can be
calculated using Equation (2).

4. A Probabilistic Approach for Classifiers Ensemble

Given an unknown test samplexj, let o be the class label of focal samplexi,
the number of possible classes isNo, the probability ofxj belonging to the class
o, Pri(o|xj), using the local distance metricAi of theith focal samplexi is

Pri(o|xj) =

{∑n
k=1

{θ(xk∈V(xi))θ(yk=o)}
∑n

k=1
θ(xk∈V(xi))

if xj ∈ VK(xi)
1
No

otherwise
(9)
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whereVK(xi) is the local vicinity of training samplexi which containsK nearest
neighbors ofxi with respect to the learned local distance metricAi. θ(·) is an
indicator function that returns 1 when the input argument istrue, and 0 otherwise.
θ(xj ∈ VK(xi)) = 1 indicatesxj is amongK nearest neighbors ofxi with respect
to Ai, which is calculated in Equation (8). Otherwise, the focal samplexi has no
influence on the unknown test samplexj. V(xi) defines a circular clique whose
center is the focal samplexi. The radiusr is the distance between the focal sample
and the test samplexj under the learned local distance metricAi. Probability
Pri(o|xj) is calculated as purity of circular cliqueV(xi). Please notice that we
propose a new prediction method in Equation (9) instead of the traditional KNN
rules because of our objective function defined in Equation (3). We expect vicinity
of the focal sample to contain as many similar samples as possible. In this case, if
a test sample is not in theK nearest neighbors of the focal sample, it is expected
not to be similar to the focal sample. The metric is expected to pull the samples
with the same/different label as the focal samplexi closer to/away fromxi. Note
that if the test samplexj is the closest sample toxi in VK(xi), the probability is
1 for the test samplexj to be assigned as the same class label asxi.

As illustrated in Figure 2, because the clique of the red circleV(xi) contains a
focal sample, four red circles and one blue square, probability for the test sample
belonging to the red circle class is5

6
.

Focal sample

r

Figure 2: Local distance metric prediction. Red circles andblue squares belong to two classes.
The yellow triangle is an unknown test sample. The red circlein the center is the focal samplexi.
Figure illustrates the local distance metric spaceAi learned from the focal sample and its vicinity.
The solid-line circle isVK(xi) and the dashed-line circle representsV (xi). The probability for
the yellow triangle belonging to the red circle class is the number of red circles inV (xi) divided
by total number of training samples inV (xi).

We can obtain a set of locally learned classifiers described in different data
space, using the local classifier defined in Equation (9) under each local distance
metric. This approach makes these local classifiers independent of each other to
facilitate the alignment operation. Each obtained local distance metric best mea-
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sures the vicinity of the focal sample and places the same class samples close to
the focal sample and the different-class samples far away from the focal sample.
To make the training model adjustable according to different test samples, we add
a weight coefficientφ when combiningn local predictionPri(o|xj) for a given
test samplexj. Weightφ is decided by the distance between the test sample and
focal sample. A final prediction is made by aligningn outputs in a probabilistic
framework. The alignment process is formally defined as

Pr(o|xj) =
1

n

n∑

i=1

φiPri(o|xj), (10)

wheren is the number of classifiers andPri(o|xj) is the probability of samplexj

belonging to classo predicted by theith local classifier. To simplify this process,
we give all the training samples equal weights by lettingφi = 1. This makes
the ensemble process behave as an equal weight voting. The class label with the
highest probability is the final label of test sample.

An overall summary of our local discriminative distance metrics (LDDM)
method is described in Algorithm 1. In training procedure, we need to calculate
Wi by decomposing a(k1 + k2 + 1) × (k1 + k2 + 1) matrixXiLiX

T
i in Equa-

tion (8) for each focal samplexi which has time complexityO(n(k1 + k2 + 1)3).
When testing an unknown sample, it is linear timeO(n) to the training set size,
since all the local distance metrics were already obtained in the training phase.
The test time complexity only depends on Equation (9) and Equation (10) which
just ensemble the results ofn training samples using pre-calculated local distance
metrics. Note that the projection for all the training samples to the distance metric
space can be conducted in the training phase. Despite the high training cost, we
can parallelize the proposed model to make it scalable for large-scale problems.
Local classifiers could also be learned offline in advance.

5. Theoretical Analysis

We now theoretically prove the stability and efficiency of the proposed LDDM
method by analyzing the convergence rate of the local discriminative distance
metric and generalization bound of the local metrics and classifiers ensemble.

We assume that all the samples and their labels can be represented by an un-
known distributionF (x,y), defined by pairs(x,y) ∈ R

d × R
1. The pair(x,y)

is denoted asz for short. Modelx → f(x, α) of the outputy is controlled by
a parameterα ∈ Λ. f(x, α) refers to the local classifier defined in Equation (9)
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Algorithm 1 LDDM: a multiple distance metrics approach for classification
Training procedure

1: for each training samplexi do
2: Get the focal vicinityXi for xi

3: Build the discriminative matrixLi using Equation (6)
4: solve the projection matrixWi by Equation (8)
5: end for

Test procedure

1: for each test samplexj do
2: Calculate the probability forxj belonging to classo when using the training

samplexi as the focal sample,Pri(o|xj) by Equation (9)
3: Ensemble all the predictions by different training samplesaccording to

Equation (10)
4: end for

for LDDM. The0− 1 loss functionQ(y, f(x, α)) (orQ(z, α) for short) measures
the quality of estimation byf(x, α) for outputy ∈ {−1,+1}. The global risk
function is defined as

R(α) =

∫
Q(z, α)dF (z) (11)

over all functions{f(x, α), α ∈ Λ}, and samples{zi}ni=1 are independently drawn
from the unknown distributionF (z).
The empirical risk function with respect to the training samples{zi}ni=1 is

Remp(α) =
1

n

n∑

i=1

Q(zi, α). (12)

In local algorithms, the local risk functionR(α,x0) depends on the focal sample
x0 and the vicinity ofx0. The nonnegative locality functionD(x,x0, A), which
embodies vicinity information of the focal sample, is defined as

D(x,x0, A) =

{
1 if ‖x− x0‖A ≤ r

0 otherwise,
(13)

whereA is the distance metric obtained by lettingx0 be the focal sample and
r is the soft threshold of the locality function, which is defined by the distance
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between the focal sample and the the test sample, and illustrated in Figure 2 for
LDDM, whereK is number of neighbors to be considered into the vicinity. The
norm of locality function is defined as

‖D(x0, A)‖ =

∫
D(x,x0, A)dF (z). (14)

Based on the definition of the locality function, samples and labels can be rep-
resented by a new distributionF (z, A) corresponding to local distance metricA.
The distribution is defined as

∫

A

dF (z, A) =

∫

A

D(x,x0, A)

‖D(x0, A)‖
dF (z). (15)

The local distance metric-based unnormalized local risk function is defined as:

R(α,A,x0) =

∫
Q(z, α)D(x,x0, A)dF (z), (16)

and the local empirical risk function is based on the summation over all focal
samples, which is defined as:

Remp(α,A,x0) =
1

n

n∑

i=1

Q(zi, α)D(xi,x0, A). (17)

Next, we give the bound on the convergence rate of a local classifier, risk bound
of one local classifier and risk bound of the ensemble of a set of local classifiers.

5.1. Convergence Rate of Local Classifier
In this paper, we define concept of local domain-based VC-dimension, which

is a VC-dimension of a set of functions under a local vicinity.Convergence rate
bound of the global risk function only depends on the number of training samples
and the VC-dimension that measures the complexity and the expressive power of
the set of loss functions{Q(z, α), α ∈ Λ}.

In the existing distance metric learning methods, all the VC-dimension and
loss functions are under the same distance metric. Thus these distance metric
methods obey the bound in the following theorem [16].

Theorem 5.1. Let {Q(z, α), α ∈ Λ} be a set of nonnegative real functions with
VC-dimension h. Then the following bound holds

P



sup

α∈Λ

R(α)−Remp(α)√∫
Q2(z, α)dF (z)

> ǫa(ǫ)



 < 12

(
2ne

h

)h

exp

{
−ǫ2n

4

}
, (18)
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where

a(ǫ) =

√
1− 1

2
ln ǫ.

Theorem 5.1 shows the bound for the test errorRemp(α). The left part is a prob-
ability corresponding to the difference between training error R(α) and test error
Remp(α). The probability approaches0 when the test error and the training error
have an acceptable difference This probability has been proved to be converged
to 0 when there are enough training samples [16]. For our local discriminative
distance metrics algorithm, the loss functions are different according to the focal
samples since they obey their own local distance metrics obtained from the focal
samples. To obtain the convergence rate of a local classifier, we assume that the
loss function with the local distance metric satisfy the following mild condition:

sup
α,A

√∫
Q2(z, α)dF (z, A)

∫
Q(z, α)dF (z, A)

< τ. (19)

It means that the probability thatsupα Q(z, α) exceeds some value will decrease
quickly with the value increasing. Valueτ determines how fast it decreases. We
can get the following theorem for convergence rate of local risk function which is
bounded in the term of local domain-based VC-dimensionh∗.

Theorem 5.2. Let the vicinity ofx0 be under the local distance metricA and the
set of loss functions{Q(z, α)D(x,x0, A), α ∈ Λ} have the local domain based
VC-dimensionh∗. Then the following bound holds:

P

{
sup
α∈Λ

R(α,A,x0)−Remp(α,A,x0)

R(α,A,x0)
>

τǫa(ǫ)√
‖D(x0, A)‖

}
< 12

(
2Ke

h∗

)h∗

exp

{
−ǫ2K

4

}

(20)

where

a(ǫ) =

√
1− 1

2
ln ǫ.

Proof Theorem 5.1 implies the following inequality:

P



sup

α∈Λ

R(α,A,x0)−Remp(α,A,x0)√∫
Q2(z, α)D2(x,x0, A)dF (z)

> ǫa(ǫ)



 < 12

(
2Ke

h∗

)h∗

exp

{
−ǫ2K

4

}
,

(21)
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whereK is the size of the focal vicinity defined in Equation (9). According to
Equation (13) and Equation (15), we have

√∫
Q2(z, α)D2(x,x0, A)dF (z)

≤
√∫

Q2(z, α) ‖D(x0, A)‖ dF (z, A). (22)

According to Equation (15), (16) and (19), we have
√∫

Q2(z, α)dF (z, A) < τ

∫
Q(z, α)dF (z, A) = τ

R(α,A,x0)

‖D(x0, A)‖
. (23)

According to Equation (22) and (23), we have
√∫

Q2(z, α)D2(z,x0, A)dF (z) < τ
R(α,A,x0)√
‖D(x0, A)‖

. (24)

The inequality Equation (20) can be obtained from Equations(21) and (24) im-
mediately. This completes the proof.

Theorem 5.1 gives the convergence rate for the approaches based on a single
distance metric in Equation 2. Theorem 5.2 gives the convergence rate using the
local domain based VC-dimension for a single distance metricAi in Equation 3.
In the following theorem, we show the risk bound of a local classifier according
to Theorem 5.2.

5.2. Bound of Local Classifiers

For local classifiers learned on local distance metrics according to Equation 9,
we have the following theorem.

Theorem 5.3. Let the distance metric of the vicinity ofx0 be A. The set of
loss functions{Q(z, α)D(x,x0, A), α ∈ Λ} have the local domain-based VC-
dimensionh∗. The following inequality holds for allα ∈ Λ with probability1−η:

R(α,A,x0) ≤
1

‖D(x0, A)‖
·
[
Remp(α,A,x0) + ν

(
1 +

√
1 +

4

ν
Remp(α,A,x0)

)]

(25)
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where

ν = 2
(h∗) {ln[2K/(h∗)] + 1} − ln η

24

K

Proof In Equation (20), letη/2 denote the right-side.
By solving the equation

12

(
2Ke

h∗

)h∗

exp{−ǫ2K

4
} = η/2 (26)

and replacing the result into Equation (20), we obtain the following inequality
with probability1− η/2.

R(α,A,x0) ≤Remp(α,A,x0) + ν

(
1 +

√
1 +

4

ν
Remp(α,A,x0)

)
, (27)

where

ν = 2
(h∗) {ln[2n/(h∗)] + 1} − ln η

24

n
.

By defining the normalized empirical risk for the vicinity ofx0

R(α,A,x0) =

∫
Q(z, α)

D(x,x0, A)

‖D(x0, A)‖
dF (z),

we can get Equation (25) by dividing both sides of inequalityEquation (27) by
‖D(x0, A)‖. This completes the proof.

5.3. Bound of Classifiers Ensemble
We now further explain the generalization bound of the classifiers ensemble

method discussed in Section 4. Since every training sample will be treated as
a focal sample in turn,n samples drawn from the unknown distributionF (x,y)
can generaten local distance metrics. For each unknown test samplex, the base
classifierfi(x, Ai) ∈ H can be obtained by Equation (9), whereAi is the local
distance metric learned by focal sample(xi, yi), which embodies local discrimi-
native information and the size ofH is n. According to the alignment procedure
in Equation (10), we define the final classifier after ensembleas

g(x) = sign(
n∑

i=1

fi(x, Ai)). (28)
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In Equation (28),g(·) gives a wrong prediction on the sample(x,y) only if
yg(x) ≤ 0. fi(x, Ai) is theith element off(x,A). The margin function is given
by yg(x). Equation (28) is fundamentally a majority vote on all base classifiers.
[12] has shown a bound which applies to all majority-vote classifier. Inspired by
this, we show the following theorem which states that the generalization error of
the ensembled classifier can be bounded in terms of the numberof training sam-
ples with the margin below a thresholdθ and in the capacity of base classifier
spaceH.

Theorem 5.4. Let S be a set ofn samples independently drawn from the distri-
butionF (x,y) overX × {−1,+1}. Assume that the base-classifier spaceH is
finite, and letσ > 0. Then with probability at least1− σ over the random choice
of the training setS, every weighted average functiong(·) satisfies the following
bound for allθ > 0:

PF (yg(x) ≤ 0) ≤PS(yg(x) ≤ θ) +O

(
1√
n

(
log n log |H|

θ2
+ log(1/σ)

)1/2
)
.

(29)

For detailed proof please refer to Theorem 1 in [12].

6. Experiments

We compare the proposed LDDM against other state-of-the-art distance met-
ric learning algorithms, including the representative single global distance met-
ric approach: Xing’s method (Xing) [20], two latest single local distance metric
approaches: Local Fisher Discriminate Analysis (LFDA)[15] and Large Margin
Nearest Neighbor-based distance metric (LMNN)[18], the state-of-the-art multi-
ple local distance metrics approaches: multiple Large Margin Nearest Neighbor
metrics (mLMNN)[17], the Discriminant Adaptive Nearest Neighbor (DANN)
and the five adaptive iteration i-DANN [10], the local ADAptive MEtric Nearest-
Neighbor algorithm (ADAMENN) and the five adaptive iteration i-ADAMENN
[7].

We generate a synthetic multimodal dataset to discuss the distance projection
problem. In addition, we use a synthetic noisy dataset to discuss the problem
of noise tolerance. Furthermore, we evaluate all those algorithms using eleven
benchmark UCI datasets1.

1http://archive.ics.uci.edu/ml/
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The experiments are designed as follows: we first run each algorithm on train-
ing samples to learn a model which could be a distance metric or a set of distance
metrics. For DANN we perform PCA to reduce dimension to at least n − c (n is
the number of samples,c is the number of classes) to avoid the singularity prob-
lem [1]. Finally, each algorithm predicts test samples using KNN classifier. For
the parameter settings, all the methods compared in this paper use the parameter
settings, as proposed in their original papers[20, 15, 18, 17, 10, 7] and validated by
cross validation. We report the optimal dimensions for Xing, LFDA and LMNN
in the experimental results.

LDDM sets four adjustable tuning parameters:

* k1: the number of neighbors in the same class.

* k2: the number of neighbors in the different class.

* β: multiplicative factor in Equation 3.

* K: the number of neighbors to be considered as the vicinity of focal sample
in Equation 9.

Based on empirical observation, we setk1 = max{floor(0.15n), 3}, k2 =
max{floor(0.1n), 2}, β = 0.1 wheren is the total number of training samples.
K ∈ {floor(0.1n), f loor(0.2n), f loor(0.3n)} and we determine the value forK
by cross-validation.d′ for Equation (8) is determined is determined as follows.
We sort the nonnegative eigenvalues in descending order, the sum of the first p
eigenvalues that exceed80% of the total sum of all nonnegative eigenvalues are
discarded. The eigenvectors corresponding to the rest nonnegative eigenvalues as
well as all the negative eigenvalues are preserved for the projection. The number
of selected eigenvectors formsd′.

6.1. A Multimodal Dataset

Multimodal data distribution is ubiquitous in real-world data. It happens when
samples from the same class do not always share similar distributions. For multi-
modal distribution dataset, the superiority of the local distance metric over global
distance metric is widely admitted [22, 9, 17]. We constructa multimodal data
set to evaluate: 1) whether multiple local distance metric algorithms are superior
to single distance metric algorithms; 2) the ability to explore discriminative in-
formation for different algorithms; 3) the visualization under different projected
distance metric space.
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Table 1: Best recognition rates(%) of the multimodal synthetic dataset.
Global metric Single local metric Multiple local metrics

Methods Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN i-ADAMENN LDDM

Multimodal 74.25(50) 85.25(5) 89.75(3) 81.25 67.00 53.37 82.25 82.25 90.38(0.1n)

We generate a synthetic dataset which makes samples obey desired multi-
modal distribution. Positive samples have two different Gaussian distributions.
Negative samples also have two different Gaussian distributions, where one is
between two positive distributions, and the other stays outside of the positive dis-
tribution. The synthetic training data contains400 positive and400 negative sam-
ples with50 dimensions. The test data is drawn from the same distribution as the
training data and has the same size.

The experimental results are shown in Table 1. Clearly, in general, we have
the performance ofthe single local distance metric> multiple distance metrics
> global distance metric. LDDM , which is in the category of multiple distance
metrics methods, has the best performance as an exception. To better understand
this result, we visualize these distance metric approachesunder their projected
distance metric space using Equation 2.

Figure 3(a) shows the dataset projection in PCA space which gives us direct
illustration of this case. Red circles and blue stars represent the positive samples
and negative samples respectively. The green square is a test sample belong-
ing to the negative class (blue stars) but is blind to the learning systems. The
green square resides on the boundary between those two classes in the PCA pro-
jection space. Because some distance metric algorithms (LDDM, Xing, LFDA
and LMNN) can be also regarded as the dimension reduction methods, we visu-
alize them under 2-dimension projection. For other distance metric algorithms
(DANN, ADAMENN), we adopt Sammon’s Mapping [11] to project the data un-
der 2-dimension space which preserves the Euclidean distance relation under their
distance metrics.

Figures 3(b), (c) and (d) depict the visualization of the single metric methods,
XING, LFDA and LMNN. Global distance metric method fails to deal with con-
flicting localized pairwise constraints which are located in different distributions.
Thus, Xing’s method mixes the positive and negative samplesin Figure 3(b) and
performs the worst. LFDA locally adopts the discriminativeinformation which
makes the samples in the same class closer. LMNN optimizes for large margin
which makes the test sample move away from the original boundary. However,
this optimization cannot really remove the boundary and make a large margin be-
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tween two classes, because some samples that may not be on theboundary in
the original space produce a new boundary in the new projected space. This is
a known problem of the single-metric algorithms. Optimization may not achieve
the desired goal for a multimodal dataset.

Figure 4 depicts the visualization of multiple metrics methods. mLMNN per-
forms clustering and then learns the LMNN distance metric oneach cluster. From
Figure 4(a), we can find that mLMNN is not very different from LMNN. mLMNN
may have a great performance gain only when clustering does agood job. In
a close view of Figure 4(b), DANN locally minimizes the within-class distance
and maximizes the between-class distance only on the neighborhood of the test
sample, however discriminative information might not be sufficient to correctly
classify this test sample. ADAMENN in Figure 4(c) has the similar hallmark
which learns only on the vicinity of the test sample but failsto include sufficient
discriminative information.

Figure 5(a) is a close view of PCA projection in Figure 3(a). The big red circle
and the big blue star are the two nearest neighbors of the green square. This is a
challenging problem because these two nearest neighbors may not be in the same
class as the test sample. For our LDDM method, we learn distance metric on these
neighbors respectively as in Figures 5(b) and (c). Our pairwise constraints only
take effect on a small area, where they can be optimized much more efficiently.
We can clearly see that vicinity of the focal samples does notmix different-class
samples in the close view figures. The test sample is in the vicinity of the focal
blue star in Figure 5(c) while it is not in the vicinity of the focal red circle in Figure
5(b). We regard that the test sample is in the same class as focal sample only
when test sample is in vicinity of the focal sample. In such case, we can evaluate
whether the nearest neighbors of test sample in the originalspace is really similar
to test sample under the local discriminative distance metric. Because LDDM has
a totally new way to explore discriminative information anduse an ensemble for
prediction which avoids the deficiency of other multiple metric methods, LDDM
achieves a better result compared to other local distance metric methods.

6.2. A Noise Dataset

To compare the tolerance to noise among these algorithms, webuild a syn-
thetic dataset with different noise scales in training data. 200 positive and 200
negative samples are drawn from 50 dimensional Gaussian distributions with dif-
ferent mean values. 50 positive and 50 negative test samplesare generated by
sharing the Gaussian distribution of the same mean value with the training sample
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(a) (b) (c) (d)

Figure 3: The multimodal data and its two-dimensional projection visualization. (a) The PCA
projection space. (b) The Xing’s projection space. (c) The LFDA projection space. (d) The
LMNN projection space.

(a) (b) (c)

Figure 4: visualization of multiple distance metrics algorithms. (a) The mLMNN projection space
under a distance metric learned from clusters of training samples. (b) Sammon’s Mapping of the
DANN distance metric learned for the test sample and its close view. (c) Sammon’s mapping of
the ADAMENN distance metric learned for the test sample and its close view.

(a) (b) (c)

Figure 5: The visualization of LDDM algorithm. (a) A close view of the neighbors of test sample
in the PCA space, the big red circle and the big blue star are its two nearest neighbors. (b) The
LDDM projection learned from the big red circle. (c) The LDDMprojection learned from the big
blue star.
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but vary a little in variance. Each class contains some noisesamples which dis-
tribute more like the opposite class. In the experiments, wevary the percentage of
noise data from5% to 25%. We expect that a robust algorithm should be able to
deal with the noise data in the training process and find the intrinsic distribution of
the training samples. A dataset with10% noise-level is visualized in Figure 6(a).

This is a specially built dataset and the noise samples are ina well-designed
distribution. The samples in two different classes are far away. Ideally, ifK in our
LDDM is greater than0.5n, it is no doubt that LDDM will achieve perfect results.
Because the number of noise samples is smaller than0.5n, the ensemble process
will eliminate noise influence which is similar to apply a K-nearest-neighbor clas-
sifier withK = 0.5n. However, this is not fair for the comparison. We report our
results withK = 0.1n and study the influence of focal vicinity in LDDM.

From the experimental results reported in Table 2, we generally have this con-
clusion about the performance:multiple distance metrics> global distance met-
ric > single local distance metric. Single local distance algorithms use neigh-
borhoods to learn the discriminative information which might be highly influ-
enced by the noise and inevitably encounters the over-fitting problem. The global
method Xing performs better than traditional local methods, because the global
pairwise constraints are helpful for capturing the overalldistribution. Multiple
metrics methods perform better than all the single metric methods. mLMNN opti-
mizes the local pairwise constraints and also takes the global sense for each class
into consideration. DANN and ADAMEN which use different distance metrics to
model the samples in different areas greatly reduce the influence of noise. Differ-
ently, LDDM is very robust to noise which learns the discriminative information
from focal vicinity and eliminates the noise information byclassifiers ensemble.
Even with25% noise data which also means there are25% mislabeled training
samples, our LDDM method can still reliably find the intrinsic distribution.

To show the influence of focal vicinity to LDDM, we report the relation be-
tween classification accuracy and size of focal vicinity in Figure 6(b) using10%
noise level data. The focal vicinity consists ofk1 same-class nearest neighbors and
k2 different-class nearest neighbors. From the figure, we can find that whenk2 be-
comes larger, classification accuracy will increase significantly. If more different
class samples are involved, it will be increasingly easier to capture the principal
part of different class samples and ignore noise samples. Ifmany local classi-
fiers can achieve good classification results, then weightedcombination of local
classifiers will perform better.

We can also find that if the sizes ofk1 or k2 approach 200, the focal vicinity is
equivalent to the whole dataset, which means LDDM is degenerated to the global
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Table 2: Best recognition rates(%) on the synthetic data with different noise levels.
Global metric Single local metric Multiple local metrics

Dataset Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN i-ADAMENN LDDM

5% 98(34) 90(18) 87(10) 99 99 80 90 92 100(0.1n)

10% 92(14) 96(22) 85(23) 93 98 59 97 99 100(0.1n)

15% 82(2) 85(22) 75(7) 83 97 64 97 96 100(0.1n)

20% 91(7) 91(27) 68(15) 77 88 55 95 95 100(0.1n)

25% 79(16) 88(23) 61(5) 72 87 51 86 84 97(0.1n)

Table 3: Properties of datasets.
balance-scale glass image ionosphere soybean tic-tac-toe waveform iris wine wdbc car

samples 625 214 2310 351 47 958 5000 150 178 569 1728

dimensions 4 9 19 34 35 9 21 4 13 30 6

classes 3 6 7 2 4 2 3 3 3 2 4

distance metric method. Whenk1 approaches 200 andk2 approaches 0, LDDM is
equivalent to Xing’s method without the negative constraint which is to separate
samples in different class. In this case, all the samples will converge to one dot and
have the worst result. Ifk1 andk2 approach 200 simultaneously, LDDM achieves
nearly10% error rate as Xing’s global method.The performance is relatively stable
when the patch is small enough to encode the discriminative information and big
enough to form a reliable patch.

 

 

positive samples

negative samples

A
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Figure 6: The noise synthetic data. (a) The training data with 10% noise samples in a 2-
dimensional PCA space. (b) Classification accuracy vs. sizes of focal vicinities (k1 andk2) using
10% noise level data.
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Table 4: Recognition rates(%) on UCI datasets by distance metrics approaches.
Global metric Single local metric Multiple local metrics

Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN i-ADAMENN LDDM

balance-scale
10% 75.48± 4.90 85.36± 2.74 86.98± 1.75 81.03± 2.23 82.54± 2.40 82.56± 2.74 69.17± 3.06 69.50± 2.02 85.79± 2.72

80% 77.10± 3.79 91.61± 4.8 90.48± 4.78 78.23± 5.00 88.06± 2.66 79.68± 3.97 80.48± 6.29 80.16± 5.22 93.39± 3.44

glass
10% 51.19± 7.44 44.46± 5.20 46.19± 7.62 52.08± 5.56 46.25± 5.05 46.61± 4.92 47.86± 7.52 46.90± 7.07 53.15± 4.84

80% 69.05± 9.59 66.19± 9.64 57.14± 9.54 67.14± 11.54 63.33± 8.99 70.00± 5.52 80.48± 6.29 80.16± 5.22 72.38± 7.03

image
10% 86.14± 1.42 85.00± 2.73 91.86± 2.00 86.78± 1.57 88.07± 1.72 89.32± 1.05 57.77± 3.86 44.77± 3.97 87.20± 1.28

80% 95.84± 1.62 92.90± 5.19 97.01± 1.01 96.71± 1.29 96.28± 1.04 97.45± 1.03 22.94± 3.90 22.29± 3.10 91.52± 1.80

ionosphere
10% 87.46± 1.89 89.18± 0.38 88.79± 2.76 89.46± 0.74 89.18± 0.29 89.04± 0.38 89.21± 0.63 89.11± 0.48 90.00± 4.10

80% 89.14± 4.22 89.14± 2.63 87.43± 6.89 88.57± 4.26 89.43± 2.71 86.57± 5.56 90.57± 5.56 90.29± 3.07 89.14± 2.63

soybean
40% 75.50± 18.63 74.50± 20.61 70.50± 25.22 91.00± 12.65 96.00± 6.58 96.50± 5.80 79.00± 15.06 83.00± 8.23 97.00± 2.58

80% 85.00± 17.48 100± 0.00 88.89± 13.18 100± 0.00 100± 0.00 97.50± 7.91 92.50± 12.08 100± 0.00 100± 0.00

tic-tac-toe
10% 89.71± 1.39 96.54± 3.58 97.14± 2.22 86.04± 2.32 91.21± 1.99 97.28± 0.84 75.03± 4.52 74.95± 2.71 80.59± 3.50

80% 97.47± 0.89 98.63± 1.12 97.79± 0.78 99.89± 0.33 98.32± 1.02 98.32± 1.02 95.26± 2.59 94.74± 2.58 89.89± 3.94

waveform
10% 76.60± 0.69 81.97± 1.02 77.41± 0.76 78.19± 0.71 79.59± 0.44 72.66± 0.35 69.01± 1.30 53.58± 1.65 83.70± 0.46

80% 77.84± 1.67 81.84± 2.32 77.70± 2.21 81.32± 1.38 81.94± 1.21 76.28± 2.35 50.10± 5.52 54.97± 3.07 84.41± 0.44

iris
10% 89.17± 8.11 94.75± 2.42 91.67± 5.60 86.83± 6.81 86.83± 7.17 86.75± 7.57 87.67± 8.51 87.25± 8.74 89.33± 7.28

80% 94.00± 5.84 96.00± 3.44 95.33± 5.49 96.00± 4.66 94.67± 5.26 96.00± 4.66 94.67± 6.13 94.67± 5.26 96.67± 4.71

wine
10% 75.44± 7.12 53.68± 12.39 67.87± 13.26 90.51± 6.38 89.85± 8.02 90.37± 7.37 66.76± 6.38 67.50± 6.61 88.09± 5.58

80% 80.59± 7.87 72.35± 15.7 89.41± 10.3 91.76± 6.32 91.18± 6.93 95.88± 3.97 66.47± 6.23 86.47± 6.82 96.47± 4.96

wdbc
10% 88.33± 3.55 88.46± 2.44 91.34± 1.89 91.27± 2.08 90.85± 1.28 90.29± 1.68 89.33± 2.17 89.73± 2.49 92.52± 2.45

80% 89.82± 4.84 90.71± 3.75 91.61± 4.54 93.57± 4.39 90.71± 3.93 93.93± 3.97 92.50± 3.35 85.89± 4.25 94.11± 4.13

car
10% 77.49± 3.22 81.06± 2.77 82.44± 3.41 80.69± 1.67 75.46± 2.02 72.72± 1.52 73.98± 1.11 73.63± 0.73 82.66± 1.38

80% 85.99± 4.23 87.44± 3.75 96.10± 1.43 94.01± 1.78 84.19± 2.01 81.45± 2.81 72.79± 3.93 67.56± 3.73 81.45± 2.96

6.3. UCI Datasets

We compare the algorithms on eleven benchmark UCI datasets. The properties
of datasets are described in Table 3. The average accuracy and standard deviation
is calculated by the 10-fold cross validation with 1 fold as validation set. We
report the results by varing the training set size: use 1 foldfor training (10%) and
8 folds for training (80%). This can help us to better understand the performance
for insufficient training data. Soybean dataset is too small, therefore, we adopt
40% and80% settings.

The experimental results are reported in Table 4. It is difficult to say whether
any algorithm can always perform best on various datasets. Based on the table, we
generally havemultiple distance metrics> single local distance metric> global
distance metric. Multiple metrics methods also perform better for the insufficient
training data because it adopts multiple metrics to exploremore useful informa-
tion, for example, the multiple extension version mLMNN performs better than
the single local metric LMNN in most cases. i-DANN and i-ADAMENN are not
always perform better than their one-step DANN and ADAMENN.This is mainly
because the converged solution will prune to be proportional to the identity metric
which gives equal weights for different features [7]. The proposed LDDM method
performs better in the overall comparison which won12 out of 22 comparisons.
LDDM is the most stable algorithm in this comparison.
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Table 5: Recognition rates(%) on UCI datasets for the state-of-the-art classifiers and distance
metric methods using ensemble framework.

Classifiers Ensemble distance metric

kNN Decision tree Naive Bayes SVM Xing LFDA LMNN

balance-scale
10% 76.33± 3.51 70.46± 3.80 0.77± 0.04 84.52± 2.36 82.60± 1.99 86.31± 2.41 86.45± 2.17

80% 74.68± 4.37 77.42± 3.31 0.78± 0.03 90.81± 3.95 89.52± 4.11 89.84± 4.17 92.10± 4.26

glass
10% 54.29± 6.25 45.77± 7.29 0.76± 0.06 41.37± 5.97 49.40± 9.86 37.86± 6.79 47.38± 7.29

80% 73.33± 8.75 66.19± 8.23 0.78± 0.11 64.29± 9.59 68.57± 8.16 66.67± 7.45 64.76± 0.11

image
10% 86.31± 0.01 89.03± 0.02 0.73± 0.02 61.04± 5.04 78.14± 0.02 14.28± 0.00 87.26± 0.02

80% 96.19± 0.02 95.28± 0.01 0.78± 0.02 92.99± 1.67 82.64± 0.02 14.29± 0.02 86.10± 0.01

ionosphere
10% 88.86± 1.05 87.25± 0.02 0.73± 0.01 89.36± 0.41 86.29± 2.92 68.25± 6.16 21.21± 1.11

80% 89.14± 4.00 88.00± 5.84 0.83± 0.04 89.14± 2.63 89.14± 3.24 89.14± 2.63 81.43± 2.43

soybean
40% 94.50± 9.56 65.00± 9.72 0.71± 0.14 69.00± 7.38 51.00± 1.90 29.00± 1.13 54.50± 10.39

80% 100.00± 0.00 92.50± 16.87 0.78± 0.08 85.00± 17.48 52.50± 2.99 30.00± 2.30 62.50± 3.38

tic-tac-toe
10% 89.83± 1.51 71.25± 2.45 0.76± 0.09 74.30± 5.67 78.92± 0.04 98.21± 0.00 97.37± 0.01

80% 100.00± 0.00 93.58± 2.83 0.77± 0.05 99.05± 0.92 97.79± 0.02 98.32± 1.02 96.84± 0.02

waveform
10% 76.85± 0.63 71.87± 1.17 0.77± 0.01 85.61± 0.53 83.30± 0.53 85.84± 0.44 83.70± 0.56

80% 77.74± 1.82 75.68± 1.93 0.75± 0.01 87.34± 1.63 84.70± 2.38 86.72± 2.11 84.16± 2.16

iris
10% 93.75± 2.43 70.92± 14.10 0.76± 0.05 83.75± 12.29 72.17± 9.58 71.58± 13.94 64.25± 10.70

80% 96.00± 5.62 95.33± 4.50 0.79± 0.03 97.33± 3.44 95.33± 4.50 95.33± 6.32 95.33± 7.06

wine
10% 66.18± 4.57 72.87± 9.98 0.71± 0.10 39.49± 10.87 65.66± 10.53 38.75± 7.30 37.28± 8.94

80% 76.47± 10.00 94.12± 4.80 0.78± 0.11 63.53± 10.30 88.82± 9.38 97.65± 3.04 96.47± 4.11

wdbc
10% 89.93± 1.63 89.33± 3.48 0.70± 0.01 63.53± 1.07 88.12± 1.89 84.29± 4.97 84.49± 5.19

80% 91.43± 3.45 92.68± 2.30 0.74± 0.03 90.00± 3.28 94.82± 3.09 96.96± 2.39 95.89± 2.24

car
10% 78.94± 1.54 85.24± 1.84 0.74± 0.02 77.60± 3.00 76.46± 1.48 79.54± 3.06 79.19± 2.28

80% 83.95± 3.29 95.29± 1.36 0.78± 0.02 91.51± 2.56 77.73± 3.23 79.36± 3.60 78.78± 3.02

We further conduct the experiments using the state-of-the-art classifiers: kNN,
Decision Tree, Naive Bayes and Support Vector Machine (SVM).We also perform
the other distance metric methods using our proposed ensemble local distance
metrics framework. The results are reported in Table 5. Somesimple classifier
achieves stable results in this comparison. For example, kNN achieves the best
results in some tests. The ensemble framework cannot guarantee to improve the
other distance metric methods, which is because the probability approach defined
in Equation (9) may not suit for other distance metrics. In LDDM, the samples in
the same class as the focal sample will be pulled towards the focal sample, while
this property cannot be obtained by other distance metrics methods.

The corresponding computation time for experiments reported in Tables 4 and
5 is depicted in Tables 6 and 7 respectively. The experimentswere performed on
a DELL server with an 8 cores Intel Xeon X5675 3.07GHz processor and 100G
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Table 6: Computation time on UCI datasets for the representative distance metrics approaches.
The numbers in each cell represent training time(s)/test time(s) respectively.

Global metric Single local metric Multiple local metrics

Xing LFDA LMNN mLMNN DANN i-DANN ADAMENN i-ADAMENN LDDM

balance-scale
10% 0.3558/0.0044 0.0029/0.0038 0.5933/0.0042 0.0941/0.0049 −/0.7233 −/2.7456 −/7.7971 −/20.7603 0.8862/0.0238

80% 9.6484/0.0056 0.0105/0.0057 1.5798/0.0153 0.1935/0.0138 −/0.2017 −/0.9278 −/3.1324 −/8.1041 1.7260/0.0057

glass
10% 0.1729/0.0005 0.0054/0.0018 0.9264/0.0006 0.3521/0.0022 −/0.1950 −/0.5709 −/7.9225 −/23.3047 0.0847/0.0064

80% 1.6422/0.0010 0.0026/0.0009 4.6951/0.0010 0.7653/0.0053 −/0.0579 −/0.2586 −/1.2399 −/3.4112 0.1952/0.0012

image
10% 3.2450/0.0437 0.0061/0.1306 1.5325/0.0455 0.9026/0.0351 −/6.4283 −/29.7896 −/330.5465 −/876.0339 4.5026/0.0657

80% 208.6087/0.1917 0.0418/0.0938 6.1121/0.0776 2.9737/0.1870 −/1.0535 −/4.0571 −/438.7548 −/1309.1023 21.1064/0.0337

ionosphere
10% 0.3073/0.0026 0.0125/0.0023 4.9997/0.0023 0.3815/0.0032 −/0.3327 −/1.1508 −/20.0901 −/8.8713 0.1177/0.0043

80% 1.9854/0.0184 0.0085/0.0029 6.1501/0.0038 0.6414/0.0074 −/0.1842 −/0.7420 −/3.4221 −/1.8950 0.4573/0.0016

soybean
40% 0.3236/0.0005 0.0038/0.0002 0.9865/0.0004 0.1196/0.0022 −/0.0179 −/0.0551 −/2.3844 −/0.9900 0.0144/0.0006

80% 0.4297/0.0005 0.0019/0.0003 5.6716/0.0005 0.1425/0.0026 −/0.0060 −/0.0177 −/0.5183 −/0.2364 0.0227/0.0002

tic-tac-toe
10% 0.4584/0.0075 0.0014/0.0062 1.6829/0.0067 0.0950/0.0067 −/1.3941 −/5.6510 −/20.9977 −/43.4990 1.6074/0.0275

80% 608.0292/0.0453 0.0279/0.0095 6.4564/0.0198 0.1770/0.0282 −/0.3650 −/1.4081 −/9.7731 −/28.9718 4.2377/0.0090

waveform
10% 12.2411/0.2928 0.0104/0.2482 1.0755/0.2812 0.5865/0.0932 −/15.4851 −/65.1324 −/855.5814 −/611.6011 145.4131/0.7518

80% 829.7202/0.4492 0.4571/0.3928 8.9339/0.4198 6.7461/0.7184 −/2.9219 −/9.2873 −/1680.3573 −/1861.4028 623.8684/0.4934

iris
10% 0.1153/0.0031 0.0011/0.0028 0.5758/0.0031 0.1215/0.0022 −/0.1053 −/0.3295 −/1.2787 −/3.3414 0.0589/0.0049

80% 0.8489/0.0051 0.0017/0.0031 1.9140/0.0032 0.1008/0.0026 −/0.0284 −/0.1259 −/0.2043 −/0.6039 0.1204/0.0008

wine
10% 0.1679/0.0006 0.0010/0.0004 0.5031/0.0005 0.3585/0.0022 −/0.1197 −/0.3897 −/4.8668 −/13.0849 0.0634/0.0053

80% 1.5706/0.0011 0.0022/0.0007 4.4151/0.0009 0.5401/0.0033 −/0.0391 −/0.1857 −/0.6620 −/2.0059 0.1366/0.0009

wdbc
10% 0.3483/0.0030 0.0015/0.0019 0.8616/0.0031 0.2970/0.0051 −/0.7537 −/2.6102 −/28.8852 −/14.5917 0.5634/0.0139

80% 8.6359/0.0049 0.0132/0.0037 0.0579/0.0109 0.8931/0.0191 −/0.3075 −/1.3105 −/8.2812 −/5.5584 1.4089/0.0031

car
10% 1.0257/0.0232 0.0028/0.0224 0.6065/0.0228 0.5038/0.0133 −/3.3769 −/15.2333 −/40.7142 −/109.4065 6.6843/0.0656

80% 67.7757/0.0367 0.0894/0.0346 0.4174/0.0444 0.3354/0.0777 −/0.6319 −/2.6011 −/49.8702 −/148.4166 23.4052/0.0408

RAM. All algorithms are implemented in MATLAB. Both training and testing
time are reported. The DANN, ADAMENN and kNN classifiers are “lazy leaners,
hence training time is not applicable for those classifiers.Note that the training
time of the LDDM approach in Table 6 and the proposed distancemetric methods
using ensemble framework in Table 7 is high, but their testing time is rather low,
which empirically confirm what has been analyzed in Section 4. It is encouraging
to point out that in our experiments the testing time for LDDMis comparable to
the state-of-the-art efficient classifiers and its stableness in performance makes it
applicable for complex real world applications.

7. Conclusion

In this paper, we present a local discriminative distance metrics (LDDM)
learning algorithm for classification under the local learning framework. LDDM
trains a set of local discriminative distance metrics according to different training
samples and predicts a test sample by classifiers ensemble. LDDM performs well
on the multimodal distribution problem and greatly reducesthe influence of noise
samples. We theoretically prove the convergence rate boundand the risk bound
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Table 7: Computation time on UCI datasets for the the state-of-the-art classifiers and representa-
tive distance metrics approaches under ensemble framework. The numbers in each cell represent
training time(s)/test time(s) respectively.

Classifiers Ensemble distance metric

kNN Decision tree Naive Bayes SVM Xing LFDA LMNN

balance-scale
10% −/0.0309 0.0168/0.0063 0.0258/0.2455 0.0021/0.0020 1.5200/0.0200 0.8152/0.0223 1.3328/0.0221

80% −/0.0056 0.0359/0.0064 0.0252/0.0768 0.0083/0.0016 12.3733/0.0054 1.6028/0.0102 2.5549/0.0070

glass
10% −/0.0098 0.0168/0.0077 0.0919/0.2496 0.0022/0.0011 0.8072/0.0111 0.1507/0.0111 0.9137/0.0110

80% −/0.0016 0.0272/0.0064 0.1104/0.0778 0.0045/0.0005 2.4737/0.0020 0.2312/0.0020 1.4948/0.0021

image
10% −/0.1512 0.0295/0.0074 0.2742/0.2232 0.0134/0.0286 34.1132/0.2933 23.1882/0.2921 31.4615/0.2843

80% −/0.0465 0.0915/0.0069 0.2665/0.0771 0.4141/0.0207 314.7649/0.1509 78.2493/0.1627 121.2005/0.1861

ionosphere
10% −/0.0169 0.0153/0.0063 0.1392/0.2429 0.0013/0.0023 11.0466/0.3133 0.2299/0.0080 4.3036/0.0083

80% −/0.0032 0.0311/0.0084 0.1369/0.0762 0.0069/0.0018 73.2879/0.0016 1.0480/0.0280 3.1444/0.0018

soybean
40% −/0.0013 0.0181/0.0063 0.2743/0.2673 0.0015/0.0009 5.7415/0.1771 0.0346/0.0006 3.9483/0.0011

80% −/0.0003 0.0175/0.0064 0.2727/0.0758 0.0017/0.0002 0.8831/0.0003 0.0361/0.0012 4.0519/0.0003

tic-tac-toe
10% −/0.0500 0.0204/0.0056 0.0360/0.2416 0.0032/0.0046 3.3813/0.0272 1.4729/0.0271 3.0261/0.0270

80% −/0.0101 0.0385/0.0050 0.0378/0.0948 0.0339/0.0036 556.2084/0.0085 3.2032/0.0088 5.9560/0.0099

waveform
10% −/0.4666 0.0696/0.0110 0.1281/0.2800 0.0125/0.0814 121.3833/0.6829 104.7261/0.7042 109.3327/0.7150

80% −/0.2567 0.4735/0.0075 0.1476/0.0844 0.4664/0.0652 1499.7533/0.4752 545.5000/0.4541 655.7652/0.5579

iris
10% −/0.0070 0.0128/0.0062 0.0241/0.2516 0.0005/0.0004 8.4097/0.6977 0.0491/0.0046 1.0363/0.0047

80% −/0.0011 0.0156/0.0061 0.0245/0.0887 0.0022/0.0013 13.3046/0.6850 0.0692/0.0007 0.9776/0.0009

wine
10% −/0.0079 0.0134/0.0058 0.0769/0.2479 0.0020/0.0014 0.6282/0.0053 0.0704/0.0053 0.8044/0.0054

80% −/0.0013 0.0223/0.0067 0.0792/0.0792 0.0060/0.0011 1.7969/0.0010 0.0970/0.0009 2.6352/0.0011

wdbc
10% −/0.0272 0.0157/0.0060 0.1201/0.2417 0.0028/0.0040 1.4807/0.0146 0.5788/0.0138 2.4588/0.0140

80% −/0.0049 0.0383/0.0050 0.1179/0.0786 0.0257/0.0034 11.0047/0.0037 1.1426/0.0033 4.6641/0.0047

car
10% −/0.1005 0.0227/0.0064 0.0490/0.2491 0.0034/0.0071 11.5376/0.1088 9.4427/0.1130 10.1548/0.1091

80% −/0.0266 0.0420/0.0063 0.0519/0.0809 0.0610/0.0061 211.4799/0.0610 28.0524/0.0485 35.0583/0.0672

of local classifiers using local metrics by introducing a newconcept of local do-
main based VC-dimension. We also prove the risk bound of final classifiers en-
semble. We extensively evaluate LDDM using two synthetic datasets and eleven
UCI datasets. The experiments show that the proposed method outperforms many
state-of-the-art distance metric learning algorithms.
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