CS310 – Advanced Data Structures and Algorithms

Syllabus

Instructor: Nurit Haspel (nurit.haspel@umb.edu)

Course Description and Objectives

- A systematic study of the methods of structuring and manipulating data in computing.
- Application programming interfaces (APIs), data abstraction, and the encapsulation of implementations, familiarity with the Java Collection Classes, Advanced techniques for program development and organization.
- The design and analysis of algorithms, including run time analysis.
- Familiarity with advanced algorithmic techniques such as divide and conquer, dynamic programming, graph algorithms and greedy algorithms.

Prerequisites

- CS110 and CS210 (or one year of higher-level language instruction in Java, C, C++ or similar computer language, and fluency in Java).
 - Knowledge of stacks, queues, binary search trees, sorting (covered in CS210). More recently, graphs are being covered in CS210. If you are not familiar with graphs, let me know and I’ll give you some pointers.
 - Static and dynamic memory allocation, the stack and the heap.
- CS240 (or knowledge of C and Unix). If you have not worked with Unix before, please refer to a basic Unix guide here: http://www.cs.umb.edu/~ghoffman/linux/unix_cs_students.html
 - Basic proof techniques - contradiction, induction, reasoning.
 - Basic runtime analysis.
 - Mathematical formulas: Summations, counting and combinatorics.
- Math 140 (Calculus 1) indirectly, since it is also a pre-requisite of CS220.
Textbooks

Topics

- Review of basic and advanced algorithm analysis: Big O. The tyranny of growth rates.

- Review of Collection classes, continued from CS210. Maps and Sets and the search for \(O(1) \). Looking for fast insertion and retrieval algorithms in various contexts. Recognizing the right collection for an application.

- Hash tables, collision resolution techniques.

- Algorithmic techniques: Divide-and-conquer, dynamic programming, greedy algorithms.

- Data compression: Huffman’s coding, BWT, LZW.

- Graph algorithms: Graph API and implementations. Graph traversals, shortest paths, A*, strongly connected components, spanning trees, flow networks – Max flow/min cut.

Assignments and Grading

The following grading scheme is subject to change (I will do my absolute best to not change it and if I do, I’ll let you know):

- Programming Assignments – 15% of your final grade

- Homework Assignments – 5% of your final grade

- Two Midterm exams – 25 % of your final grade each

- Final exam – 30% of your final grade. You must also pass the final exam (at least with a grade of 40) to pass the course.

You must have a documented reason to schedule a makeup exam. I must know that you need a makeup exam within 2 days after the exam date.

Deadlines: All the assignments will be submitted to Gradescope. I expect timely submission. Any unauthorized late submissions will be penalized with a five point reduction per day. For programming assignments, you may take up to five late days **total** without penalty.

Notice: No courses required by the CS major, minor, or certificate may be taken as pass/fail.
Final Grade

Your final grade will be calculated using the following table. The minimum standard for passing the course is a percentage score of 40%. You also must pass the final exam (score at least 40% in the final exam). Keeping this in mind, your grade for the course will be calculated using the following table. Assume your final percentage score for the course is P:

<table>
<thead>
<tr>
<th>P</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P > 90$</td>
<td>A</td>
</tr>
<tr>
<td>$85 < P \leq 90$</td>
<td>A-</td>
</tr>
<tr>
<td>$80 < P \leq 85$</td>
<td>B+</td>
</tr>
<tr>
<td>$75 < P \leq 80$</td>
<td>B</td>
</tr>
<tr>
<td>$70 < P \leq 75$</td>
<td>B-</td>
</tr>
<tr>
<td>$65 < P \leq 70$</td>
<td>C+</td>
</tr>
<tr>
<td>$60 < P \leq 65$</td>
<td>C</td>
</tr>
<tr>
<td>$55 < P \leq 60$</td>
<td>C-</td>
</tr>
<tr>
<td>$50 < P \leq 55$</td>
<td>D+</td>
</tr>
<tr>
<td>$45 < P \leq 50$</td>
<td>D</td>
</tr>
<tr>
<td>$40 < P \leq 45$</td>
<td>D-</td>
</tr>
<tr>
<td>$P < 40$</td>
<td>F</td>
</tr>
</tbody>
</table>

Accommodations

If you have personal circumstances that will impact your learning and performance in this class, please let me know as soon as possible, so we can discuss the best ways to meet your needs and the requirements of the course. If you have a documented disability, or would like guidance about navigating support services, contact the Ross Center for Disability Services by email (ross.center@umb.edu), phone (617-287-7430), or in person (Campus Center, UL Room 211). To receive accommodations, students must be registered with the Ross Center and must request accommodations each semester that they are in attendance at UMass Boston. For more information visit: www.rosscenter.umb.edu. Please note that the Ross Center will provide a letter for your instructor with information about your accommodation only and not about your specific disability.

Note: I may be able to grant extension to specific assignments based on personal circumstances, but I will only provide accommodations such as extra time, quiet environment etc. based on recommendations from the Ross center. Please contact them as soon as possible if you think you need those.

Student Conduct

Academic Dishonesty: Students are required to adhere to the University Policy on Academic Standards and Cheating, to the University Statement on Plagiarism and the Documentation of Written Work, and to the Code of Student Conduct as delineated in the catalog of Undergraduate Programs, pp. 44-45, and 48-52. Plagiarism will result in sanctions, up to and including failing the course or worse, and a report to the university administration. The Code is available online at: www.umb.edu/student_services/student_rights/code_conduct.html

Cell phones policy: Cell phones should be off/silent except in case of emergency (Checking the stats of your last Instagram or TikTok post does NOT constitute a case of emergency).
You can use your laptop to take notes (and photos if needed, although class will be recorded.)

COVID-19 Policy

All students, faculty, and staff are required to be vaccinated for COVID-19, with limited exceptions. At the beginning of the Fall 2022 semester, masks are strongly recommended on campus but not required, for most individuals. Those who have been granted an exemption to the vaccination requirement must continue to mask indoors on campus. Masks are still required inside University Health Services. This indoor masking policy adheres to the CDC Community Levels. Please note that UMass Boston will continue to follow CDC guidelines as they apply to local conditions and our vaccination, booster, and masking policy may change accordingly.

To safeguard your own health and safety as well as that of all students, staff, and faculty, you are reminded to follow the campus policies regarding masking, vaccination, daily self-checks, isolation and quarantine guidelines, and other relevant rules regarding public health and safety. The campus policies and the most updated guidelines can be found at https://www.umb.edu/coronavirus/covid_19_university_policy.

UNIX accounts, class email

You can test your work on the Department’s network of Unix systems, or you can work on your home computer and deliver the projects to Gradescope. Either way, it is recommended to have an account at our site.

- Apply for an account as soon as possible, following the instructions posted here: https://www.cs.umb.edu/sp/resources/other/faqs/#FAQ02.

- I will be using your umb email (the one that looks something like: first.last001@umb.edu) to communicate with the class and for Piazza and Gradescope. **Be sure to read your e-mails regularly.** If you prefer another e-mail address (say gmail), forward your UMB e-mail there.

- Look for the line ”module load ” in your UNIX .cshrc file and add java to the end of it, so you will be using a current Java distribution.

Homepage

The course home page is http://www.cs.umb.edu/cs310. This directory is visible in the filesystem of our UNIX machines as /courses/cs310. All material for this course will be kept in this area, which may sometimes be called $cs310.