1. Here is the final configuration after linear probing:

<table>
<thead>
<tr>
<th>Key</th>
<th>Hash value</th>
<th>final position (linear, quad)</th>
<th># collisions (linear, quad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A29</td>
<td>7</td>
<td>7, 7</td>
<td>0, 0</td>
</tr>
<tr>
<td>C42</td>
<td>0</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>E12</td>
<td>5</td>
<td>5, 5</td>
<td>0, 0</td>
</tr>
<tr>
<td>D31</td>
<td>1</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>F08</td>
<td>2</td>
<td>2, 2</td>
<td>0, 0</td>
</tr>
<tr>
<td>G34</td>
<td>7</td>
<td>8, 8</td>
<td>1, 1</td>
</tr>
<tr>
<td>B10</td>
<td>0</td>
<td>3, 4</td>
<td>3, 2</td>
</tr>
</tbody>
</table>

And after quadratic probing:

2. (a) \[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

- Base case: \[\sum_{i=1}^{1} i^2 = \frac{1^2}{6} = 1 \]
- Inductive hypothesis: Assume this is true for \(1 \leq k < n \).
- Proof for \(k = n \):

\[
\begin{align*}
\sum_{i=1}^{n} i^2 &= \sum_{i=1}^{n-1} i^2 + n^2 = \frac{n(n-1)(2n-1)}{6} + n^2 \\
&= \frac{n(n-1)(2n-1)}{6} + \frac{6n^2}{6} = \frac{2n^3 - 3n^2 + n + 6n^2}{6} \\
&= \frac{2n^3 + 3n^2 + n}{6} = \frac{n(n+1)(2n+1)}{6}
\end{align*}
\]

(b) \[\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2 \]

- Base case: \[\sum_{i=1}^{1} i^3 = \left(\frac{1 \cdot 2}{2} \right)^2 = 1 \]
- Inductive hypothesis: Assume this is true for \(1 \leq k < n \).
Proof for $k = n$:
\[
\sum_{i=1}^{n} i^3 = \sum_{i=1}^{n-1} i^3 + n^3 = \left(\frac{n(n-1)}{2}\right)^2 + n^3 \quad \text{(By inductive hypothesis)}
\]
\[
= \frac{(n^2 - n)^2}{4} + \frac{4n^3}{4} = \frac{n^4 - 2n^3 + n^2 + 4n^3}{4}
\]
\[
= \frac{n^4 + 2n^3 + n^2}{4} = \frac{(n^2 + n)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2
\]

(c) $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$.

- Base case: $\sum_{i=0}^{1} 2^i = 1 + 2 = 3 = 2^2 - 1$.
- Inductive hypothesis: Assume this is true for $1 \leq k < n$.
- Proof for $k = n$:
\[
\sum_{i=0}^{n} 2^i = \sum_{i=0}^{n-1} 2^i + 2^n = 2^n - 1 + 2^n \quad \text{(By inductive hypothesis)}
\]
\[
= 2^{n+1} - 1
\]

(d) In any binary tree the number of leaves is always one more than the number of internal nodes with two children.

- Base case: In a tree with only one node there is one leaf and no internal nodes. OK.
- Inductive hypothesis: Assume that for a binary tree with $1 \leq k < n$ nodes there are $m + 1$ leaves and m internal nodes with two children (for some m).
- Proof for $k = n$: Any binary tree of size n can be constructed by adding a node to some binary tree of size $n-1$. By inductive hypothesis, that tree has $m + 1$ leaves and m internal nodes with two children. The new node can only be added either as the first child of a leaf or as the second child of a node with one child.
In the first case we turn a former leaf into a node with one child and add a leaf, so the number of leaves stays the same (we lose one and add one) and the number of internal nodes with two children stays the same (because the former leaf became a node with only one child), so the property still holds.
In the second case we add a second child to an internal node. So we add one leaf and add one parent with two children, so the number of leaves and nodes with two children is now $m + 2$ and $m + 1$, respectively, so the property still holds.

- An alternative way (perhaps slightly more accurate) is the following: Any non empty binary tree of size n can be divided into the root, the left subtree L (possibly empty) and the right subtree R (possibly empty). If L is non-empty it has $< n$ nodes, and by inductive hypothesis it has $l+1$ leaves and l internal nodes with two parents for some l. Similarly, if R is non-empty it has $r + 1$ leaves and r internal nodes with two parents for some r. If we attach the two subtrees to the root we get back the tree of size n. If both L and R are non-empty, then the root has two children, and the overall number of internal nodes with two children is then $l + r + 1$. The number of leaves is $l + r + 2$, and the property holds. If one of L or R is empty, the root has only one child and the number of leaves and internal nodes with two children is $l + 1$ and l, respectively, or $r + 1$ and r, respectively (depending on which of the subtrees is empty), so we're good. If both L and R are empty we get the base case that we already showed is OK.

3. One idea is to build a graph of n nodes, each for one specimen. An edge connects every pair of specimens, i, j, for which a judgement is made. The edges are also labeled as “same”, “different” or “ambiguous” (we can drop the latter). Then run a modified version of DFS to find inconsistencies in the graph (there is some resemblance to the bipartiteness test, although the graph is not necessarily bipartite... What should be bipartite in case of a consistent graph is the subgraph with only “different” edges):
(a) Start from an arbitrary vertex \(s \). Assign it to species A (or B. It’s arbitrary at this point).
(b) Run a modification of DFS starting from \(s \):
(c) For each vertex \(v \) that’s visited right now, look at every neighbor \(w \):
 • If \(w \) is already assigned, check for inconsistencies. That is – \(v \) and \(w \) are assigned to the same species but \(e = (v, w) \) is labeled “different” or vice versa. In this case stop the algorithm and declare the graph inconsistent.
 • If \(w \) is unassigned, assign it according to the information in \(v \) and the edge \(e = (v, w) \). If \(e \) is labeled “same”, assign to \(w \) the same species as \(v \). If \(e \) is labeled “different”, assign the other species to \(w \).
 • If \(w \) is newly assigned in the step above then call the algorithm recursively on \(w \).
 • Notice that by construction, \(v \) is assigned by the time we visit it. We only visit vertices after they’ve been assigned by their predecessor, or if they’re \(s \) in which case we assign it in the beginning.
(d) If not all the vertices have been explored by the time you finish, go back to step 1 (just like regular DFS).
(e) Return “True” if no inconsistencies were found at any stage.

Notice that the runtime is the same as DFS, \(O(m + n) \), since we still look at every edge twice (one from each side) and the consistency check adds constant time to each loop.

4. Let us call the shortest path from \(s \) to \(t \) \(P = \{s, v_1, v_2, ..., t\} \). We know that \(P \) has \(> \frac{n}{2} \) edges where \(n \) is the number of vertices in the graph. So \(P \) has \(> \frac{n}{2} + 1 \) vertices, including \(s \) and \(t \) or \(\geq \frac{n}{2} \) vertices not including \(s \) and \(t \), since the number of vertices along a simple path is always one more than the number of edges.

Let’s assume by contradiction that no vertex other than \(s \) or \(t \) that, when removed from the graph, can disconnect \(s \) and \(t \). This can only happen if there are at least two disjoint paths between \(s \) and \(t \) (so they share only \(s \) and \(t \), nothing else). In this case, the removal of any vertex from one path would still leave the other path intact. In other words, there is another path \(P = \{s, w_1, w_2, ..., t\} \) such that no \(w_i \) is equal to no \(v_j \) for any \(i, j \). However, since \(P \) is the shortest path between \(s \) and \(t \), \(P' \) must be at least as long as \(P \), which would imply that it also has \(\geq \frac{n}{2} \) vertices not including \(s \) and \(t \). Since \(P \) and \(P' \) are disjoint, this would mean that the graph must have at least \(n \) vertices not including \(s \) and \(t \) and at least \(n + 2 \) vertices in total, contradicting the fact that the graph has only \(n \) vertices overall.

To find the vertex we should run BFS from \(s \). According to the proof above, there must be a node whose distance from \(s \) is unique. If there weren’t such a node, it would imply two distinct paths to \(t \). BFS gives us the distances from \(s \), so we should be able to find this node during the run.

5. The DFS order of visitation is as follows (only edges that lead to newly discovered vertices are depicted):

\[
\begin{align*}
&v_1 \\
&\text{edge } v_1 - v_2 \\
&v_2 \\
&\text{edge } v_2 - v_4 \\
&v_4 \\
&\text{edge } v_1 - v_5 \\
&v_5 \\
&\text{edge } v_5 - v_3 \\
&v_3 \\
&\text{edge } v_3 - v_6
\end{align*}
\]

The graph with tree edges marked looks like this:
6. Suppose the graph has a Hamiltonian path \(P = \{v_1, v_2, \ldots, v_n\} \). It’s easy to see that the order of vertices along the path is a valid topological sort, since by definition for every \(v_i, v_{i+1} \) along the path, there is a path (of size 1) from \(v_i \) to \(v_{i+1} \). The trickier part is to show that this is the only way to topologically sort the graph. Let’s assume by contradiction that there is another valid topological sort to the graph. In this case, there is at least one pair of vertices, say \(v_i, v_j \) (not necessarily adjacent along the Hamiltonian path), such that \(v_i \) appears before \(v_j \) in one topological sort, but after \(v_j \) in the other. This can only happen if there is no path between \(v_i \) and \(v_j \) in the graph. But \(P \), the Hamiltonian path, connects all the vertices in the graph in a straight line, so there must be a sub-path from \(v_i \) to \(v_j \) (or vice versa) along \(P \), a contradiction.

\[\Leftarrow \] Suppose the graph has a only one topological ordering \(T = \{v_1, v_2, \ldots, v_n\} \). We need to show that in this case there must be an edge (not just any path) from \(v_i \) to \(v_{i+1} \) for every consecutive pair of vertices along the topological order, hence \(T \) is a Hamiltonian path. Let’s assume by contradiction that there isn’t an edge from some \(v_i \) to \(v_{i+1} \), a pair of vertices appearing consecutively in \(T \). The only two ways this can happen in a DAG are:

(a) There is a path of size \(> 1 \) from \(v_i \) to \(v_{i+1} \). This means there is at least another vertex \(v_j \) along the path. However, by definition, any topological sorting of the graph would put \(v_j \) between \(v_i \) and \(v_{i+1} \), a contradiction to the assumption that \(v_i \) and \(v_{i+1} \) are adjacent in the topological ordering of the graph.

(b) \(v_i \) and \(v_{i+1} \) are not connected by any path. However, this would imply that we can reverse their order in the topological sort and get another valid topological sort (since an order is only forced between two vertices connected by a path), a contradiction to the assumption that there is only one topological sort to the graph.

The algorithm is therefore – Topologically sort the graph. Follow the vertices in the order of the sort. If every consecutive pair of vertices along the sorted order is connected by an edge, you found a Hamiltonian path. The runtime is the same as the topological sort runtime, \(O(m + n) \).

7. Here is a simple example. Vertices B and C are both a distance of 1 from A, but there is a path also from B to C, so a topological order must be A, B, C. However, B and C are equidistant from A, so a topological sorting based on the distance may put C before B.