Depth-First Search (DFS)

- Input: $G = (V, E)$, directed or undirected. No source vertex given!
- Output: 2 timestamps on each vertex. Integers between 1 and $2|V|$.
- $d[v] = \text{discovery time (v turns from white to gray)}$
- $f[v] = \text{finishing time (v turns from gray to black)}$
- $\pi[v] = \text{predecessor of v. A vertex u such that v was discovered during the scan of us adjacency list.}$
- Uses the same coloring scheme for vertices as BFS.
Algorithm 1 DFS(G)

1: for each $u \in V[G]$ do
2: \hspace{1em} color[u] \leftarrow white
3: \hspace{1em} $\pi [u] \leftarrow$ NIL
4: end for
5: time \leftarrow 0
6: for each $u \in V[G]$ do
7: \hspace{1em} if color[u] $==$ white then
8: \hspace{2em} DFS – Visit(u)
9: end if
10: end for

Algorithm 2 DFS – Visit(u)

1: color[u] \leftarrow GRAY
2: time \leftarrow time + 1
3: $d[u] \leftarrow$ time
4: for each $v \in Adj[u]$ do
5: \hspace{1em} if color[v] $==$ WHITE then
6: \hspace{2em} $\pi [v] \leftarrow u$
7: \hspace{2em} DFS – Visit(v)
8: end if
9: end for
10: $f[u].time \leftarrow$ time + 1
The DFS Algorithm – Example

Nurit Haspel CS624 - Analysis of Algorithms
The DFS Algorithm – Example

Nurit Haspel
CS624 - Analysis of Algorithms
The DFS Algorithm – Example

Nurit Haspel
CS624 - Analysis of Algorithms
The loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.

DFS-Visit is called once for each white vertex $v \in V$ when its painted gray the first time.

Lines 3-6 of DFS-Visit is executed —$\text{Adj}[v]$— times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$.

Total running time of DFS is $\Theta(V + E)$.
The Parenthesis Theorem

Theorem

For all u, v, exactly one of the following holds:

2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u.

- OK: () [] ([]) [()]
- Not OK: ([)] [()]

Corollary

v is a proper descendant of u iff $d[u] < d[v] < f[v] < f[u]$.
Proof.

- If \(\text{start}[x] < \text{start}[y] < \text{finish}[x] \) then \(x \) is on the stack when \(y \) is first reached.
- Therefore the processing of \(y \) starts while \(x \) is on the stack, and so it also must finish while \(x \) is on the stack:
 - we have \(\text{start}[x] < \text{start}[y] < \text{finish}[y] < \text{finish}[x] \).
- The case when \(\text{start}[y] < \text{start}[x] < \text{finish}[y] \) is handled in the same way.

- Another way to state the parenthesis nesting property is that given any two nodes \(x \) and \(y \), the intervals \([\text{start}[x], \text{finish}[x]]\) and \([\text{start}[y], \text{finish}[y]]\) must be either nested or disjoint.
The Parenthesis Theorem – Example

\[(s \, (z \, (y \, (x \, x) \, y) \, (w \, w) \, z) \, s) \, (t \, (v \, v) \, (u \, u) \, t)\]
Depth First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_\pi = (V, E_\pi)$ where $E_\pi = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq NIL\}$.
- How does it differ from that of BFS?
- The predecessor subgraph G forms a depth-first forest composed of several depth-first trees.
- The edges in E are called tree edges.

Definition (Forest)

An acyclic graph G that may be disconnected.
Theorem

\(v \) is a tree descendant of \(u \) if and only if at time \(d[u] \), there is a path \(u \leadsto v \) consisting of only white vertices (Except for \(u \), which was just colored gray.)

Proof.

One direction: (if \(v \) is a tree descendant of \(u \) then there is a white path \(u \leadsto v \) at time \(d[u] \)) is obvious from the definition of a tree descendant (see the parenthesis theorem).
Is it possible that v is not a descendant of u in the DFS forest?

By induction on all the vertices along the path: Of course u is a descendant of itself.

Let us pick any vertex p on the path other than the first vertex u, and let q be the previous vertex on the path [so it can be that q is u].

We assume that all vertices along the path from u to q inclusive are descendants of u (inductive hypothesis).

We will argue that p is also a descendant of u.
Cont. – Reverse Direction.

- At time \(d[u] \) vertex \(p \) is white [by assumption about the white path], So \(d[u] < d[p] \).
- But there is an edge from \(q \) to \(p \), so \(q \) must explore this edge before finishing.
- At the time when the edge is explored, \(p \) can be:
 - **WHITE**, then \(p \) becomes a descendant of \(q \), and so of \(u \).
 - **BLACK**, then \(f[p] < f[q] \) [because \(f[p] \) must have already been assigned by that time, while \(f[q] \) will get assigned later].
- But since \(q \) is a descendant of \(u \) [not necessarily proper], \(f[q] \leq f[u] \), we have \(d[u] < d[p] < f[p] < f[q] \leq f[u] \), and we can use the Parenthesis theorem to conclude that \(p \) is a descendant of \(u \).
White Path Theorem

Cont. – Reverse Direction.

- **GRAY**, then \(p \) is already discovered, while \(q \) is not yet finished, so \(d[p] < f[q] \).
- Since \(q \) is a descendant of \(u \) [not necessarily proper], by the Parenthesis theorem, \(f[q] \leq f[u] \).
- Hence \(d[u] < d[p] < f[q] \leq f[u] \). So \(d[p] \) belongs to the set \(\{d[u], \ldots, f[u]\} \), and so we can use the the Parenthesis theorem again to conclude that \(p \) must be a descendant of \(u \).
- The conclusion thus far is that \(p \) is a descendant of \(u \). Now, as long as there is a vertex on the remainder of the path from \(p \) to \(v \), we can repeatedly apply the inductive argument, and finally conclude that the vertex \(v \) is a descendant of \(u \), too.
Classification of Edges

- **Tree edge**: in the depth-first forest. Found by exploring \((u, v)\).
- **Back edge**: \((u, v)\), where \(u\) is a descendant of \(v\) (in the depth-first tree).
- **Forward edge**: \((u, v)\), where \(v\) is a descendant of \(u\), but not a tree edge.
- **Cross edge**: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Edge type for edge \((u, v)\) can be identified when it is first explored by DFS based on the color of \(v\).

The edge $x \rightarrow z$ will be discovered when exploring x, hence it’s a back edge.
In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Starting from 1, either 2 discovers 3 or vice versa, therefore one of them is the other’s descendant, Hence no cross edges.
• DAG – Directed graph with no cycles.
• Good for modeling processes and structures that have a partial order:
 • \(a > b \) and \(b > c \) \(\Rightarrow\) \(a > c \).
• But may have \(a \) and \(b \) such that neither \(a > b \) nor \(b > a \).
• Can always make a total order (either \(a > b \) or \(b > a \) for all \(a \neq b \)) from a partial order.
Directed Acyclic Graph (DAG) – Example

- Socks
- Shorts
- T-shirt
- Batting gloves
- Gloves
- Hose
- Pants
- Skates
- Leg pads
- Chestpad
- Sweater
- Mask
- Catch glove
- Blocker

Nurit Haspel
CS624 - Analysis of Algorithms
Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof.

\Rightarrow Show that back edge \rightarrow cycle:
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest. Therefore, there is a path $v \leadsto u$, so $v \leadsto u \leadsto v$ is a cycle.
Proof.

⇒: Show that a cycle implies a back edge.

- c: cycle in G, u: first vertex discovered in c, (v, u): preceding edge in c.
- At time $d[v]$, vertices of c form a white path $u \rightsquigarrow v$. Why?
- By white-path theorem, v is a descendent of u in depth-first forest.
- Therefore, (v, u) is a back edge.
We want to “sort” a DAG.

Think of original DAG as a partial order.

We want a total order that extends this partial order.
Topological Sorting

- Performed on a DAG.
- Linear ordering of the vertices of G such that if \((u, v) \in E\), then \(u\) appears somewhere before \(v\).

TopologicalSort(G)

1. call DFS(G) to compute finishing times \(f[v]\) for all \(v \in V\)
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Runtime – \(\Theta(V + E)\)
Topological Sorting – Example

Linked list:

Linked list:
Topological Sorting – Example

Linked list:
- A
- B
- C
- D
- E

Linked list:
- A
- B
- C
- D
- E

Linked list:
- A
- B
- C
- D
- E

Linked list:
- A
- B
- C
- D
- E
Topological Sorting – Example

Linked list:

1/4 → 2/3
D → E

Linked list:

1/4 → 2/3
D → E
Topological Sorting – Example

Linked list:

6/7 → 1/4 → 2/3 → 5/8 → 6/7 → 1/4 → 2/3
Topological Sorting – Example

Linked list:

Linked list:
Topological Sorting – Proof of Correctness

- Just need to show if \((u, v) \in E\), then \(f[v] < f[u]\).
- When we explore \((u, v)\) then \(u\) is gray. What is the color of \(v\)?
 - Is \(v\) **gray**?
 - No, because then \(v\) would be ancestor of \(u\). \(\Rightarrow (u, v)\) is a back edge, which contradicts the fact that A DAG has no back edges.
 - Is \(v\) **white**?
 - Then becomes descendant of \(u\).
 - By parenthesis theorem, \(d[u] < d[v] < f[v] < f[u]\).
 - Is \(v\) **black**?
 - Then \(v\) is already finished.
 - Since were exploring \((u, v)\), we have not yet finished \(u\).
 - Therefore, \(f[v] < f[u]\).
Strongly Connected Components

- G is strongly connected if every pair \((u, v)\) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices \(C \subseteq V\) such that for all \(u, v \in C\), there is a path from \(u\) to \(v\) and from \(v\) to \(u\).
Theorem

Let C and C' be distinct SCCs in G, let $u, v \in C$, $u', v' \in C'$, and suppose there is a path $u \leadsto u'$ in G. Then there cannot also be a path $v' \leadsto v$ in G.

Proof.

- Suppose there is a path from v' to v in G.
- Then there are paths from u to u' to v' and from v' to v to u in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCCs.
Transpof of a Directed Graph

- $G^T = \text{transpose of directed } G$.
- $G^T = (V, E^T), E^T = (u, v) : (v, u) \in E$.
- G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCCs. (u and v are reachable from each other in G if and only if reachable from each other in G^T).
Algorithm to Determine SCC

1. Call $DFS(G)$ to compute finishing times $f[u]$ for all u
2. Compute G^T
3. Call $DFS(G^T)$, but in the main loop, consider vertices in order of decreasing $f[u]$ (as computed in first DFS)
4. Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Runtime – $\Theta(V + E)$
Example

G

\[\begin{array}{cccc}
 a & b & c & d \\
 13/14 & 11/16 & 1/10 & 8/9 \\
 12/15 & 3/4 & 2/7 & 5/6 \\
 e & f & g & h \\
\end{array} \]
Example

\[G^T \]
How Does it Work?

- **Idea:**
 - By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
 - Because we are running DFS on GT, we will not be visiting any \(v \) from a \(u \), where \(v \) and \(u \) are in different components.

- **Notation:**
 - \(d[u] \) and \(f[u] \) always refer to first DFS.
 - Extend notation for \(d \) and \(f \) to sets of vertices \(U \subseteq V \):
 - \(d(U) = \min_{u \in U} \{d[u]\} \) (earliest discovery time)
 - \(f(U) = \max_{u \in U} \{f[u]\} \) (latest finishing time)
Lemma

Let C and C' be distinct SCCs in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 1: $d(C) < d(C')$.

- Let x be the first vertex discovered in C.
- At time $d[x]$, all vertices in C and C' are unvisited. Thus, there exist paths of unvisited vertices from x to all vertices in C and C'.
- All vertices in C and C' are descendants of x in depth-first tree.
- Therefore, $f[x] = f(C) > f(C')$.

![Diagram showing SCCs and DFS finishing times]
Lemma

Let C and C' be distinct SCCs in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 2: $d(C) > d(C')$.

- Let y be the first vertex discovered in C'.
- At time $d[y]$, all vertices in C' are unvisited and there is an unvisited path from y to each vertex in C'. All vertices in C' become descendants of y. Again, $f[y] = f(C')$.
- At time $d[y]$, all vertices in C are also unvisited.
Lemma

Let C and C' be distinct SCCs in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 2: $d(C) > d(C')$.

- By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
- So no vertex in C is reachable from y.
- Therefore, at time $f[y]$, all vertices in C are still white.
- Therefore, for all $w \in C$, $f[w] > f[y]$, which implies that $f(C) > f(C')$.
Corollary

Let C and C' be distinct SCCs in $G = (V, E)$. Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) < f(C')$.

Proof.

$(u, v) \in E^T \Rightarrow (v, u) \in E$. Since SCCs of G and G^T are the same, $f(C') > f(C)$, by former Lemma.
Correctness of SCC

- When we do the second DFS, on G^T, start with SCC C such that $f(C)$ is maximum.
- The second DFS starts from some $x \in C$, and it visits all vertices in C.
- Corollary above says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.
- Therefore, DFS will visit only vertices in C.
- Which means that the depth-first tree rooted at x contains exactly the vertices of C.
Correctness of SCC

- The next root chosen in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCCs other than C.
- DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
- Therefore, the only tree edges will be to vertices in C'.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only vertices in its SCC–get tree edges to these,
- Vertices in SCCs already visited in second DFS–get no tree edges to these.