Fall 2015 – Cook-Levin Theorem

December 8, 2015
SAT is NP-complete

Definition

A (1-tape) Turing machine consists of

- A finite set Q of states. Three of these states are special, and have special names:
 - There is an initial state, which we will denote by q_0.
 - There is an accepting state.
 - There is a rejecting state.
- A finite set $T = \{\tau_0, \tau_1, \tau_2, \ldots \}$ of tape symbols. There is a subset $I \subseteq T$ of input symbols. And there is a special blank symbol in $T \setminus I$.
- A move or transition function

\[
\delta : Q \times T \rightarrow Q \times T \times \{L, R\}
\]
The tape can be extended infinitely in both directions. At any stage of the computation:
- The machine is at one state of the machine, q.
- The tape has a finite sequence of tape symbols in its cells.
- The machine points to one of the cells.
- These three items constitute a configuration or an instantaneous description (ID) of the machine.
A configuration is represented as $uq_i\nu$ where u and ν are (possibly empty) strings of tape symbols, q_i is a state, and the convention is that

- The cells of the tape hold the string uv (i.e., u concatenated with ν).
- The machine is pointing to the cell containing the first symbol in ν if ν is non-empty. If ν is empty, the machine is pointing to the “next cell” after u, which contains the blank symbol.

The *initial configuration*, or *initial ID* of the machine is q_0w where w is some string formed from input symbols (i.e., elements of I).
The machine proceeds as follows: If an ID is given by uaq_ibv, where a and b are tape symbols, then $\delta(q_i, b)$ is computed (or, really, looked up, since $Q \times T$ is a finite set).

It is of the form $\langle q_j, \tau, L \rangle$ or $\langle q_j, \tau, R \rangle$. L means “move to the left” and R means “move to the right”. We consider these two cases separately:

- $\delta(q_i, b) = \langle q_j, \tau, R \rangle$. The machine changes b to τ, enters state q_j, and moves one cell to the right. So the new state is $ua\tau q_j v$.
- $\delta(q_i, b) = \langle q_j, \tau, L \rangle$. The machine changes b to τ, enters state q_j, and moves one cell to the left. So the new state is $uq_j a \tau v$.
This process is then repeated. One of three things can happen:

- Eventually the machine winds up in the accepting state. The machine then stops, and we say that it has accepted the initial input string \(w \).
- Eventually the machine winds up in the rejecting state. The machine then stops, and we say that it has rejected the initial input string \(w \).
- The machine goes on forever without ever entering either the accept or reject states.
A language (more properly, a formal language) over the set T is simply a set of finite strings over T.

- Example: UNDIRECTED HAMILTONIAN CYCLE. Let T be any set of symbols that we can use to write a description of an undirected graph in.
- We can define UNDIRECTED HAMILTONIAN CYCLE to be the language consisting of those (finite) strings over T that correspond to undirected graphs having a Hamiltonian cycle.
Given a set T and a language L over T, find an algorithm that takes as input a string over T and tells whether or not it is in L.

We can replace “algorithm” with “Turing machine”.

If such a machine exists, we say that L is *Turing decidable* or simply *recursive*.

Since all the problems we have been considering can be solved by exhaustive search, it is pretty evident that they are all decidable. Our problem is efficiency.

Definition

A language L over a set T is in the class P iff there is a Turing machine that decides L in polynomial time w.r.t the length of the input string.
Non-deterministic Turing machines and NP

- Ordinary Turing machines, such as we have described above are deterministic.
- Every configuration determines the next one, so starting from an initial configuration, the entire sequence of configurations of the machine is completely determined, and there is no choice involved.
- Let us consider a non-deterministic machine.

Definition

In a non-deterministic Turing machine the transition function δ is no longer a function, as it returns a set of possible choices. $\delta : Q \times T \rightarrow P(Q \times T \times \{L, R\})$ where for any set X, $P(X)$ is the power set of X – the set of all subsets of X. It is also often written as 2^X.
Non-deterministic Turing machines and NP

- At each step every choice spawns a set of sub-processes.
- We have a tree of computations rather than just one linear sequence.
- If any path leads to an accepting state then the initial string is accepted by the machine.
- This is definitely not a very practical model.
The class NP is the class of languages that are decided in polynomial time by non-deterministic Turing machines.

- A deterministic Turing machine is a special case of a non-deterministic Turing machine.
- So with this definition, we know a priori that $P \subseteq NP$.
- It is not obvious that this definition is equivalent to the one we have been using up to now, in terms of polynomial-time verifiability.
- It is not hard to show that these two definitions are equivalent.
- It should be clear that the problems that we have considered so far are in NP in this new definition.
The Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-complete.

Proof.

- **SAT is in NP**: A non-deterministic Turing machine can decide SAT in polynomial time, because each path down the tree can correspond to checking satisfiability for a different choice of truth values for the variables, and this can be verified in a linear time.

- **SAT is NP-hard**: For each language \(L \) in NP over the set of symbols \(T \), and each finite string \(w \) over \(T \), we need to create a SAT expression such that
 - The algorithm taking the string \(w \) to the SAT expression is polynomial.
 - \(w \) is in \(L \) iff the SAT expression is satisfiable.
The Cook-Levin Theorem

- We have to also encode the language \(L \) in the SAT expression.
- We only know that \(L \) is in NP.
- We start with a ND Turing machine \(M \) that decides \(L \) and the input string \(w \).
- We will create a SAT instance from \(M \) and \(w \) in polynomial time s.t. the instance is satisfiable iff \(M \) accepts \(w \).
- In other words – we will show that every problem in NP is polynomially reducible to SAT.
The Cook-Levin Theorem

- We know M decides every string in w in a polynomial time.
- Assume every part of the computation in of length \((p|w|)\) where p is some polynomial.
- We can represent the possible states of the machine at every stage of the computation in an array indexed from \(- (p|w|)\) to \((p|w|)\).
- Initially, M points to index 0.
Let us define the following:

- α is the index among the states of the accepting state. So q_α is the accepting state.
- β is the index among the tape symbols of the blank symbol. So τ_β is the blank symbol.
- The tape symbols in the initial string w are $w_0, w_1, \ldots, w_{|w|-1}$.

To construct our SAT expression, we need to specify the variables in that expression.

Each of these variables will say something about the state of our machine M at some point in the computation.

To make things as simple as possible, we name our variables using three capital letters:

- C stands for *cell*.
- S stands for *state*.
- H stands for *head* (As in a tape recorder head).
Here are the variables:

- $C_{i,j,t}$ is a variable whose value is True iff the i^{th} cell on the tape contains the tape symbol τ_j at time t.
- This is a whole family of variables: there are $2p(|w|) + 1$ possible values for i, $|T|$ possible values for j, and $p(|w|)$ possible values for t, so we just defined $(2p(|w|) + 1)|T|p(|w|)$ variables.
- The particular value of this is unimportant, only that the number of these variables is bounded by a fixed polynomial in $|w|$.
- $S_{k,t}$ is a variable whose value is True iff M is in state q_k at time t. Here we have $|Q|p(|w|)$ variables.
- $H_{i,t}$ is a variable whose value is True iff at time t the machine is pointing at cell i. Here we have $(2p(|w|) + 1)p(|w|)$ variables.
We use an auxiliary function – $U(x_1, x_2, \ldots, x_r)$ will be True iff exactly one of its arguments is True (and the rest are False).

To construct an expression for U, note that

$$x_1 \lor x_2 \lor \cdots \lor x_n \text{ is True } \iff \text{ at least one variable is True}$$

$$\bigwedge_{1 \leq i < j \leq n} (\bar{x}_i \lor \bar{x}_j) \text{ is True } \iff \text{ no two of the variables are True}$$

Therefore, we can write

$$U(x_1, x_2, \ldots, x_n) = (x_1 \lor x_2 \lor \cdots \lor x_n) \land \bigwedge_{1 \leq i < j \leq n} (\bar{x}_i \lor \bar{x}_j)$$

Note that this expression is in CNF.
We are going to construct a SAT expression as follows: We will create expressions A, B, C, and so on to encode the following 7 statements:

- A: The machine is pointing to exactly one cell at each time. (We will call this the “current cell”.)
- B: Each cell contains exactly one tape symbol.
- C: The machine is in exactly one state at each time.
- D: Exactly one tape cell (the current cell) is modified from one time to the next.
- E: The first configuration is the initial configuration.
- F: The state in the last configuration is the accepting state.
- G: The change in state, current cell, and cell contents between successive times is allowed by the transition function of M.

Each of these expressions will be in CNF.

That expression will be True iff the machine M accepts w.
A. The machine is pointing to exactly one cell at each time. Let A_t assert that at time t the machine is pointing to exactly one cell. Then $A = A_0 \land A_1 \land \cdots \land A_p(|w|)$ and we have

$$A_t = U(H_{-p(|w|)}, t, \ldots, H_{-1}, t, H_0, t, H_1, t, \ldots, H_p(|w|), t)$$

Each A_t is in CNF and so is A.

B. This asserts that each cell contains exactly one tape symbol
Let $B_{i,t}$ assert that the i^{th} cell contains exactly one symbol at time t. Then $B = \bigwedge_{i,t} B_{i,t}$, and

$$B_{i,t} = U(C_{i,1}, t, C_{i,2}, t, \ldots, C_{i,|T|}, t).$$

Again, B is in CNF.

C. This asserts that the machine is in exactly one state at each time. We have $C = \bigwedge_{0 \leq t \leq p(|w|)} U(S_1, t, S_2, t, \ldots, S_{|Q|}, t)$. C is in CNF.
The Expressions

\[D. \] This asserts that exactly one tape cell (the current cell) is modified from one time to the next.

\[
D = \bigwedge_{0 \leq t < p(|w|)} (\overline{C_{i,j,t}} \lor H_{i,t} \lor C_{i,j,t+1})
\]

This can be read as follows:

- Either the \(i^{th}\) cell does not contain the symbol \(\tau_j\) at time \(t\),
- or it does, in which case either
 - it also contains it at time \(t + 1\), or
 - the machine is pointing at the \(i^{th}\) cell at time \(t\).

\(D\) is in CNF
E. This asserts that the first configuration is the initial configuration.

\[E = S_{0,0} \land H_{0,0} \land \bigwedge_{i=-p(|w|)}^{i=0} C_{i,\beta,0} \land \bigwedge_{i=0}^{i=|w|} C_{i,w_i,0} \land \bigwedge_{i=|w|}^{i=p(n)} C_{i,\beta,0} \]

E is in CNF.

F. This asserts that the state in the last configuration is the accepting state \(q_{\alpha} \).

\[F = S_{\alpha,p(|w|)} \]

F is in CNF.
G. This asserts that the change in state, current cell, and cell contents between successive times is allowed by the transition function δ of M.

- This expression is more complex than the previous ones.
- Let us pretend to start out with that our Turing machine is actually deterministic, so for each state q and tape symbol τ, there is a unique state q', tape symbol τ' and direction d' (i.e., either L or R) such that $\delta(q, \tau)$ is $\langle q', \tau', d' \rangle$.
- In this case G will be the conjunction (i.e., the “and”) of a number of clause groups. Each group is composed of three clauses, like this:

$$
(H_{i,t} \lor \overline{S_k,t} \lor \overline{C_{i,j},t} \lor H_{i',t+1}) \land \\
(H_{i,t} \lor \overline{S_k,t} \lor \overline{C_{i,j},t} \lor S_{k',t+1}) \land \\
(H_{i,t} \lor \overline{S_k,t} \lor \overline{C_{i,j},t} \lor C_{i,j',t+1})
$$
There is a clause group for each \(t \) from 0 to \(p(|w|) - 1 \) and for each set of values \((i, j, k, i', j', k') \) such that \(-p(|w|) \leq i \leq p(|w|)\) and such that when we compute \(\delta(q_k, \tau_j) \), either

- \(\delta(q_k, \tau_j) = \langle q_k', \tau_{j'}, R \rangle \), in which case we set \(i' = i + 1 \), or
- \(\delta(q_k, \tau_j) = \langle q_k', \tau_{j'}, L \rangle \), in which case we set \(i' = i - 1 \).

The way to understand these clauses is as follows: the only way \(H_{i,t} \lor S_{k,t} \lor C_{i,j,t} \) can be false is if at time \(t \),

- the machine is pointing at cell \(i \),
- the machine is in state \(k \),
- and the cell \(i \) contains \(\tau_j \).
In that case

- The first clause says that at time $t + 1$, the machine is pointing to cell i' (which is either cell $i + 1$ or cell $i - 1$).
- The second clause says that at time $t + 1$ the machine is in state k'.
- And the third clause says that at time $t + 1$ cell i contains $\tau_{j'}$.

Clearly G is in CNF. However, in general, the machine is non-deterministic. This means that for each state q and tape symbol τ, $\delta(q, \tau)$ is a (finite!) set of triples of the form:

\[\langle q', \tau', d' \rangle \]
\[\langle q'', \tau'', d'' \rangle \]
\[\langle q''', \tau''', d''' \rangle \]
\[\ldots \]
Suppose that each of these possibilities gives rise to an expression G', G'', G''', \ldots, and so on.

Our real expression G is just $G = G' \lor G'' \lor G''' \lor \ldots$

The only problem is that G is no longer in CNF.

Without going into details, it is clear that just by using the distributive property over and over again, this expression can be rewritten in CNF.

The only problem is that the size of the rewritten expression may be exponentially larger than the size of the original expression.
For our purposes here it doesn’t matter.

The reason is that the size of each original expression
\(G' \lor G'' \lor \ldots \) does not depend on \(n \) but on the properties of
the Turing machine itself.

Therefore it doesn’t really matter how big \(G \) is, since the size
of \(G \) does not vary with \(n \) either.

The number of such expressions \(G \) that we need depends on \(n \) –
there are \(p(|w|)(2p(|w|) + 1) \) such expressions – and this is
polynomial in \(|w| \), which will be multiplied by the constant
size of \(G \), so it is still a polynomial function of \(|w| \).
Without going into many details, it is easy to see that everything here in this construction is polynomially bounded. Therefore the expression

\[A \land B \land C \land D \land E \land F \land G \]

is in CNF which is derivable in a polynomially bounded way from \(M \) and \(w \), and which is satisfiable iff \(M \) accepts \(w \).

And that completes the proof.