Runtime, Generating Functions

September 10, 2023
There are a lot of common mathematical functions that it is important to be familiar with.

The first ones you need to really have a feeling for are powers, exponential functions, and logarithms.

In particular, you really need to understand "in your bones" how they grow for large values of their arguments, and how they compare to each other.
Order of Growth

10^x, x^4, x^3, x^2, $x^{1/2}$, $x^{1/3}$, $x^{1/4}$, $\log_{10} x$
If a, b, and x are all positive, then $\log_b x = \log_a x \cdot \log_b a$

Proof.

- Say $\log_b a = P$ and $\log_a x = Q$.
- Then we have $b^P = a$ and $a^Q = x$.
- Hence: $b^{PQ} = (b^P)^Q = a^Q = x$.
- That is, $b^{\log_b a \cdot \log_a x} = x$.
- And so $\log_b a \cdot \log_a x = \log_b x$.

Nurit Haspel
CS624 - Analysis of Algorithms
In other words - all logs are equivalent up to a constant.

These computations are quite standard and you should be able to prove, for example, that:

\[a^{b \log_a x} = x^b \]
Define f and g as functions defined on positive numbers, taking positive numbers. $f \leq g$ iff $f(x) \leq g(x)$ for every x.

Big-Oh is a slightly weaker notation: $f = O(g)$ if there are two numbers $c > 0$ and $x_0 > 0$ s.t. $f(x) \leq cg(x)$ for all $x \geq x_0$.

To prove that $f = O(g)$ for some f and g, you must come up with two constants c and x_0 and show that the above is true.
For instance, to prove that $2n^2 = O(n^3)$

You have to find two actual numbers $c > 0$ and $n_0 > 0$ such that $2n^2 \leq cn^3$ for all $n \geq n_0$

In this case, you should be able to see that $c = 1$ and $n_0 = 2$ works.

Provided that $n \geq 2$, $2n^2 \leq n \cdot n^2 = n^3 = 1 \cdot n^3$.

This is what I expect the answers to your homework/exams to look like.

Notice that $f = O(g)$ doesn’t mean mathematical equality.

Notice also that the big-oh should only be on the right side of the equal sign.
Asymptotic notations – big-Oh

Example of usage:

- If we have a complicated function f whose exact formula we don’t know we can still write:
 \[f(n) = n^3 + O(n^2). \]
- This means that there is a function $h(n)$ such that:
 \[f(n) = n^3 + h(n) \text{ where } h(n) = O(n^2). \]
Some examples (you have to be able to prove them):

- $n^2 = O(n^2 - 3)$
- $n^2 = O(n^2 + 3)$
- $100n^2 = O(n^2)$
- $n^2 = O(n^2 + 7n + 2)$
- $n^2 + 7n + 2 = O(n^2)$
- If $0 < p < q$, then $x^p = O(x^q)$
- For all $a > 0$ and $b > 0$, $\log_a x = O(\log_b x)$
Lemma

If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$

Proof.

- $f = O(h)$ and therefore there are constants $c > 0$ and $x_0 > 0$ s.t. $f(x) \leq ch(x)$ for all $x \geq x_0$.
- $g = O(h)$ and therefore there are constants $d > 0$ and $x_1 > 0$ s.t. $g(x) \leq dh(x)$ for all $x \geq x_1$.
- Notice that these are not the same constants!
- We need to put those together to come up with a formula for $f + g$.

We can use $c + d$ and $\max(x_0, x_1)$.

Therefore, for all $x \geq \max(x_0, x_1)$, $f(x) + g(x) \leq (c + d)h(x)$.

This is because if $x \geq \max(x_0, x_1)$ then $x \geq x_0$, so $f(x) \leq ch(x)$.

Similarly, if $x \geq \max(x_0, x_1)$ then $x \geq x_1$, so $g(x) \leq dh(x)$.

Adding the above we see that for $x \geq \max(x_0, x_1)$ $f(x) + g(x) \leq (c + d)h(x)$.
Lower Bound – \(\Omega \) Notation

\[f = \Omega(g) \] if there are constants \(c > 0 \) and \(x_0 > 0 \) s.t.
\[f(x) \geq c \times g(x) \] for all \(x \geq x_0 \).

You should show pretty easily that \(f = \Omega(g) \) iff \(g = O(f) \).

For example: \(\sqrt{n} = \Omega(\log(n)) \)
Tight Bound – Θ Notation

$f = \Theta(g)$ if there are constants $a, b > 0$ and $x_0 > 0$ s.t. $ag(x) \leq f(x) \leq bg(x)$ for all $x \geq x_0$.

It should be easy for you to show that: $\frac{1}{2}n^2 + 2n = \theta(n^2)$.
Recurrences often arise from solving divide and conquer problems or other recursive functions.

Example – the Merge Sort algorithm we previously saw.

\[T(n) = \begin{cases}
 d & \text{if } n = 1 \\
 2T(n/2) + n & \text{otherwise}
\end{cases} \]

We would like to get an explicit formula whenever possible.
Solving Recurrences

Substitution – proof by induction:

1. Guess a formula or bound of the solution.
2. Prove it by induction, generally for any necessary constant.

Example: \(T(n) = 4T\left(\frac{n}{2}\right) + n \)

Where \(T(1) \) is a constant. Note that we should actually write \(T(n) = 4T\left(\lfloor \frac{n}{2} \rfloor \right) + n \) unless \(n \) is a power of 2, but this is not a major point at the moment.
Guess $T(n) = O(n^3)$.

Prove this by induction:

Proof.

- **Base case:** $T(1) \leq c(1^3)$ provided that c is big enough.
- **Assume that** $n_0 = 1$ – we will prove that $T(k) \leq ck^3$ for all $k \geq 1$.
- **Inductive hypothesis** – assume that $T(k) \leq ck^3$ for $1 \leq k < n$.

Therefore we have

$T(n) = 4T\left(\frac{n}{2}\right) + n$

$\leq 4c\left(\frac{n}{2}\right)^3 + n$ \hspace{1em} \text{by inductive hypothesis since } n/2 < n

$= \frac{c}{2}n^3 + n = cn^3 - \left(\frac{c}{2}n^3 - n\right) \leq cn^3$

the last inequality being true whenever $\frac{c}{2}n^3 - n \geq 0$ and this is certainly true if for instance $c \geq 2$ and $n \geq 1$. (Can you prove this?)
Our initial guess may not be the tight bound. In this case actually $T(n) = O(n^2)$. Again:

1. Guess that $T(n) = O(n^2)$.
2. Prove by induction.

Proof.

- **Base case**: $T(1) \leq c \ast 1^2$ for a big enough c.
- **We assume that** $n_0 = 1$ so that we will show $T(k) \leq c \ast k^2$ for all $k \geq 1$.
- **Inductive hypothesis**: Assume this is true for all $1 \leq k < n$ and prove that it is true for n.

Trying again to use the recurrence formula:

$$T(n) = 4T\left(\frac{n}{2}\right) + n \leq 4c\left(\frac{n}{2}\right)^2 + n = cn^2 + n = O(n^2)$$

!!! WRONG !!!
The last step is wrong!

- $cn^2 + n$ is never smaller than or equal to cn^2 for positive n, c.
- Change the inductive hypothesis by subtracting the lower order term.
- Now we assume that $T(k) \leq c_1 k^2 - c_2 k$ for all $1 \leq k < n$ and for big enough c_1, c_2.

\[
T(n) = 4T\left(\frac{n}{2}\right) + n \leq 4\left(c_1 \left(\frac{n}{2}\right)^2 - c_2 \frac{n}{2}\right) + n = c_1 n^2 - 2c_2 n + n = c_1 n^2 - c_2 n - (c_2 - 1)n \leq c_1 n^2 - c_2 n
\]

Which is true for all $c_2 \geq 1$.
Assume \(c_2 = 1 \), then \(T(1) \) needs to be bound by \(c_1 1^2 - c_2 1 \). We can assume that \(c_1 \) is big enough.

In general – this is just another proof by induction.

Remember to state the inductive hypothesis explicitly and show how the inductive step works.

Expressing the hypothesis as a sequence of statements may be useful.
A more complicated formula: \(T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2 \). We can build a recursion tree:

\[
T(n) \quad \mathcal{T}(\frac{n}{4}) \quad \mathcal{T}(\frac{n}{8}) \\
\mathcal{T}(\frac{n}{16}) \quad \mathcal{T}(\frac{n}{8}) \quad \mathcal{T}(\frac{n}{8}) \quad \mathcal{T}(\frac{n}{4}) \\
\mathcal{T}(1) \quad \mathcal{T}(1) \\
\mathcal{T}(1) \quad \mathcal{T}(1)
\]
Recursion Tree

- The tree is filled up until the $\log_4(n)$ level and partially filled up to the $\log_2(n)$ level.
- We can bound the runtime from above and below:

$$T(n) \geq n^2 \sum_{k=0}^{\log_4 n} \left(\frac{5}{16}\right)^k = n^2 \frac{(\frac{5}{16})^{\log_4 n+1} - 1}{\frac{5}{16} - 1}$$

and

$$T(n) \leq n^2 \sum_{k=0}^{\log_2 n} \left(\frac{5}{16}\right)^k = n^2 \frac{(\frac{5}{16})^{\log_2 n+1} - 1}{\frac{5}{16} - 1}$$
However, the two sums are just the beginning of a convergent geometric series, both bounded from above by a constant:

\[
1 - \frac{1}{1 - \frac{5}{16}}
\]

They are also bounded below by 1 when \(n = 1 \).

So \(n^2 \leq T(n) \leq cn^2 \Rightarrow T(n) = \Theta(n^2) \).
The Master Method

- It applies only to recurrences of the form
 \(T(n) = aT\left(\frac{n}{b}\right) + f(n) \) where \(a \geq 1, \ b > 1 \) and \(f \) is ultimately positive (positive above some positive \(x > x_0 \) for some \(x_0 \)).

- So it doesn’t apply to the last recurrence we talked about.

- Let us first look at the recurrence \(aT\left(\frac{n}{b}\right) \) (this is called the \textit{watershed function}).

- This recurrence usually appears in a divide and conquer problem where \(a \) and \(b \) are constants.

- The problem is divided into a sub-problems of size \(\frac{n}{b} \)

- Let’s assume for simplicity that \(a \) is divisible by \(b \).
Let’s assume also that $T(n) = n^p$ for some p.

Substituting n^p into the recurrence we get:

$$ n^p = a \left(\frac{n}{b} \right)^p = a \frac{n^p}{b^p} \Rightarrow b^p = a $$

Taking \log_b from both sides we get: $p = \log_b a$.

Therefore – $T(n) = n^\log_b a$

The master theorem is based on this fact.
The original recurrence is slightly more complicated:
\[T(n) = aT\left(\frac{n}{b}\right) + f(n). \]

In the divide and conquer algorithm we merge the a sub-problems of size \(\frac{n}{b} \).

The conquer part (the total cost of solving the sub-problems) is described by \(aT\left(\frac{n}{b}\right) \).

Merging them into one complete solution is described by \(f(n) \), aka the driving function.
The Master Method

The master theorem considers three cases:

1. $f(n)$ is small compared with n^p.
2. $f(n)$ is comparable to $n^p \log^k n$ for some $k \geq 0$.
3. $f(n)$ is large compared with n^p.

For this theorem (and not necessarily other cases), “$f(n)$ is smaller compared with n^p” means that there is an $\epsilon > 0$ s.t.

$$f(n) = O(n^{p-\epsilon}) = O(n^p / n^\epsilon)$$

This means that $f(n)$ grows more slowly than n^p by some positive power of n. Remember that $p = \log_b a$
Similarly, “$f(n)$ is large compared with n^p” means that there is an $\epsilon > 0$ s.t. $f(n) = \Omega(n^{p+\epsilon}) = \Omega(n^p n^\epsilon)$

This means that $f(n)$ grows faster than n^p by some positive power of n.

Moreover, there has to be a constant $0 < c < 1$ and a constant n_0, so that for every $n > n_0$, $af\left(\frac{n}{b}\right) \leq cf(n)$.

a and b are the same as in the recurrence formula.
The Master Theorem – Formulation

Theorem

If $a \geq 1$ and $b \geq 1$ are constants, $f(n)$ is a function, and $T(n)$ is another function satisfying the recurrence $T(n) = aT(n/b) + f(n)$ where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$, then $T(n)$ can be estimated asymptotically as follows:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

 When $f(n)$ is small compared with n^p, f essentially has no effect on the growth of T, and $T(n) = \Theta(n^p)$, just as it would if $f \equiv 0$.

2. If $f(n) = \Theta(n^{\log_b a \log^k n})$, for some $k \geq 0$ then $T(n) = \Theta(n^{\log_b a \log^{k+1} n})$.

 This case is significant in that it applies to algorithms which are $O(n \log n)$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ and if $af(n/b) \leq cf(n)$ for some constant c with $0 < c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

 In this case, f is what really contributes to the growth of T, and the recursion is immaterial.
Example 1

\[T(n) = 4 T\left(\frac{n}{2}\right) + n. \]

Here we have: \(a=4, \ b=2, \ f(n) = n, \ n^{\log_b a} = n^2 \)

So this is case 1 where \(f(n) = O(n^{2-\epsilon}) \) for \(0 < \epsilon < 1. \)

So \(T(n) = \Theta(n^2). \)
\[T(n) = 4T\left(\frac{n}{2}\right) + n^2. \]

Here we have: \(a=4, b=2, f(n) = n^2, n^{\log_b a} = n^2\)

So this is case 2 where \(f(n) = \Theta(n^2)\).

So \(T(n) = \Theta(n^2 \log(n))\).
Example 3

\[T(n) = 4T\left(\frac{n}{2}\right) + n^3. \]

Now we have: \(a=4, \ b=2, \ f(n) = n^3\) so again \(n^{\log_b a} = n^2\).
We have \(f(n) = \Omega(n^{\log_b a+\epsilon})\) for \(0 < \epsilon < 1\). Thus we will be in Case 3 provided we can show that the additional condition needed for Case 3 holds.

- We need to show that there is some constant \(0 < c < 1\) and some \(n_0\) s.t. for all \(n > n_0\), \(af\left(\frac{n}{2}\right) \leq cf(n)\)

- \(4f(n/2) \leq cf(n) \Rightarrow 4(n/2)^3 \leq cn^3\)

- Or equivalently, \(\frac{n^3}{2} \leq cn^3\)

- This certainly holds for any \(c > 1/2\). So we could take \(c = 3/4\), for example.

Therefore we really are in Case 3, and the conclusion of the master theorem is that \(T(n) = \Theta(n^3)\).
\[T(n) = 4T\left(\frac{n}{2}\right) + \frac{n^2}{\log n}. \]

Here we have: \(a=4, \ b=2, \ f(n) = \frac{n^2}{\log n}, \ n^{\log_b a} = n^2 \)

In this case the master theorem does not apply (any guesses why?).
Example 5

\[T(n) = 2T\left(\frac{n}{2}\right) + cn. \]

Here we have: \(a=2, b=2, f(n) = cn, n^{\log_b a} = n\)

So this is case 2 where \(f(n) = \Theta(n)\).

So \(T(n) = \Theta(n \log(n))\) (this is the case of MergeSort, for example).
Some important functions can be represented as power series:

- \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \ldots \)

- \(\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \)

- \(\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots \)

- \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \ldots \) (makes sense for \(|x| < 1 \))
Generating Functions

Given a sequence \(\{a_0, a_1, \ldots, \} \), the generating function of the sequence is defined as:

\[
f(x) = a_0 + a_1x + a_2x^2 + \cdots = \sum_{n=0}^{\infty} a_n x^n
\]

- The set of coefficients (like \(a_n = \frac{1}{n!} \) in the case of \(f(x) = e^x \)) yield the power series for the function.
- This function can also give us a lot of information about the sequence.
We can use generating functions to derive the properties of sequences from properties of another sequence.

For example: \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \) (for \(|x| < 1\))

Differentiating both sides of the equation w.r.t \(x\):

\[
\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=1}^{\infty} nx^{n-1}
\]

Substituting \(x = 1/2\) we get \(\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} = 4 \)

Or equivalently (multiplying both sides by 1/2 to make it look simpler): \(\sum_{n=1}^{\infty} \frac{n}{2^n} = 2 \)
Another Example

The binomial theorem says that:

\[(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k\]

This just tells us that \((1 + x)^n\) is the generating function for the finite sequence \(\{\binom{n}{k} : 0 \leq k \leq n\}\).

Substituting \(x = 1\) we get \(2^n = \sum_{k=0}^{n} \binom{n}{k}\)
We let \(\{f_0, f_1, f_2, \ldots \} \) denote the Fibonacci numbers:
\(\{0, 1, 1, 2, 3, 5, 8, \ldots \} \).

For \(n \geq 2 \), \(f_n = f_{n-1} + f_{n-2} \).

We want to get a closed formula for \(f_n \).

We have a formula, but it is not obvious.

We can use a generating function with the recurrence formula to derive it.
Generating Function for Fibonacci

\[F(x) = f_0 + f_1 x + f_2 x^2 + \cdots = \sum_{n=0}^{\infty} f_n x^n \]

\[F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + f_5 x^5 + \ldots \]

\[xF(x) = f_0 x + f_1 x^2 + f_2 x^3 + f_3 x^4 + f_4 x^5 + \ldots \]

\[x^2 F(x) = f_0 x^2 + f_1 x^3 + f_2 x^4 + f_3 x^5 + \ldots \]
Adding the second and third row and subtracting from the first cancels most terms out, leaving:

\[F(x)(1 - x - x^2) = x \] so \[F(x) = \frac{x}{1 - x - x^2}. \]

We need to figure out a formula for the coefficient of the power series representing the right hand term.

We already know that for \(|x| < 1\), \[\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}. \]
Our formula is not of this type, we have to convert it.

It is a quadratic polynomial, so it can be converted into a formula of the kind:

\[(1 - x - x^2) = (1 - \alpha x)(1 - \beta x)\].

Multiplying the right side we get: \(\alpha \beta = -1; \alpha + \beta = 1\).

\(\alpha(1 - \alpha) = -1 ; \alpha^2 - \alpha - 1 = 0\).

This is a quadratic equation whose solution is \(\alpha = \frac{1\pm\sqrt{5}}{2}\).
The two solutions add up to 1, so let’s make: $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$

We now know that: $F(x) = \frac{x}{1-x-x^2} = \frac{x}{(1-\alpha x)(1-\beta x)}$

Now we can decompose it into two fractions without a quadratic term.

For this we can find two numbers A and B such that:

$$\frac{x}{(1-\alpha x)(1-\beta x)} = \frac{A}{1-\alpha x} + \frac{B}{1-\beta x}$$

Which is true if: $A(1-\beta x) + B(1-\alpha x) = x$
This gives us two equations: $A + B = 0$; $A\beta + B\alpha = -1$.

We know that $B = -A$ and we know that $\beta = 1 - \alpha$.

Substituting, we get:

$$A(1 - \alpha) - A\alpha = -1$$
$$A - A\alpha - A\alpha = -1$$
$$A(1 - 2\alpha) = -1$$
Generating Function for Fibonacci

- From previous calculation we know that: $1 - 2\alpha = -\sqrt{5}$.
- So we have: $A = \frac{1}{\sqrt{5}}$
- Knowing that $A + B = 0$ we get: $B = -A = -\frac{1}{\sqrt{5}}$
- Finally, putting it all together:

$$F(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$$

$$= A \sum_{n=0}^{\infty} \alpha^n x^n + B \sum_{n=0}^{\infty} \beta^n x^n$$

$$= \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} (\alpha^n - \beta^n) x^n$$
Generating Function for Fibonacci

Since the coefficients of F are the fibonacci numbers we get for the n^{th} coefficient:

$$f_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n) = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$