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Transaction Execution

• Example: Reading Uncommitted Data (Dirty Reads)

• We are assuming each transaction is single-threaded 
• Usually the case in practice, though not universal

• And, for simplicity, that operations for the whole DB happen in some 
order, possibly interleaving the transactions

• This is not true in reality: in fact, parallel execution of transactions happens on 
multi-processors,

• But it’s close enough to show the important behaviors
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T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)



Transaction Schedule Notation

• Example: Reading Uncommitted Data (Dirty Reads)

Another notation: Using subscripts for transaction ids

• Arrows mark conflicts, yield arcs in PG: T1->T2, T2->T1

R1(A) W1 (A) R2(A) W2 (A) R2 (B) W2 (B) R1 (B) W1 (B) 

Note: commits are not involved in locating conflicts
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T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)



Example: RW Conflicts

• Unrepeatable Reads

• Alternatively:

R1(A) R2 (A) W2(A) C2 R1 (A) W1 (A) C1

• Again T1->T2, T2->T1, cycle in PG, not conflict serializable

• See conflicts reaching across a commit here
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T1: R(A),  R(A), W(A), Commit
T2: R(A), W(A), Commit



Conflict Serializable Schedules

• Two schedules are conflict equivalent if:
• Involve the same actions of the same transactions

• Every pair of conflicting actions is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent to 
some serial schedule

• Example:  T1->T2 only, and conflict serializable, as shown 
below

R1(A) R1 (B) W1 (C) R2(B) W2 (A) R2 (C) R1 (B) C1C2

R1(A) R1 (B) W1 (C) R1 (B) C1 R2(B) W2 (A) R2 (C) C2



Dependency Graph

• Dependency graph:  
• one node per transaction

• edge from Ti to Tj if action of Ti precedes and conflicts with action of Tj

• Theorem: Schedule is conflict serializable if and only if its 
dependency graph is acyclic

• Equivalent serial schedule given by topological sort of dependency graph



4/10/2018

From cs310: Definitions

• Path

– A sequence of vertices w
1
..w

n
connected by edges 

s.t. {w
i
,w

i+1
}ε E for each i=1..n.

• Path length

– Number of edges on the path

• Cycle

– A path that begins and ends at the same vertex and 
contains at least one edge

• Directed Acyclic Graph (DAG)

– A type of directed graphs that has no cycles



A cycle in the graph, DAG

• A cycle in a digraph is a path that returns to its starting 

vertex.  

• An acyclic digraph is also called a DAG, short for directed 

acyclic graph. These graphs show up in lots of applications.  

For example, the graph of course prerequisites.

CS110  CS210  CS310

CS240

• is a DAG.  A cycle in prerequisites would be ridiculous.
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DAG's and topological sorts

• A DAG induces a partial order on the nodes.  

• Not all element pairs have an order, but some do, and the ones that 

do must be consistent.  So CS110 < CS210 < CS310,  and so CS110 

< CS310, but CS210 and CS240 have no order between them.

• Suppose a student took only one course per term in CS.  Then they 

would be finding a sequence that satisfies the partial order 

requirements, for example CS110, CS210, CS240, CS310.   Another 

possible sequence is CS110, CS240, CS210, CS310.  

• One of these fully ordered sequences that satisfy a partial order or 

DAG is called a topological sort of the DAG.

• A topological sort orders the nodes such that if there is a path 

between two nodes u and v, u will appear before v.
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Finding a topological sort

• Weiss (author of cs310 book) presents a non-recursive 

algorithm for finding a topological sort of a DAG, checking 

that it really has no cycles.

• The first step of this algorithm is to determine the in-degree 

of all vertices in the graph. 

• The in-degree of a vertex is the number of edges in the 

graph with this vertex as the to-vertex. 

• Once we have all the in-degree numbers for the vertices, we 

look for a vertex with in-degree 0.  

• It has no incoming edges, and so can be the vertex at the 

start of a topological sort, like CS110.
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Finding a topological sort (cont.)

• Notice that there must be a node with in-degree 0. 

• If there weren’t, then we could start a path anywhere, extend 
backwards along some in-edge from another vertex and 
from there to another, etc. 

• Eventually we would have to start repeating vertices. 

• For example, if we have managed to avoid repeating 
vertices and have visited all the vertices, then the last vertex 
still has an in-edge not yet used, and it goes to another 
vertex, completing a cycle.  

• Thus the lack of an in-degree-0 vertex is a sure sign of a 
cycle and a DAG doesn’t have any cycles.

• OK, we have the very first vertex, but what about the rest?  
Think recursively!
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A Topological Sort Example

In-degree

The 

topological 

order is:

V2,V0,V1,V3,

V4,V6,V5



Back to our text: Dependency Graph

• Dependency graph:  
• one node per transaction

• edge from Ti to Tj if action of Ti precedes and conflicts with action of Tj

• Theorem: Schedule is conflict serializable if and only if its 
dependency graph is acyclic

• Equivalent serial schedule given by topological sort of dependency graph



Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The output of T1 
depends on T2, and vice-versa.

T1: R(A), W(A),   R(B), W(B)

T2: R(A), W(A), R(B), W(B)

R1(A) W1(A) R2(A) W2(A) R2(B)2 W(B)2 R1 (B) W1 (B)

T1 T2

A

B

Dependency graph



Strict Two-Phase Locking (Strict 2PL)

• Protocol steps
• Each transaction must obtain a S (shared) lock on object before reading, and an X 

(exclusive) lock on object before writing.

• All locks held are released when the transaction completes
• (Non-strict) 2PL: Release locks anytime, but cannot acquire locks after releasing any lock.

• Strict 2PL allows only serializable schedules of R/W ops.
• It simplifies transaction aborts

• (Non-strict) 2PL also allows only serializable schedules, but involves more complex 
abort processing
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Strict 2PL Example
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R(B)

S(B) R(B) C

W(B) C

Using subscripted notation: blow-by-blow actions

S1(A) R1(A) S2(A) R2(A) X2(B) <S1 (B)-blocked> R2(B) W2(B) 
C2 <S1 (B)-unblocked> R1(B) C1

where S1 (B) blocked

T1: S(A) R(A)     
T2: S(A) R(A) X(B)



Aborting Transactions
• When Ti is aborted, all its actions have to be undone

• if Tj reads an object last written by Ti,  Tj must be aborted as well!

• cascading aborts can be avoided by releasing locks only at commit

• If Ti writes an object, Tj can read this only after Ti commits

• In Strict 2PL, cascading aborts are prevented
• At the cost of decreased concurrency

• No free lunch!

• Increased parallelism leads to locking protocol complexity
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Deadlocks

• Cycle of transactions waiting for locks to be released by each other: 
case of “deadly embrace”

18

T1: X(A) W(A)     S(B) [R(B) …]
T2: X(B) W(B) S(A) [R(A) …]

Using subscripted notation:
X1(A) W1 (A) X2(B) W2(B) <S2(A) blocked> <S1(B) blocked>…



Deadlock Detection
• Create a waits-for graph:

• Nodes are transactions

• Edge from Ti to Tj if Ti is waiting for Tj to release a lock
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T1:  S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C)
T4: X(B)

T1 T2

T4 T3

X(A)



Deadlock Prevention

• Assign priorities based on timestamps

• Assume Ti wants a lock that Tj holds
• Wait-Die: It Ti > Tj, Ti waits for Tj; otherwise Ti aborts

• Wound-wait: If Tj > Ti, Tj aborts; otherwise Ti waits

 In use in Google Spanner, “The first horizontally scalable, strongly 
consistent, relational database service”,  as product released May, 2017

• Fairness is an issue
• If transaction re-starts, make sure it has its original timestamp

• Otherwise starvation may occur

• In practice, not used for 2PL locks in centralized DBs (but may be in 
use for mutex-related mechanisms (“latches”) to be covered later), 
and 
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https://cloud.google.com/spanner/


More Dynamic Databases
• If the set of DB objects changes, Strict 2PL using row or page locks will 

not ensure serializability:
• Phantoms (anomalies involving sets of rows)  are still possible

• Locking whole tables will work but is horribly slow

• Example (with insert phantom and delete phantom): pg 560

T1 finds oldest sailor for each of rating=1 and rating=2

T2 does an insertion and a deletion

1. T1 locks all rows/pages with rating = 1, finds oldest sailor (age = 71)

2. Next, T2 inserts a new sailor; rating = 1, age = 96

3. T2 deletes oldest sailor with rating = 2 (age = 80), commits

4. T1 locks all rows/pages with rating = 2, and finds oldest (age = 63)

• No serial schedule gives same outcome!

• T1 sees old set for rating 1, new set for rating 2: can’t happen serially.

• Database must prevent this if running at full Serializable isolation.



The “Phantom” Problem
• T1 implicitly assumes that it has locked the set of all sailor records with 

rating = 1
• Unless running at serializable isolation, it really only locked the ones it accessed, 

and unlocked them again if running at RC (short-term reads)

• Two mechanisms to address the problem
• Index locking

• Predicate locking—not used in practice (except for index locking, considered a 
type of predicate locking)



Another phantom example

• Table tasks has one row for each worker task, with worker name, task 
name, number of hours

• Rule that no worker has more than 8 hours total

• Application A to add a task sums hours for worker, adds task if it fits 
under 8 hours max

• T1 running A sees ‘Joe’ has 6 hours, adds task of 2 hours

• Concurrently, T2 running A sees ‘Joe’ has 6 hours, adds task of 1 hour.

• Joe ends up with 9 hours of work.

• Again, the problem is there is no lock on the set of rows being 
examined to make a decision



Index Locking
• Assume index on the rating field

• T1 should lock the index page(s) containing the data entries with rating
= 1, and their immediate neighbors

• If there are no records with rating = 1, T1 must lock the index page where such a 
data entry would be, if it existed!

• e.g., lock the page with rating = 0 and beginning of rating=2

• Or lock pages for just one extra data item on one side, if a lock is understood to 
cover the key value plus gap to one side.

• If there is no suitable index, T1 must lock all data pages, and lock the file 
to prevent new pages from being added



Index Locking: row locks
• Assume index on the rating field

• Row locking is the industry standard now

• T1 should lock all the data entries with rating = 1 and at least one 
neighbor (depending on details of protocol)

• If there are no records with rating = 1, T1 must lock the entries adjacent to 
where data entry would be, if it existed!

• e.g., lock the last entry with rating = 0 and beginning of rating=2

• If there is no suitable index, T1 must lock all the rows and lock the file to 
prevent new rows from being added, or use a “table lock”.



Predicate Locking
• Grant lock on all records that satisfy some logical predicate

• But note that a general predicate can depend on data in the row: salary > 50000 + 
1000*years   

• Or a whole table: salary > (select avg(salary) in emps)

• Index locking is a special case of predicate locking 
• Index supports efficient implementation of the predicate lock

• Predicate is specified in WHERE clause

• In general, predicate locking is expensive to implement!
• Can avoid the runtime cost by using Repeatable Read isolation level, but that opens 

up anomaly possibilities.



Index Locking, Blow by blow

• Index locking happens in the storage engine, based on FILE calls 
coming from query processor as directed by the query plan

• Example:  Transaction T1 accesses a heap table with certain index, 
gets row for certain index key value, say 100.  Suppose the next data 
entry is for another key, 102.

• Storage engine share-locks the accessed data entry for key 100, guarding it 
and the gap between that key and the next key.

• Then if another transaction T2 tries to change the row with key 100, can’t get 
necessary X lock, waits.  Same with key 101.

• Original transaction T1 can ask for next key, get 102.

• But if another transaction updates row with key 102 (not guarded by T1’s 
share lock), then then T1 has to wait for the next key.



Index Locking Scenario, cont.

• There is an underlying assumption in that story: that all the accesses 
in fact use the index on this column.

• Well, the important thing is that all accesses that change the column 
value go through the index.  It’s OK for another reader to access the 
value.

• An insert or delete needs to change the index, so they are naturally 
involved.

• An update to this column also needs to change the index, in two 
places, so it also collides with the old lock.

• You can see this has to be checked out carefully!


