Centralizers of Nilpotents and The Bala-Carter Classification

Alfred Gérard Noël
University of Massachusetts Boston
email: alfred.noel@umb.edu
Let \mathfrak{g}_c be a complex semisimple Lie algebra with adjoint group G_c and e a nilpotent element in \mathfrak{g}_c.

Let G_c^e centralizer of e in G_c. G_c^e is not connected in general. Often it is required to compute the finite group

$$A(e) = \frac{G_c^e}{(G_c^e)_o}$$

where $(G_c^e)_o$ is the identity component.

E. Sommers (1997) gave a unified description of the conjugacy classes of $A(e)$.
A pseudo-Levi subalgebra l of \mathfrak{g}_c is defined to be the centralizer in \mathfrak{g}_c of a semisimple element z of G_c. (Notation $l = \mathfrak{g}_c^z$)

Pseudo-Levi subgroups L of G_c are of the form (G_c^z). the identity component of the centralizer of z in G_c.

Let Z be the center of L in G_c then the group $\frac{Z}{Z_o}$ is cyclic. (Sommers)

A nilpotent element e of \mathfrak{g}_c is called distinguished if the conditions $x \in \mathfrak{g}_c$ semisimple and $[x, e] = 0$ imply that x is in the center of \mathfrak{g}_c.

Let $L \subset G_c$ be a pseudo-Levi subgroup with center Z and Lie algebra l a
pseudo-Levi subalgebra of \mathfrak{g}_c. Given a conjugacy class \bar{c} of $A(e)$, l has the key property for (e, \bar{c}) if $e \in l$ and there exists $z \in Z$ such that

1. zZ_\circ generates the cyclic group $\frac{Z}{Z_\circ}$

2. $z(G_c^e)_\circ = \bar{c}$

Moreover if l is a minimal pseudo-Levi subalgebra with the key property for (e, \bar{c}) then e is distinguished in l.

Sommers shows how to build minimal pseudo-Levi subalgebras with the key property for a given pair (e, \bar{c}).

Theorem (Sommers). There is a bijection Φ between G_c conjugacy classes of pairs (l, e), where l is a pseudo-Levi subalgebra and e is a distinguished nilpotent in l, and G_c conjugacy classes of pair (e, \bar{c}), where e is a nilpotent element in \mathfrak{g}_c and \bar{c} is a conjugacy class of $A(e)$.

Example. Let \mathfrak{g}_c be $\mathfrak{so}_5(\mathbb{C})$, the complex Lie algebra of 5×5 orthogonal matrices. It is known that its nilpotent classes are parametrized by certain partitions of 5. Consider the class $[3,1,1]$. A computation shows that the only two pseudo-Levi subalgebras (up to conjugacy) containing a nilpotent e in that class are of the form $\mathfrak{sl}_2(\mathbb{C})$ and $2\mathfrak{sl}_2(\mathbb{C})$.
Sommer’s Correspondence

\[(e, 1) \Leftrightarrow (\mathfrak{sl}_2(\mathbb{C}), e)\]

\[(e, -1) \Leftrightarrow (2\mathfrak{sl}_2(\mathbb{C}), e)\]

In this case \(A(e) = \mathbb{Z}_2\).

Sommer’s theorem is an extension of the Bala-Carter classification which states:

The nilpotent orbits \(G_c.e\) of \(\mathfrak{g}_c\) are in bijection with \(G_c\) conjugacy classes of pairs \((l, p_l)\) where \(l\) is a Levi subalgebra of \(\mathfrak{g}_c\) in which \(e\) is distinguished and \(p_l\) a distinguished parabolic subalgebra of \([l, l]\).

In fact \((e, 1)\) always goes to the B-C Levi \(l\).
Our goal is to extend Sommer’s result to real reductive Lie groups.

Let g be a real reductive Lie algebra with adjoint group G and Cartan decomposition $g = \mathfrak{k} \oplus \mathfrak{p}$ relative to a Cartan involution Θ.

We complexify g to obtain $g_c = \mathfrak{k}_c \oplus \mathfrak{p}_c$.

Denote by σ the conjugation of g_c with regard to g.

Let K_c be the complexification of K the connected subgroup of G with Lie algebra \mathfrak{k}. K_c preserves \mathfrak{p}_c under the adjoint action.
Sekiguchi proves that there is a one to one correspondence between nilpotent G-orbits in \mathfrak{g} and nilpotent $K_{\mathbb{C}}$-orbits in $\mathfrak{p}_{\mathbb{C}}$.

Therefore it is reasonable to solve the following problem.

Let e be a nilpotent element in $\mathfrak{p}_{\mathbb{C}}$ and $A_k(e) = \frac{K_{\mathbb{C}}^e}{(K_{\mathbb{C}}^e)^o}$. Give a unified description of the elements of $A_k(e)$.

A pseudo-Levi subalgebra l of $\mathfrak{g}_{\mathbb{C}}$ is said to be \textbf{elliptic} if it is the centralizer in $\mathfrak{g}_{\mathbb{C}}$ of an elliptic element of $K_{\mathbb{C}}$.
The connected subgroup L of $G_\mathbb{C}$ with Lie algebra l is an elliptic pseudo Levi subgroup of $G_\mathbb{C}$. Let Z be the center of L then:

Non trivial Fact:

\[
\frac{Z\cap K_\mathbb{C}}{(Z\cap K_\mathbb{C})^0} \text{ is cyclic}
\]

A nilpotent element e of $l \cap p_\mathbb{C}$ is called **noticed** if the conditions $z \in l \cap \mathfrak{k}_\mathbb{C}$ semisimple and $[z, e] = 0$ imply that z is in the center of l.

We can choose e such that it lies in a Kostant-Sekiguchi \mathfrak{sl}_2—triple $\{x, e, f\}$ that is $x \in \mathfrak{k}_\mathbb{C}$, e and f in $p_\mathbb{C}$, $\sigma(e) = f$.
A θ-stable parabolic subalgebra \mathfrak{q} of \mathfrak{l} is said to be noticed for e if there is a K-S triple in \mathfrak{l} for which \mathfrak{q} is the sum of the non-negative eigenspaces of $ad(x)$ acting on \mathfrak{l}.

Given a conjugacy class \bar{c} of $A_k(e)$, \mathfrak{l} has the **key property** for (e, \bar{c}) if $e \in \mathfrak{l}$ and there exits $z \in Z \cap K_{\bar{c}}$ such that

1. $z(Z \cap K_{\bar{c}})_o$ generates $\frac{Z \cap K_{\bar{c}}}{(Z \cap K_{\bar{c}})_o}$

2. $z(K^e_{\bar{c}})_o = \bar{c}$

Moreover if \mathfrak{l} is a minimal elliptic pseudo-Levi subalgebra with the key property for (e, \bar{c}) then e is noticed in \mathfrak{l}.
We know how to build minimal elliptic pseudo-Levi subalgebras with the key property for a given pair \((e, \bar{c})\).

Theorem (1999). There is a one to one correspondence between \(K_c\)-conjugacy classes of pairs \((e, \bar{z})\), where \(e\) is a nilpotent in \(\mathfrak{p}_c\), \(\bar{z} \in A_k(e)\) and \(K_c\)-conjugacy classes of triples \((l, q_l, w)\) where \(l\) is an elliptic pseudo-Levi subalgebra in which \(e\) is noticed, \(q_l\) is a noticed parabolic of \(l\) for \(e\), and \(w\) is a certain prehomogeneous space.
Example 1. Let $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{R})$. The two non-zero nilpotent orbits of \mathfrak{g} are parametrized by the matrices

$$e_1 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 1 \\ i & 1 & 0 \end{pmatrix}, \quad e_2 = \frac{1}{2} \begin{pmatrix} i & 1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

A computation gives:

$$A_k(e_1) = id \text{ and } A_k(e_2) = \mathbb{Z}_2$$

We obtain the following correspondence:

$$(e_1, id) \Leftrightarrow (\mathfrak{sl}_3(\mathbb{C}), b_1, w_1)$$

$$(e_2, id) \Leftrightarrow (\mathfrak{sl}_3(\mathbb{C}), b_2, w_2)$$

$$(e_2, -id) \Leftrightarrow (\mathfrak{sl}_2(\mathbb{C}) \oplus V, b_3, w_3)$$
Example 2. Let $g = \mathfrak{so}(3, 2)$. The complex nilpotent orbit $[3, 1, 1]$ splits into three classes e_1, e_2, e_3 in g.

\[
\begin{array}{cccc}
- & + & - & + \\
+ & & + & \\
+ & & - & \\
e_1, e_2 & & e_3 & \\
\end{array}
\]

\[
(e_1, id) \Leftrightarrow (\mathfrak{sl}_2(\mathbb{C}), b_1, w_1)
\]

\[
(e_1, -id) \Leftrightarrow (2\mathfrak{sl}_2(\mathbb{C}), b_2, w_2)
\]

\[
(e_2, id) \Leftrightarrow (\mathfrak{sl}_2(\mathbb{C}), b_3, w_3)
\]

\[
(e_2, -id) \Leftrightarrow (2\mathfrak{sl}_2(\mathbb{C}), b_4, w_4)
\]

\[
(e_3, id) \Leftrightarrow (\mathfrak{so}_5(\mathbb{C}), q, w_5)
\]

\[
(e_3, -id) \Leftrightarrow (2\mathfrak{sl}_2(\mathbb{C}), b_5, w_6)
\]
This theorem is an extension of the our classification which states:

The nilpotent orbits $K_C.e$ of g_C are in bijection with K_C-conjugacy classes of triples (l, q_l, w_l) where l is a (Θ, σ) Levi subalgebra of g_C in which e is noticed, q_l a noticed parabolic subalgebra of $[l, l]$ and w_l is an $L \cap K_C$-module in l.

In fact $(e, 1)$ always goes to this (Θ, σ)-stable Levi l.
REFERENCES:

