
How Good is Almost Perfect?

Malte Helmert and Gabriele Röger
Albert-Ludwigs-Universität Freiburg, Germany
{helmert,roeger}@informatik.uni-freiburg.de

Abstract

Heuristic search using algorithms such as A∗ and IDA∗ is
the prevalent method for obtaining optimal sequential solu-
tions for classical planning tasks. Theoretical analyses of
these classical search algorithms, such as the well-known re-
sults of Pohl, Gaschnig and Pearl, suggest that such heuristic
search algorithms can obtain better than exponential scaling
behaviour, provided that the heuristics are accurate enough.
Here, we show that for a number of common planning bench-
mark domains, including ones that admit optimal solution
in polynomial time, general search algorithms such as A∗

must necessarily explore an exponential number of search
nodes even under the optimistic assumption of almost per-
fect heuristic estimators, whose heuristic error is bounded by
a small additive constant.
Our results shed some light on the comparatively bad per-
formance of optimal heuristic search approaches in “simple”
planning domains such as GRIPPER. They suggest that in
many applications, further improvements in run-time require
changes to other parts of the search algorithm than the heuris-
tic estimator.

Introduction
Optimal sequential planning is harder than satisficing plan-
ning. While there is no difference in theoretical complexity
in the general case (Bylander 1994), many of the classical
planning domains are provably easy to solve sub-optimally,
but hard to solve optimally (Helmert 2003).

Moreover, strikingly different scaling behaviour of sat-
isficing and optimal planners has been observed in prac-
tice (Hoffmann and Edelkamp 2005). In fact, this dispar-
ity even extends to planning domains which are known to
be easy to solve optimally in theory. If we apply two state-
of-the-art optimal planning algorithms (Haslum et al. 2007;
Helmert, Haslum, and Hoffmann 2007) to the GRIPPER do-
main, neither of them can optimally solve more than 8 of the
standard suite of 20 benchmarks within reasonable run-time
and memory limits, whereas the whole suite is solved in a
few milliseconds by satisficing planners like FF (Hoffmann
and Nebel 2001). Moreover, those 8 tasks are quickly solved
by breadth-first search, showing no significant advantage of
sophisticated heuristic methods over brute force.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Why is this the case? One possible explanation is that
the heuristic estimators of these planning systems may be
grossly misleading for GRIPPER tasks. However, we do not
believe that this is the case – the GRIPPER domain in particu-
lar has resisted many attempts by optimal heuristic planners,
hinting at a different, more fundamental problem. In this
contribution, we argue the following claim:

For many, maybe all of the standard benchmark do-
mains in planning, standard heuristic search algorithms
such as A∗ quickly become prohibitively expensive
even if almost perfect heuristics are used.

We suggest that, beyond a certain point, trying to im-
prove a heuristic search algorithm by refining its heuristic
estimates is basically fruitless. Instead, one should look
for orthogonal performance enhancements such as symme-
try elimination (Fox and Long 1999) or domain simplifica-
tion (Haslum 2007) to improve the scaling behaviour of op-
timal planners – unless one can reach the extremely ambi-
tious goal of deriving perfect, and not merely almost perfect
heuristics.

Almost Perfect Heuristics
The performance of heuristic search is commonly measured
by the number of performed node expansions. Of course,
this measure depends on the search algorithm used; for ex-
ample, A∗ (Hart, Nilsson, and Raphael 1968) will usually
explore fewer states than IDA∗ (Korf 1985) in the same
search space, and never more (assuming that successors are
ordered in the same way).

Here, we consider lower bounds for node expansions of
the A∗ algorithm with full duplicate elimination. Results
for this algorithm immediately apply to other search algo-
rithms that rely exclusively on node expansions and admis-
sible heuristic estimates to guide search, such as IDA∗, A∗

with partial expansion (Yoshizumi, Miura, and Ishida 2000),
breadth-first heuristic search (Zhou and Hansen 2006), and
many more. However, they do not apply to algorithms that
use additional information for state pruning, such as sym-
metry reduction, and neither to algorithms that use funda-
mentally different techniques to find optimal plans, such as
symbolic breadth-first search (Edelkamp and Helmert 2001)
or SAT planning (Kautz and Selman 1999).

How many nodes does A∗ expand for a planning task T ,

given an admissible heuristic h? Clearly, this depends on
the properties of T and h. It also depends on some rather
accidental features of the search algorithm implementation,
in particular on the order in which nodes with identical f
values are explored. Because we are interested in lower
bounds, one conservative assumption is to estimate the so-
lution effort by the number of states s with the property
f(s) := g(s) + h(s) < h∗(T), where g(s) is the cost
(or distance – we assume a unit cost model) for reaching
s from the initial state, h(s) is the heuristic estimate for s,
and h∗(T) is the optimal solution cost for T . All states with
this property must be considered by A∗ in order to guarantee
that no solutions of length below h∗(T) exist. In practice, a
heuristic search algorithm will also expand some states with
f(s) = h∗(T), but we ignore those in our estimates.

Our aim is to demonstrate fundamental limits to the scal-
ing possibilities of optimal heuristic search algorithms when
applied to planning tasks. For this purpose, we show that
A∗ search effort already grows extremely fast for a fam-
ily of very powerful heuristic functions. More precisely,
we consider heuristics parameterized by a natural number
c ∈ N1 where the heuristic estimate of state s is defined as
max(h∗(s)− c, 0), with h∗(s) denoting the length of an op-
timal solution from state s as usual. In the following, we use
the notation “h∗ − c” to refer to this heuristic (not reflecting
the maximization operation in the notation). In other words,
(h∗ − c)(s) := max(h∗(s)− c, 0).

We call heuristics like h∗ − c, which only differ from
the perfect heuristic h∗ by an additive constant, almost per-
fect. Almost perfect heuristics are unlikely to be attainable
in practice in most planning domains. Indeed, for any of
the planning benchmark domains from IPC 1–4 that are NP-
hard to optimize, if there exists a polynomial-time com-
putable almost perfect heuristic, then APX = PTAS and
hence P = NP (Helmert, Mattmüller, and Röger 2006).

Throughout our analysis, we use the notation N c(T) to
denote the A∗ node expansion lower bound for task T when
using heuristic h∗ − c. In other words, N c(T) is the num-
ber of states s with g(s) + (h∗ − c)(s) < h∗(T). This
can be equivalently expressed as the number of states with
f∗(s) := g(s) + h∗(s) < h∗(T) + c and g(s) < h∗(T).
The objective of our analysis is to provide results for N c(T)
for planning tasks T drawn from the standard IPC bench-
mark domains, focusing on the “easiest” domains, namely
those that fall within the approximation class APX (Helmert,
Mattmüller, and Röger 2006). These domains are partic-
ularly relevant because they would intuitively appear most
likely to be within reach of optimal planning techniques.

Related Work
There is quite a bit of literature on the computational costs
of A∗ and related algorithms. A widely cited result by Pohl
(1977) considers precisely the kind of heuristics we study in
this paper, i. e., those with constant absolute error. He proves
that the A∗ algorithm requires a linear number of node ex-
pansions in this case. However, the analysis relies on certain
critical assumptions which are commonly violated in plan-
ning tasks. First, it assumes that the branching factor of the

search space is constant across inputs. If the branching fac-
tor is polynomially related to input size, as is often the case
in planning, the number of node expansions is still polyno-
mial in the input size for a fixed error c, but of an order that
grows with c. More importantly, the analysis requires that
there is only a single goal state and that the search space
contains no transpositions. The latter assumption, critical to
Pohl’s tractability result, is violated in all common bench-
mark tasks in planning. For example, in the following sec-
tion we show that the GRIPPER domain requires an exponen-
tial number of node expansions even with very low heuristic
inaccuracies due to the large number of transpositions. Pohl
also considers the case of heuristics with a constant relative
error, i. e., h(s) ≈ c · h∗(s) for some constant c < 1. How-
ever, as our negative results already apply to the much more
optimistic case of constant absolute error, we do not discuss
this analysis.

Gaschnig (1977) extends Pohl’s analysis to logarithmic
absolute error (i. e., h∗(s)− h(s) = O(log(h∗(s)))), show-
ing that A∗ also requires a polynomial number of expansions
under this less restrictive assumption. However, his analy-
sis requires the same practically rare search space properties
(no transpositions, a single goal state).

Both Pohl’s and Gaschnig’s work is concerned with
worst-case results. Pearl (1984) extends their analyses by
showing that essentially the same complexity bounds apply
to the average case.

More recently, Dinh et al. (2007) consider heuristics with
constant relative error in a setting with multiple goal states.
While this is a significant step towards more realistic search
spaces, absence of transpositions is still assumed.

In addition to these analyses of A∗, the literature contains
a number of results on the complexity of the IDA∗ algo-
rithm. The article by Korf et al. (2001) is particularly rel-
evant in the planning context, because it presents an analy-
sis which has recently been used to guide heuristic selection
in the very effective optimal sequential planner of Haslum
et al. (2007). Korf et al. show that IDA∗ expands at most∑k

i=0 NiP (k − i) nodes to prove that no solution of length
at most k exists (or to find such a solution, if it exists). Here,
Ni is the number of nodes at depth i in the search tree, and
P (m) is the probability that a randomly drawn node “deep”
in the search tree has a heuristic value of m.

However, the formula only applies to IDA∗, and only in
the limit of large k. We are interested in lower bounds on
complexity for any general heuristic search algorithm, in-
cluding ones that perform complete duplicate elimination.
In that case, the number of states Ni at depth i eventually
becomes zero, so that it is not clear what results that apply
“in the limit of large k” signify. Moreover, with complete
duplicate elimination, there is no reasonable way of defining
the equilibrium distribution P . Therefore, we do not discuss
this complexity result further.

Theoretical Results
There are several ways of obtaining N c(T) estimates. One
way is to measure them empirically for particular values of
c and particular tasks T by using an algorithm that conducts

b1

b4b3b2

b1

b4b3b2

Figure 1: Initial state and goal of GRIPPER task T4.

A∗ searches with the h∗ − c heuristic. One advantage of
this method is that it is fully general – it can be directly ap-
plied to arbitrary planning tasks, and any value c ∈ N1. We
present some results obtained by this method in the follow-
ing section.

However, the empirical approach has some drawbacks.
Firstly, it is computationally expensive and thus limited to
comparatively small planning tasks (in particular, a subset
of those which we can solve optimally by heuristic search).
Secondly, its results are fairly opaque. In addition to know-
ing lower bounds for a certain set of planning tasks, we
would also like to know why they arise, and how to extra-
polate them to instances of larger size. For these purposes,
theoretical results are preferable.

In this section, we present such theoretical results for
three planning domains: GRIPPER, MICONIC-SIMPLE-
ADL, and BLOCKSWORLD. We assume familiarity with
these domains and point to the literature (Helmert 2008) for
definitions and details. We choose these particular domains
because we consider them fairly representative of the IPC
domains in class APX. Similar theorems can be shown for
most other APX domains such as MICONIC-STRIPS, LO-
GISTICS, ZENOTRAVEL, DEPOTS, and SCHEDULE.

Our theorems take the form of worst case results: In each
of the domains, we show that there exist tasks of scaling size
for which the number of states expanded by h∗ − c grows
exponentially. One problem with worst case considerations
is that they might only apply in some fairly unusual “cor-
ner cases” that are unlikely to arise in practice. We partially
avoid this problem by discussing families of tasks of differ-
ent types. For example, we can observe exponential scaling
of N i(T) both for families of BLOCKSWORLD tasks where
initial and goal configurations consist of a single tower and
for families of tasks consisting of a large number of small
towers. Still, average-case results are clearly also of inter-
est, and are left as a topic for future work.

GRIPPER

In the GRIPPER domain, a robot with two arms needs
to transport a number of balls from one room to another
(Fig. 1). GRIPPER tasks are completely characterized by the
number of balls, so there is no difference between worst-case
and average-case results in this domain. We denote with Tn

the task with n balls. The total number of reachable states of
Tn is Sn := 2 · (2n +2n2n−1 +n(n− 1)2n−2). (The initial
factor of 2 represents the two possible robot locations; the
three terms of the sum correspond to the cases of 0, 1 and 2
carried balls, respectively, and represent the contents of the

Figure 2: Initial state and goal of MICONIC task T4.

robot arms and the locations of the balls not being carried.
Note that the two robot arms can be distinguished.) We now
state our main result for GRIPPER.

Theorem 1 Let n ∈ N0 with n ≥ 3. If n is even, then
N1(Tn) = N2(Tn) = 1

2Sn− 3 and N c(Tn) = Sn− 2n− 2
for all c ≥ 3. If n is odd, then N1(Tn) = N2(Tn) = Sn − 3
and N c(Tn) = Sn − 2 for all c ≥ 3.

Proof sketch: In the case where n is even, we call a state
s even if the number of balls in each room is even, and odd
otherwise. (Balls carried by the robot are counted towards
the room in which the robot is located.)

The basic proof idea is that if n is even, then all even states
apart from the two states where all balls are in the same room
and the robot is in the other room are part of some optimal
plan. Moreover, all odd states are parts of plans of length
h∗(Tn) + 2. (However, 2n odd states are still ruled out from
N c(Tn) because their g value exceeds h∗(Tn).)

In the case where n is odd, all states except for the two
states where all balls are in the same room and the robot is
in the other room are part of some optimal plan.

The theorem shows that there is little hope of achieving
significant pruning for GRIPPER by using heuristic estima-
tors, even in the easier case where the number of balls is
even. With a heuristic error of 1, about half of all reachable
states need to be considered already, because they all lie on
optimal paths to the goal. Moreover, once the heuristic error
is greater than 2, the A∗ algorithm has essentially no prun-
ing power, and offers no advantage over breadth-first search
with duplicate elimination.

MICONIC-SIMPLE-ADL

In the MICONIC domain family, there is an elevator moving
between the floors of a building. There are passengers wait-
ing at some of the floors; the goal is to transport each passen-
ger to their destination floor. In the MICONIC-SIMPLE-ADL
domain variant, there are movement actions, which move the
elevator from one floor to any other floor in a single step, and
stop actions, which drop off all boarded passengers whose
destination is the current floor and cause all passengers wait-
ing to be served at that floor to enter.

We consider the following family of MICONIC-SIMPLE-
ADL tasks Tn: There are (n + 1) floors and n passengers.
The elevator is initially located at the bottom floor, which is
also the destination of all passengers. There is one passen-
ger waiting to be served at each floor except the bottom one
(Fig. 2).

An optimal plan for Tn clearly needs h∗(Tn) = 2(n + 1)
steps: Move to each floor where a passenger is waiting and
stop there. Once all passengers are boarded, move to the
destination floor and stop again to drop off all passengers.

Altogether there are Sn := 3n(n + 1) states in the search
space (each passenger can be waiting, boarded, or served;
the elevator can be at (n + 1) different locations). Some of
these states are never expanded by A∗ with any heuristic (not
even by h = 0) before the final search layer, because they
cannot be reached within less than h∗(Tn) steps. However,
the number of such states is fairly small, and all other reach-
able states must be expanded by A∗ if the heuristic error is
at least 4.

Theorem 2 For all c ≥ 4, N c(Tn) = Sn− (2n−1)(n+1).

Proof sketch: As noted above, h∗(Tn) = 2(n + 1), which
means that nodes with g(s) ≥ 2(n + 1) cannot possibly be
expanded before the final f layer of the A∗ search (which
our definition of N c optimistically excludes from consider-
ation). These nodes can be exactly characterized: A state s
requires at least 2(n + 1) actions to reach iff no passenger
is waiting and at least one passenger is served in s. (Un-
der these conditions, the elevator must have moved to and
stopped at each of the (n + 1) locations at least once, which
requires 2(n+1) actions.) There are exactly (2n−1)(n+1)
states of this kind, where the first term characterizes the
2n− 1 possible nonempty sets of served passengers, and the
second term characterizes the possible elevator locations.

Now let s be an arbitrary state which is not of this form
and where the elevator is at floor l. Consider the following
plan: First collect all passengers which are served in s and
drop them off at the bottom floor (if there are any such pas-
sengers), then collect all passengers boarded in s, then move
to l if not already there. (At this point, we are in state s.)
Finally, pick up the remaining passengers and drop them off
at the bottom floor. The plan contains no loops, visits s after
less than 2(n + 1) steps, and has length at most h∗(Tn) + 3.
Together, these facts imply that s will be counted towards
N c(Tn) for c ≥ 4.

We remark that the fraction of states not expanded by
h∗−4 according to our optimistic assumptions is almost ex-
actly (2

3)n, which quickly tends towards zero as n increases.
Thus, for larger values of n, heuristics with an error of 4
have no significant advantage over blind search.

We also remark that a similar construction is possible with
tasks where all origin and destination floors are disjoint.

BLOCKSWORLD

In the BLOCKSWORLD domain blocks stacked into towers
must be rearranged by a robotic arm which can pick up the
top block of a tower and place it on another tower or on the
table.

One easy way of defining a family of BLOCKSWORLD
tasks for which non-perfect heuristics must perform expo-
nential amounts of search is to create a linear number of “in-
dependent” subproblems. (This is a general idea that works
for a large number of benchmark domains, including many
of those not discussed here.) One example is an initial state
with n stacks of two blocks each, each of which needs to be

b1

b2

b3

b4

b4

b1

b2

b3

Figure 3: Initial and goal state of BLOCKSWORLD task T4.

n N1(Tn) n N1(Tn)
2 4 9 3748
3 8 10 17045
4 15 11 84626
5 32 12 453698
6 82 13 2605383
7 253 14 15924744
8 914 15 103071652

Figure 4: Lower bound of the number of expanded states in
a BLOCKSWORLD task Tn with heuristic error c = 1.

reversed in the goal. Since the independent subplans can be
interleaved arbitrarily, there are exponentially many states
that are part of optimal plans, which implies that N1(Tn)
grows exponentially.

However, we can prove a similar result even in the case
where all blocks are stacked into a single tower in the ini-
tial state and goal. Consider the class of BLOCKSWORLD
instances Tn (n ≥ 2) where one block shall be moved from
the top of a tower with n blocks to the base of the tower
(Fig. 3).

For these tasks, a heuristic planner needs to expand an
exponential number of states – even if the heuristic has only
an error of c = 1. The number N1(Tn) of states that need to
be expanded depends on the Bell numbers Bk (defined as the
number of partitions of a set with k elements), which grow
exponentially in k. More precisely, we get the following
formula (technical proof omitted):

N1(Tn) = 4 ·
n−3∑
k=0

Bk + 3Bn−2 + 1

To get an impression of the rate of growth of N1(Tn),
values for n = 2, . . . , 15 are depicted in Fig. 4.

Empirical Results
We have seen that the h∗ − c family of heuristics has sur-
prisingly bad theoretical properties in a number of com-
mon planning domains. This result immediately prompts
the question: Can we observe this behaviour in practice?

To answer this question, we have devised an algorithm to
compute N c(T) values and applied it to planning tasks from
the IPC benchmark suite. One obvious problem in comput-
ing these values is that they are defined in terms of the per-
fect heuristic estimate of a state h∗(s), which usually cannot
be determined efficiently. (Otherwise, there would be no
need to write this paper.)

h
∗(T)

h
∗(T) + c− 1

Figure 5: Schematic view of the search space. Goal nodes
are depicted as diamonds, others as circles. Solid nodes be-
long to N c(T); hollow ones do not.

One possible way of computing N c(T) is to completely
explore the state space of T , then search backwards from the
goal states to determine the h∗(s) values. However, gener-
ating all states is not actually necessary. Recall that we are
interested in N c(T), which is the number of states s with
g(s) + (h∗ − c)(s) < h∗(T). Obviously, all these states are
reachable within less than h∗(T) steps from the initial state.
Furthermore, they must have a descendant which is a goal
state and has a depth of at most h∗(T)+c−1 (Fig. 5). Thus,
for determining h∗(s) for the relevant nodes s, it is sufficient
to know all goal states until that depth. For this purpose, we
employ a consistent and admissible heuristic to expand all
nodes up to and including the f layer h∗(T) + c− 1.

In summary, we use the following algorithm:

1. Perform an A∗ search with an arbitrary consistent, admis-
sible heuristic until a goal state is found at depth h∗(T).

2. Continue the search until all states in layer h∗(T) + c− 1
have been expanded.

3. Determine the optimal goal distance h∗(s) within the ex-
plored part of the search space for all expanded nodes s
by searching backwards from the detected goal states.

4. Count the nodes with g(s) + (h∗ − c)(s) < h∗(T).

The outcome of the experiment is shown in Fig. 6. For
all IPC tasks from the domains considered, we attempted to
measure N c(T) for c ∈ {1, 2, 3, 4, 5} using the technique
outlined above. Instances within a domain are ordered by
scaling size; in cases where the IPC suite contains several
tasks of the same size, we only report data for the one that
required the largest search effort. Results are shown up to
the largest instance size for which we could reliably com-
plete the computation for c = 1 within a 3 GB memory
limit. (Blank entries for c > 1 correspond to cases where
the memory limit was exceeded for these larger values.)

For the GRIPPER domain and both MICONIC variants, the
theoretical worst-case results are clearly confirmed by the
outcome of the experiments. Even for c = 1, run-time of the
algorithm scales exponentially with instance size. The data
for BLOCKSWORLD and LOGISTICS is less conclusive, but
there appears to be a similar trend (for BLOCKSWORLD, this
is most pronounced for c = 5).

task h∗(T) N1(T) N2(T) N3(T) N4(T) N5(T)

BLOCKSWORLD

04-1 10 10 10 16 16 29
05-2 16 28 28 72 72 162
06-2 20 27 27 144 144 476
07-1 22 106 106 606 606 2244
08-1 20 66 66 503 503 2440
09-0 30 411 411 3961 3961 21135
GRIPPER

01 11 125 125 246 246 246
02 17 925 925 1842 1842 1842
03 23 5885 5885 11758 11758 11758
04 29 34301 34301 68586 68586 68586
05 35 188413 188413 376806 376806 376806
06 41 991229 991229 1982434 1982434 1982434
07 47 5046269 5046269 10092510 10092510 10092510
LOGISTICS (IPC 2)
4-0 20 159 408 1126 1780 2936
5-0 27 459 2391 5693 14370 21124
6-0 25 411 2160 5712 14485 23967
7-1 44 17617 111756 427944 1173096
8-1 44 4843 27396 157645 558869
9-0 36 2778 15878 61507 183826 460737
10-0 45 10847
11-0 48 10495
MICONIC-SIMPLE-ADL

1-0 4 4 4 4 4 4
2-1 6 6 22 26 26 26
3-1 10 58 102 102 102 102
4-2 14 148 280 470 560 560
5-1 15 209 759 1136 1326 1399
6-4 18 397 948 1936 2844 3436
7-4 23 3236 7654 11961 15780 16968
8-3 24 1292 5870 15188 25914 34315
9-3 28 20891 39348 39348 39348 39348
10-3 28 6476 16180 65477 129400 224495
11-3 32 58268 130658 258977 399850 497030
12-4 34 83694 181416 541517 970632 1640974
13-2 40 461691 947674 2203931 3443154 4546823
MICONIC-STRIPS

1-0 4 4 4 4 4 4
2-1 7 18 29 34 37 37
3-1 11 70 138 195 241 251
4-4 15 166 507 814 1182 1348
5-4 18 341 1305 2708 4472 5933
6-4 21 509 2690 7086 13657 21177
7-4 25 3668 13918 32836 61852 95548
8-3 28 4532 35529 97529 205009 349491
9-3 32 25265 114840 321202 700640 1239599
10-3 34 8150 97043 423641 1151402 2505892

Figure 6: Empirical results for IPC benchmark tasks.

Extrapolating from the expansion counts in the figure, it
appears unlikely that a standard heuristic search approach
can be used to solve GRIPPER tasks of size beyond 10–12,
or reliably solve MICONIC tasks of size beyond 16–18.

Discussion
We have presented an analysis of heuristic search algorithms
for optimal sequential planning in some standard planning
domains under the assumption of almost perfect heuristics.
Theoretical and empirical results show an exponential cost
increase as tasks grow larger. In many cases, such as the
GRIPPER domain and a family of MICONIC tasks, there is no
significant difference in node expansions between A∗ with
an almost perfect heuristic and breadth-first search.

We argue that this is not just a theoretical problem. There
is a barrier to the scaling capabilities of A∗-family algo-
rithms, and current optimal heuristic planners are pushing
against it. To break the barrier, other ideas are needed.

One possible source of such ideas is the literature on
domain-dependent (optimal) search. For example, Jung-
hanns and Schaeffer (2001) observe that their Sokoban
solver Rolling Stone only solves 5 out of 90 problem in-

stances from the standard benchmark suite when using only
the basic heuristic search algorithm with transposition ta-
bles. When coupled with other, domain-specific search en-
hancements, the total number of problem instances solved
increases to 57 out of 90. Many of the techniques they
present easily generalize to domain-independent planning.

However, several of the search enhancements they con-
sider would not improve our analysis, which already makes
a number of optimistic assumptions. For example, their use
of move ordering only helps in the last search layer, which
we optimistically ignored in our analysis. Their use of dead-
lock tables to detect and prune states with infinite heuristic
values cannot improve the performance of our almost perfect
heuristics, which by definition detect all infinite-heuristic
states reliably (otherwise the heuristic error of these states
would exceed the given constant). Other search enhance-
ments, such as overestimation and relevance cuts either lose
optimality or even completeness of the search algorithm.

A few techniques remain that may reduce the numbers in
our analysis. These are mostly forward pruning techniques,
which limit the set of allowed interleavings of independent
parts of the solution (e. g., tunnel macros). However, these
techniques are the ones that are most Sokoban-specific, and
finding a widely useful generalization appears challenging.
Some of these ideas are closely related to the concept of
partial-order reductions in model checking, which are pow-
erful for tree searches, but difficult to integrate into algo-
rithms that prune duplicates such as A∗.

One type of partial-order reduction that has been studied
before in the context of domain-independent planning and
in our opinion deserves further attention is symmetry reduc-
tion (Fox and Long 1999). For example, by detecting and
exploiting the equivalence of the balls of a GRIPPER task,
we can easily solve arbitrarily large tasks in this domain in
low-order polynomial time. However, clean, general ideas
for exploiting symmetries in planning tasks are still few.

Another approach that we deem to be promising that has
not been thoroughly explored yet is problem simplification
(Haslum 2007). The main difficulty in optimal sequential
planning does not lie in finding the optimal plan; it lies in
proving that no shorter plan exists. Cutting down the number
of possibilities for “wasting time” by performing irrelevant
actions may be a key idea for this. This is another research
area that is wide open for future work.

Acknowledgments
This work was supported by the German Research Council
(DFG) by DFG grant NE 623/10-1 and as part of the Trans-
regional Collaborative Research Center “Automatic Veri-
fication and Analysis of Complex Systems” (SFB/TR 14
AVACS). See http://www.avacs.org/ for more information.

References
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1–2):165–204.
Dinh, H.; Russell, A.; and Su, Y. 2007. On the value of
good advice: The complexity of A∗ search with accurate
heuristics. In Proc. AAAI 2007, 1140–1145.

Edelkamp, S., and Helmert, M. 2001. The model check-
ing integrated planning system (MIPS). AI Magazine
22(3):67–71.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proc. IJCAI-99,
956–961.
Gaschnig, J. 1977. Exactly how good are heuristics? To-
ward a realistic predictive theory of best-first search. In
Proc. IJCAI-77, 434–441.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc.
AAAI 2007, 1007–1012.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In Proc. IJCAI 2007, 1898–1903.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M.; Mattmüller, R.; and Röger, G. 2006. Approx-
imation properties of planning benchmarks. In Proc. ECAI
2006, 585–589.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. AIJ 143(2):219–262.
Helmert, M. 2008. Understanding Planning Tasks – Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNAI. Springer-Verlag.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. JAIR 24:519–579.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: En-
hancing general single-agent search methods using domain
knowledge. AIJ 129(1–2):219–251.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI-99, 318–325.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time com-
plexity of iterative-deepening A∗. AIJ 129:199–218.
Korf, R. E. 1985. Depth-first iterative-deepending: An
optimal admissible tree search. AIJ 27(1):97–109.
Pearl, J. 1984. Heuristics: Intelligent Strategies for Com-
puter Problem Solving. Addison-Wesley.
Pohl, I. 1977. Practical and theoretical considerations in
heuristic search algorithms. In Elcock, E. W., and Michie,
D., eds., Machine Intelligence 8. Ellis Horwood. 55–72.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A∗ with
partial expansion for large branching factor problems. In
Proc. AAAI 2000, 923–929.
Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. AIJ 170(4–5):385–408.

