
Sacrificing overall classification quality to improve

classification accuracy of well-sought classes

Kevin M. Amaral

kevin.m.amaral@gmail.com

Department of Computer Science

University of Massachusetts Boston

Ping Chen

Ping.Chen@umb.edu

Department of Engineering

University of Massachusetts Boston

Wei Ding

ding@cs.umb.edu

Department of Computer Science

University of Massachusetts Boston

Rajani Sadasivam

Rajani.Sadasivam@umassmed.edu

Division of Health Informatics and Implementation Science

University of Massachusetts Medical School

Abstract—Classification has been an active field in machine
learning for decades. With many methods proposed for various
topics in classification, this paper intends to show some initial
ideas and findings in one classification scenario where accuracy
of only one or a few classes is greatly valued, while the other
classes are not important. Using a neural network model and
challenging real world dataset, our preliminary results showed
the accuracy of important class was significantly improved by
sacrificing the accuracy of unimportant classes.

I. INTRODUCTION

Generally, the goal of classification is to identify each class

with a high rate of accuracy [2]. However, there are cases in

which we are willing to sacrifice the accuracy of less valuable

classes to improve the accuracy of a well-sought subset of

classes especially in real-world data. In this paper, we will

describe a real-world scenario in which we want to maximize

the accuracy of an individual class in an unbalanced dataset

with little regard for those separated out. Further, we will

show the success of creating sacrificial additional classes

and the circumstances in which they out-perform a binary

classification.

II. METHOD

We adopt a run-of-the-mill neural network as our classifica-

tion model, which includes one input layer, two hidden layers,

one logistic regression layer, and one Softmax + Argmax

Layer for single class output [1]. The detailed process is

described below.

A. Formal Construction

First, instances were organized in an array X as column

vectors. Let W1 be the weight matrix between the input

layer and the first hidden layer and let �b1 be the bias term

corresponding to the first hidden layer. Let tanh represent

the component-wise hyperbolic tangent function. O1 is the

matrix of output vectors from the first hidden layer.

Let W2 be the weight matrix between the output of the

first hidden layer and second hidden layer and let �b2 be the

bias term corresponding to the second hidden layer. O2 is the

matrix of output vectors from the second hidden layer. This

has the same overall structure as the previous layer.

Let W3 be the weight matrix between the second hidden

layer and the logistic regression layer and let �b3 be the

bias term corresponding to the logistic regression layer.

Let σi be the ith component of the softmax function over

appropriately-many dimensions, the number of classes. Let C

be the collection of classes as numeric indexes. ŷ is the row-

vector corresponding to the predicted class labels of each data

instance in X .

Our model is formally calculated as

O1 = tanh
(
W1X +�b1

)
(1)

O2 = tanh
(
W2O1 +�b2

)
(2)

ŷ = argmax
c∈C

σc

(
W3O2 +�b3

)
(3)

We define the addition above between matrices and column

vectors �bi is defined as the addition of �bi to each column of

the matrix.

In training the model, mean negative log likelihood was

used as our measure of fitness. Below is the formula for mean

negative log likelihood:

N̂LL = −Ec

(
log

(
σc

(
W3O2 +�b3

)))
(4)

Minimizing the negative log likelihood function is equiva-

lent to maximizing the likelihood function by the monotonic-

ity property of the natural logarithm. Though they take their

extrema at the same points, the log of the likelihood function

has nicer properties.

Likelihood values are more often than not strictly less than

1. Taking derivatives of the likelihood function with respect

to a large number of parameters will strain the precision of

system in which the model was built and run. Taking the log

alleviates the precision strain by mapping values less than 1

to larger negative values with larger differences.

2016 IEEE 16th International Conference on Data Mining Workshops

2375-9259/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDMW.2016.190

1179

Many more niceties of the log likelihood function are

realized with respect to actually calculating the derivatives. In

our work, we utilized the auto-differentiation system included

in Theano [6] so as not to preoccupy ourselves with the

difficulty of calculating differentials regardless of the ease

awarded by our choice of fitness measure.

Each of our weight matrices Wi and bias terms �bi were

updated during the training process using gradient descent

with λ = 0.3. The update rules are shown below:

w
j,k
i ← w

j,k
i − λ

∂N̂LL

∂w
j,k
i

(5)

b
j
i ← b

j
i − λ

∂N̂LL

∂b
j
i

(6)

III. EVALUATION WITH A REAL-WORLD APPLICATION

A. Dataset Description

We evaluated our approach with a real-world Share2Quit

dataset [4], which consists of smokers who were invited

into the Share2Quit program. In this program, smokers were

encouraged and incentivized to participate in an online peer

recruitment study. The goal of this study was for smokers to

recruit their friends and family smokers to also participate in

an online tobacco cessation intervention [5]. This recruitment

portion is usually the focus of smoking-cessation researchers.

Each user was provided an opportunity to recruit friend

and family smokers for 30 days. A successful recruitment

was defined as when a peer recruited smoker registered on

the online tobacco intervention. Further details of this study

has been published in [3]. Afterwards, each member they

recruited would count towards their individual recruitment

counts. Each recruiter was incentivized up until their seventh

(7th) recruit, after which they did not receive additional

rewards for recruitment. As can be later seen in our numbers,

recruiters with recruitment counts of seven (7) spike, after

which very few continue to recruit more members.

The overall goal is to identify and target specifically the

users who are willing to recruit many additional members to a

program given incentives. If such members can be identified,

fiscal resources can be pooled and directed towards those

members to maximize the program’s reach within a limited

budget, without wasting funds on ineffective members.

Our dataset consists of a total of 1643 users, 264 of which

actively recruited and 1379 of which did not recruit other

users. Of the actively recruiting class 214 of those users

were picked to be seed recruiters while 50 were not. Users

were separated into three (3) classes based on their realized

recruitment counts: the first class was for users who recruited

3 or fewer recruits (1441 class members), the second class

was for users who recruited between 4 and 6 recruits (37 class

members), and the third class was for users who recruited 7

or more recruits (135 class members). For testing the model

the dataset was randomly shuffled and split into a training set

of 800 users, a validation set of 400 users, and a testing set

of 443 users.

Recruit Counts Participants

0 1379

1 24

2 9

3 28

4 19

5 17

6 31

7 129

8 5

14 1

Fig. 1. Recruitment counts by the number of participants who achieved
these counts

For each user, demographic information and entry survey

data was collected; a total of 69 features were constructed

from this information for use with our experiments. This data

ranged from race, gender, age, educational status, marital

status, social network, to a wide range of smoking habit-

related questions.

B. Neural Network Model Setting

We used a run-of-the-mill neural network with the follow-

ing architecture:

• Input Layer of 69 nodes.

• First Hidden Layer of 100 nodes.

• Second Hidden Layer of 100 nodes.

• Logistic Regression Layer of one node per class.

• Softmax + Argmax Layer for single class output.

The model was trained using negative log likelihood as a

cost function and the training process was terminated after the

cost over the validation subset ceased to improve significantly.

The model was then tested over the test set for our results in

the experiments section.

The number of nodes at each hidden layer were selected

empirically. In the model construction phase, more analysis

will be done in future for a more optimal neural network ar-

chitecture. This model is tried-and-true method and provides

a baseline for our investigation into our problem.

C. Results and Discussion

In the first experimental run, we achieved an accuracy over

the testing set of 95.93%. However, this hides the strength

of the model due to the high quantity testing accuracy of the

first class. More importantly, we achieved a testing in-class

accuracy for the third class of 88.89%. Given that the third

class corresponds to users who maximized the recruitment

potential of the entire dataset, having a high accuracy for

this class over the others is highly desirable.

In the second experimental run, with the same parameters

but a different shuffle of the dataset, the model had an

overall testing accuracy of 96.16% and an in-class accuracy

of 93.54% for the third class.

To ensure that our choice of class labels was reasonable,

additional experiments were performed with a relabeling of

1180

Class 1 Class 2 Class 3

Training 704 32 64

Validation 345 20 35

Testing 392 15 36

Fig. 2. Original Labeling, First Run, Counts

Class 1 Class 2 Class 3 Total

Training 98.58 56.25 90.63 96.25

Validation 97.97 40.00 88.57 94.25

Testing 98.21 53.33 88.89 95.93

Fig. 3. Original Labeling, First Run, Accuracies

Class 1 Class 2 Class 3

Training 693 35 72

Validation 353 15 32

Testing 395 17 31

Fig. 4. Original Labeling, Second Run

Class 1 Class 2 Class 3 Total

Training 98.56 74.29 80.56 95.88

Validation 97.45 66.67 100.00 96.50

Testing 96.96 82.35 93.54 96.16

Fig. 5. Original Labeling, Second Run, Accuracies

the dataset. In the first additional experiment (Relabeling

1), the first class included users who recruited 2 or fewer,

the second class between 3 and 4, and the third class 5 or

more. Testing accuracy for this experiment was 86.23%, with

a 38.80% in-class accuracy for the third class. In this and

all proceeding relabeling experiments, note that the testing

accuracy has different baselines and is heavily biased by the

size of the worst-recruiting class. Closer attention should be

paid to the in-class accuracies of each class.

Recruit Counts 0 - 2 3 - 4 5+

Training 700 19 81

Validation 342 11 47

Testing 371 17 55

Fig. 6. Relabeling 1

0 - 2 3 - 4 5+ Total

Training 98.42 0.00 41.98 90.37

Validation 97.95 0.00 42.55 88.75

Testing 99.46 0.00 45.45 88.94

Fig. 7. Relabeling 1, Accuracies

In the second additional experiment (Relabeling 2), we

separated the first class into additional class for users who

recruited 0 recruits, keeping the other classes the same.

In this experiment, we achieved 90.74% testing accuracy

and 58.54% in-class accuracy for the best-recruitment class.

While we did perform better in both the in testing accuracy

and in-class accuracy of the best-recruitment class, we did not

achieve even comparable accuracy with that of the original

class labelings.

Recruit Counts 0 1 - 2 3 - 4 5+

Training 664 16 26 94

Validation 331 12 9 48

Testing 385 5 12 41

Fig. 8. Relabeling 2

0 1 - 2 3 - 4 5+ Total

Train. 98.49 0.00 0.00 53.19 88.00

Valid. 97.58 0.00 0.00 58.33 87.75

Test. 98.18 0.00 0.00 58.54 90.74

Fig. 9. Relabeling 2, Accuracies

The previous two relabelings tested the hypothesis that

potentially the model could classify more precise binnings

of the dataset. We’ve shown empirically that this is not

the case. The next two relabelings will test the hypothesis

that the model is able to increase performance by reducing

the problem to a binary classification problem of only two

classes.

In the third additional experiment (Relabeling 3), the first

class consisted of users who recruited 3 or fewer recruits and

the second class consisted of users who recruited 4 or more

recruits. This resulted in a testing accuracy of 89.61% and an

in-class accuracy of 27.78% for the best-recruitment class.

Recruit Counts 0 - 3 4+

Training 708 92

Validation 344 56

Testing 389 54

Fig. 10. Relabeling 3

Recruit Counts 0 - 3 4+ Total

Training 97.88 46.74 92.00

Validation 98.55 46.43 91.25

Testing 98.20 27.78 89.61

Fig. 11. Relabeling 3, Accuracies

In the fourth additional experiment (Relabeling 4), the first

class consisted of users who recruited 6 or fewer recruits and

the second class consisted of users who recruited 7 or more

recruits. This resulted in a testing accuracy of 92.10% and

an in-class accuracy of 2.94% for the best-recruitment class.

Recruit Counts 0 - 6 7+

Training 741 59

Validation 358 42

Testing 409 34

Fig. 12. Relabeling 4

1181

Recruit Counts 0 - 6 7+ Total

Training 100.00 3.39 92.88

Validation 99.72 4.76 89.75

Testing 99.51 2.94 92.10

Fig. 13. Relabeling 4, Accuracies

As we can see from Relabelings 3 and 4, binary classifica-

tion is a more difficult problem if our end-goal is to increase

accurate classification of users in the best-recruitment class.

Even though the best-recruitment class in Relabeling 4 was

the same as in the original experiment, we performed worse

by orders of magnitude.

IV. CONCLUSION

In this paper we presented our idea to achieve a higher clas-

sification accuracy of the highly-sought class by sacrificing

the accuracy of other unimportant classes. This high accuracy

was only achieved when the model was trained under the

guise of a multiclass classification problem, separating the

samples of unimportant classes into incidental and irrelevant

classes. We saw that this approach outperforms the binary

classification scheme for the same highly-sought class. This

is generally contrary to popular intuition that binary classi-

fication is an easier problem. In our future work, we will

explore this phenomena in-depth.

V. ACKNOWLEDGEMENT

Funding for this study was received from the National

Cancer Institute grant: R21 (R21CA158968). Dr. Sadasivam

is funded by a National Cancer Institute Career Development

Award (K07CA172677).

REFERENCES

[1] S. Haykin. Neural networks: A comprehensive foundation. MacMillan

Publishing Company, 1994.
[2] T. Mitchell. Machine learning. McGraw-Hill, 1997.
[3] R. S. Sadasivam, Cutrona SL, Volz E, Rao SR, and Houston TK. Web

based peer driven chain referrals for smoking cessation. Stud Health

Technol Inform, 2013;192:357-61.
[4] R. S. Sadasivam, M. Erik Volz, L. Rebecca Kinney, R. Sowmya Rao,

and K. Thomas Houston. Share2quit: Web-based peer-driven referrals
for smoking cessation. JMIR Res Protoc, 2(2):e37, Sep 2013.

[5] R.S. Sadasivam, Cutrona SL, Luger TM, Volz E, Kinney R, Rao SR,
Allison JJ, and Houston TK. Share2quit: Online social network peer
marketing of tobacco cessation systems. Nicotine Tob Res., 2016 Jul
22.

[6] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

1182

