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ABSTRACT
Counting craters is a fundamental task of planetary sci-
ence because it provides the only tool for measuring relative
ages of planetary surfaces. However, advances in surveying
craters present in data gathered by planetary probes have
not kept up with advances in data collection. One chal-
lenge of auto-detecting craters in images is to identify an
image’s features that discriminate it between craters and
other surface objects. The problem of optimal feature se-
lection is known to be NP-hard and the search is compu-
tationally intractable. In this paper we propose a wrapper
based randomized feature selection method to efficiently se-
lect relevant features for crater detection. We design and
implement a dynamic programming algorithm to search for
a relevant feature subset by removing irrelevant features and
minimizing a cost objective function simultaneously. In or-
der to only remove irrelevant features we use Bernoulli Tri-
als to calculate the probability of such a case using the cost
function. Our proposed algorithms are empirically evaluated
on a large high-resolution Martian image exhibiting a heav-
ily cratered Martian terrain characterized by heterogeneous
surface morphology. The experimental results demonstrate
that the proposed approach achieves a higher accuracy than
other existing randomized approaches to a large extent with
less runtime.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Classier design and evalu-
ation; Feature evaluation and selection; Pattern analysis;
I.5.4 [Pattern Recognition]: Applications – Astronomy

General Terms
Algorithms, Experimentation, Verification.

Keywords
feature selection, classification, planetary and space science,
spatial data mining

1. INTRODUCTION
Impact craters are approximately circular depressions in the
surface of a planet or other solid body in the Solar Sys-
tem, formed by the hyper-velocity impact of smaller bodies
with the surface. Craters are among the most studied ge-
omorphological features in the Solar System because they
yield information about the past and present geological pro-
cesses and provide the only tool for measuring relative ages
of observed geologic formations [7]. It becomes extremely
challenging to automatically count a very large number of
small, sub-kilometer size craters in a deluge of high resolu-
tion planetary images. Identification of craters in remotely
sensed images can be considered as a special case of object
detection in images, which is an important task in computer
vision exemplified by a popular task of face detection. How-
ever, craters have characteristics unlike most objects tra-
ditionally subjected to automated identification in images,
because they are numerous, have large range of sizes, and
they continuously merge into a background.

The problem of optimal feature selection is known to be NP-
hard and the search is computationally intractable. We pro-
pose a wrapper based randomized feature selection method
to efficiently select relevant features for crater detection.
Wrapper approaches use the target induction algorithm to
evaluate subset of features. We design and implement a dy-
namic programming algorithm to search for relevant feature
subsets while removing irrelevant features and minimizing a
cost objective function simultaneously.

2. RELATED WORK
In this paper, we use a wrapper method to select features. A
wrapper method was coined by John, Kohavi, and Pfleger in
1994 [4], but the technique was used originally by Devijver
and Kittler in 1982 [1]. A collection of subsets combined
with a wrapped classifier creates a space that has been ex-
plored before with various techniques. Our wrapper based
method fits into the supervised learning category [9, 5, 10].

3. BERNOULLI TRIALS BASED FEATURE
SELECTION

We use a binary search approach to simplify the detection of
relevant variables. Our proposed algorithm searches through
the feature subset space in search of irrelevant features to
discard, in order to achieve a more accurate classifier by
maximizing relevant features in the final subset.

Our method first calculates the number of features that



Symbol Description

n Number of features in the feature space
r Number of relevant features
k Number of features will be removed in each

iteration
T (n, r, k) The total cost of feature selection algo-

rithm based on n features, r relevant fea-
tures, and will remove k features

C(L, n− k) The cost of L learning algorithm with n−k
features

p+(n, r, k) The probability of successfully selecting k
irrelevant features

N−(n, r, k) Number of trials before a success
X i if the first success is on trial i(
1
n

)
Number of combination select 1 from n

E(X) Expectation of X

p−(n, r, k) The probability of successfully selecting k
relevant features

N+(n, r, k) Number of trials before a failure

Table 1: Description of notation

should be removed in each iteration, and then randomly se-
lects the calculated features for removing. Before removing
the selected features, we individually evaluate the features
and put the features that might be relevant back to the fea-
ture set. Our method then evaluates the new feature set and
if the error rate is smaller, we remove the selected features.
Otherwise, we randomly select and calculate features and
do the individual evaluation again. At the same time, we
count the number of trials. If the number of trials exceed
the number of expected fail trials it is hard to remove more
features. That is, the number of estimated relevant features
is too low. If the number of trials exceeds the number of ex-
pected success trials it too easy to remove features. That is,
the number of estimated relevant features is too high. We
use this principle to seek the number of relevant features.
The final subset is the set of relevant features. Table 1 sum-
marizes the notation used by our method to be discussed in
the following sections.

3.1 Cost Function
Given n features, some of the features are relevant, and some
are not, but we do not know how many relevant features
exist in n features. Our method tries to find the number
of relevant features as well as relevant features, in the same
time the algorithm reduces the total cost as small as possible.
By using the Bernoulli trials we get the number of times of
the learning algorithm will execute based on the number
of features removed from the feature set. The cost of the
learning algorithm is the time complexity of the learning
algorithm which increases with the number of input features.
Thus our method searches the best number of features to
remove in each iteration [6].

T (n, r, k) = N−(n, r, k) ∗ C(L, n− k) + C(L, n− k) (1)

p+(n, r, k) =

(
1

n−r

)(
1
n

) ∗ ( 1
n−r−1

)(
1

n−1

) ∗ . . . ∗ ( 1
n−r−k+1

)(
1

n−k+1

) (2)

p+(n, r, k) =

k−1∏
i=0

(
n− r − i

n− i
) (3)

P (S) = P+, P (FS) = (1− p+)p+, . . . , . . . (4)

E(X) =

∞∑
i=0

(1− p+)ip+ =
1

p+
(5)

N−(n, r, k) = E(X)− 1 =
1

p+
− 1 (6)

In many datasets, especially most real-world datasets, we
don’t know the number of relevant features, r, so our algo-
rithm must be able to search for the number of relevant fea-
tures. In our search process, if the number of trials exceeds
the expected number of consecutive failures, this indicates
the estimated number of relevant features r has been chosen
too low and should be increased. Similarly, if the number of
trials exceeds the expected number of consecutive success,
this indicates the estimated number of relevant features r
has been chosen too high and should be decreased.

p−(n, r, k) =
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1
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1
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) ∗ ( 1
r−1
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=

k−1∏
i=0

(
r − i

n− i
) (8)

N+(n, r, k) =
1

p−
− 1 (9)

3.2 Dynamic Programming for Irrelevant
Feature Removal

Due to the nature of randomized search, we must consider
the situation that it is very likely not all irrelevant features
can be found in one iteration. We need to calculate the
k (0 < k ≤ n−r) at each iteration step to minimize the cost.
We get n − k features. Then we need to calculate another
k to remove from n − k before we eventually approach r
relevant features. Thus, we have the following total cost of
function

Tsum(n, r) = mink(T (n, r, k) + Tsum(n− k, r)) (10)

The optimal value of k, given n and r, can be computed as

kopt(n, r) = argmink(T (n, r, k) + Tsum(n− k, r)) (11)

We use dynamic programming to solve this recursion. Al-
gorithm 1 describes how to compute the k sequence and the
cost sequence. The size of k sequence is N − r. The algo-
rithm guarantees that the minimum cost can be achieved if
k irrelevant features are removed at the correspondent state.

3.3 The Algorithm
The Bernoulli Trails based algorithm begins by computing
tables for kopt(n, r) and Tsum(n, r) for values of r between
rmax and rmin, where rmax and rmin is the upper bound and
the lower bound of number of relevant features, respectively.
There are N − r + 1 rows and rmax − rmin + 1 columns in
these tables.



Figure 1: Nine types of masks used for Haar-like
feature extraction on crater detection

The algorithm performs a binary search and begins with
r = rmax+rmin

2
. The algorithm chooses the number of fea-

tures to remove at each step based on the current value of n.
At each iteration, the algorithm selects kopt(n, r) input vari-
ables at random. Then the algorithm gets the error of each
individual feature. If the error is smaller than a threshold,
this indicates the feature is relevant and then we should put
the feature back to the feature space and another feature is
selected at random. After that the algorithm gets the new
hypothesis from the n−k features. If the error e(h′′) of new
hypothesis h′′ is less than the error e(h) of the hypothesis h,
then the selected k inputs are regarded as irrelevant and re-
moved from the feature inputs. At the same time the success
increases by 1 and the variable fail is set to 0. Otherwise, a
new set of features are selected and the fail increases by 1
and success is set to 0.

The bound on the complexity of our algorithm is based on
the complexity of the learning algorithm being used. If the
given learning algorithm executes in time O(n2), then re-
moving the n−r irrelevant variables via randomized variable
elimination also executes in time O(n2). This is a substan-
tial improvement compared to the factor n of exhaustive
search or more increase performance in removing inputs one
at a time (we remove k features at a time).

4. EXPERIMENTAL RESULTS
We have selected a portion of the High Resolution Stereo
Camera (HRSC) nadir panchromatic image h0905 0000 [3]
to serve as the case study site for crater detection. As illus-
trated in Figure 2 the selected image has the resolution of
12.5 meters/pixel and the size of 13,500,000 (3,000 by 4,500)
pixels. A domain expert manually marked 3,500 craters for
this image to be used as the ground truth to which the re-
sults of auto-detection are compared. The image represents
a significant challenge to automatic crater detection algo-
rithms. We identify 12,542 crater candidates in the image
using the pipeline explained by [8]. We extract 1,089 Haar-
like features using masks similar to those in Figure 1. These
masks are explained in [2].

We compare accuracy (accuracy = TP+TN
TP+TN+FP+FN

) between
the Bernoulli Trials based feature selection and other three
algorithms of Randomized Variable Elimination (RVE) [6],
exhaustive search (time limited) and random search (time
limited). RVE [6] is a state-of-art randomized variable elim-
ination method.

From table 2, we can see the runtime of Bernoulli Trials
based is less than RVE and exhaustive search and random
search, also the Iteration times (Iters) of Bernoulli Trials
based method is the smallest one. This is reasonable, be-
cause we reduce the probability of relevant features to be
removed. This will make the probability of e(h′′)− e(h) ≤ 0
high (Algorithm 2 Line 18), the n reduces more quickly,

Algorithm 1: Computing the k and Cost Sequence

Input: L, N , r
Output: k sequence and the cost sequence

1 Tsum[r + 1..N ] = 0
2 Kopt[r + 1..N ] = 0
3 for n = r + 1 : N do
4 bestCost =∞
5 for k = 1 : i− r do
6 tempCost = T (n, r, k)+
7 if tempCost<bestCost then
8 bestCost = tempCost
9 bestK = k

10 Tsum[n] = bestCost
11 Kopt[n] = bestK

Algorithm 2: Bernoulli Trials Based Feature Selection

Input: L, n, rmax, rmin

Output: Relevant feature subset and number of relevant
features r

1 Compute tables Tsum(n, r) and kopt(n, r) for
rmin ≤ r < rmax

2 r = rmax+rmin
2

3 Success, fail = 0
4 h=hypothesis produced by L on n inputs
5 for i=1:n do
6 h=hypothesis produced by L on ith inputs
7 error(i) = e(h)

8 threshold = sum(error(i))/n
9 while rmin < rmax do

10 k = Kopt(n, r)
11 select k features at random
12 for j = 1 : k do
13 h = hypothesis produced by L on jth inputs
14 while e(h) < threshold do
15 Replace the jth feature

16 Remove the selected k features
17 h′′=hypothesis produced by L on n− k features
18 if e(h′′)− e(h) ≤ 0 then
19 n = n− k
20 h = h′′

21 success = success + 1
22 fail = 0

23 else
24 replace the selected k features
25 fail = fail + 1
26 success = 0

27 if fail ≥ N−(n, r, k) then
28 rmin = r

29 r = rmax+rmin
2

30 Success, fail = 0

31 else if success ≥ N+(n, r, k) then
32 rmax = r

33 r = rmax+rmin
2

34 Success, fail = 0



Figure 2: Detection result on the case study site.
The craters marked by the red rectangles are craters
detected by our algorithms which only tagets at
craters that are between 16-pixel and 400-pixel in
diameters.

thus k tend to more smaller. Therefore, our algorithm ex-
ecute more quickly. The r of RVE is smaller than the r of
our Bernoulli Trials based method with lower accuracy. It
indicates that the RVE algorithms mistakenly remove more
relevant features than our method.

5. CONCLUSIONS AND FUTURE WORK
The aim of this paper is to present a more efficient feature
selection algorithm for the auto-detection of small craters in
high resolution images of planetary surfaces. Effective and
automatic crater detection from extremely large orbiter im-
ages is one of the most challenging problems in planetary
science. The algorithm uses the Bernoulli Trials method to
reduce the total cost of using a wrapper feature selection
method. We have demonstrated that our method identifies
craters with high accuracy while testing on an HRSC im-
age of the Martian surface that presents a heterogeneous
region of craters in various forms which are challenging for
detection using regular algorithms. Our method can achieve
accuracy nearly or more than 85%. We will explore the ac-
tive learning and transfer learning on feature selection to
further improve the accuracy.

Accuracy RVE Bernoulli Exhaustive Random

Top Region 83.12 90.19 84.26 85.36
Central Region 78.34 84.21 80.74 80.67
Bottom Region 81.56 86.33 82.89 81.67

Table 2: Performance results of the RVE, Bernoulli,
Exhaustive and Random algorithms; Exhaustive and
Random use limited time

Runtime r Iterations

RVE 2503 84 1159
Bernoulli Trials based 1035 178 288

Exhaustive Search 18000 356 9153
Random Search 18000 451 8567

Table 3: Runtime comparison of RVE, Bernoulli,
Exhaustive and Random algorithms; Exhaustive and
Random use limited time
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