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Abstract
Unsupervised semantic segmentation in the time series domain is a much studied
problem due to its potential to detect unexpected regularities and regimes in poorly
understood data. However, the current techniques have several shortcomings, which
have limited the adoption of time series semantic segmentation beyond academic
settings for four primary reasons. First, most methods require setting/learning many
parameters and thusmay have problems generalizing to novel situations. Second, most
methods implicitly assume that all the data is segmentable and have difficulty when
that assumption is unwarranted. Thirdly, many algorithms are only defined for the
single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most
research efforts have been confined to the batch case, but online segmentation is clearly
more useful and actionable. To address these issues, we present a multi-dimensional
algorithm, which is domain agnostic, has only one, easily-determined parameter, and
can handle data streaming at a high rate. In this context, we test the algorithm on the
largest and most diverse collection of time series datasets ever considered for this task
and demonstrate the algorithm’s superiority over current solutions.
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1 Introduction

The ubiquity of sensors and the plunging cost of storage has resulted in increasing
amounts of time series data being captured. One of the most basic analyses one can
perform on such data is to segment it into homogenous regions. We note that the
word “segmentation” is somewhat overloaded in the literature. It can refer to the
approximation of a signal with piecewise polynomials (Keogh et al. 2004), or the
division of a time series into internally consistent regimes. For clarity, this latter task
is sometimes called “semantic segmentation” (Yeh et al. 2016; Aminikhanghahi and
Cook 2017), where there is no danger of confusion, and we will simply refer to it
as segmentation. It can, at times, be fruitful to see segmentation as a special type of
clusteringwith the additional constraint that the elements in each cluster are contiguous
in time.

The utility of segmentation is myriad. For example, if one can segment a long-time
series into k regions (where k is a small), then it may be sufficient to show only k short
representative patterns to a human or a machine annotator in order to produce labels
for the entire dataset. As an exploratory tool, sometimes we can find unexpected and
actionable regularities in our data.

While there aremany techniques for segmentation (Lainscsek et al. 2013; Reinhardt
et al. 2013; Matsubara et al. 2014a; Lin et al. 2016; Aminikhanghahi and Cook 2017),
they all have one or more limitations that have prevented their utilization in real world
settings. This observation hasmotivated us to introduce FLOSS (Fast Low-cost Online
Semantic Segmentation), a novel algorithm which, to the best of our knowledge, is
unique in offering all the following features:

• Domain Agnosticism Most techniques in the literature are implicitly or explic-
itly suited to a single domain, including motion capture (Lan and Sun 2015;
Aminikhanghahi and Cook 2017), motion capture of upper-body only (Aoki et al.
2016), electroencephalography (Kozey-Keadle et al. 2011), music (Serra et al.
2014), automobile trajectories (Harguess and Aggarwal 2009), or electrical power
demand (Reinhardt et al. 2013). For example, the detailed survey in (Lin et al.
2016) notes that for almost all methods “some prior knowledge of the nature of the
motion is required.” In contrast, FLOSS is a domain agnostic technique that makes
essentially no assumptions about the data.

• StreamingMany segmentation algorithms are only defined for batch data (Lainscsek
et al. 2013; Aminikhanghahi and Cook 2017). However, a streaming segmentation
may provide actionable real-time information. For example, it could allow amedical
intervention (Weiner and Charles 1997;Mohammadian et al. 2014), or a preemptive
repair to a machine that has entered a failure mode (Molina et al. 2009). We will
demonstrate that our FLOSS algorithm is fast enough to ingest data at 100 Hz (a
typical rate for most medical devices/accelerometers) without using more than 1%
of the computational resources of a typical desktop machine.

• Real World Data Suitability Most techniques assume that every region of the data
belongs to a well-defined semantic segment. However, that may not be the case.
Consider data from an accelerometer worn on the wrist by an athlete working out
at a gym. Examined at the scale of tens of seconds, there will be many well-defined
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Fig. 1 A snippet of time series collected during an exercise routine. Both the first and last third are well-
definedmotions, but the section in themiddle is less structured, representing a transition between apparatuses

homogenous regions of behavior, corresponding to various repetitions on the appa-
ratus (see Fig. 1). However, it is probable that there are many minutes of behavior
that accumulated while the athlete was waiting her turn to use a machine. These
periods may be devoid of obvious structure. Any model that insists on attempting
to explain all of the data may be condemned to poor results. In contrast, FLOSS
can effectively ignore these difficult sections.

Beyond introducing the FLOSS algorithm, we claim the following contributions to
the literature:

• Most research efforts in this domain test on limited datasets (Lainscsek et al. 2013;
Aminikhanghahi andCook2017). The authors of (Matsubara et al. 2014a) and (Zhao
and Itti 2016) are both to be commended for considering three datasets, but they
are exceptional, considering one dataset is the norm. In contrast, we test on a data
repository of thirty-two datasets from diverse domains, in addition to datasets from
five detailed cases studies. We believe that this free public archive will accelerate
progress in this area, just as the TREC datasets have done for text retrieval, and the
UCR archive has done for time series classification (Chen et al.).

• While classification, clustering, compression etc. all have formal and universally
accepted metrics to assess progress and allowmeaningful comparison of rival meth-
ods, the evaluation of segmentation algorithms has often been anecdotal (Lin et al.
2016). Evaluation is often reduced to the authors asking us to visually compare
the output of their algorithm with the ground truth. While there is nothing wrong
with visually compelling examples or anecdotes, it is clearly desirable to have more
formal metrics. In (Matsubara et al. 2014a), the authors adapt precision/recall, but
in some contexts, this is unsuitable for semantic segmentation. In Sect. 3.6, we
introduce a metric that allows us to meaningfully score segmentations given some
external ground truth.

We must qualify our claim that FLOSS requires only a single parameter. We note
that while the segmentation really does require only a single parameter, the regimen
extraction steps do require two additional, but inconsequent parameters. In addition,
the option to add domain knowledge also requires a parameter. Nevertheless, in any
sense, our algorithm is truly parameter-lite.

The rest of this paper is organized as follows. In Sect. 2, a summary of the back-
ground and relatedwork, alongwith the necessary definitions, is provided. In Sect. 3.1,
a batch algorithm for semantic segmentation before generalizing it to the streaming
case is introduced. Section 4 illuminates a detailed quantitative and qualitative evalu-
ation of our ideas. Finally, in Sect. 5, conclusions and directions for future work are
offered.
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2 Background and related work

In this section, we introduce all the necessary definitions and notations and consider
related work. Because the term “segmentation” is so overloaded in data mining, even
in the limited context of time series, we also explicitly state what we are not attempting
to do in this work.

Note that for clarity and brevity, our definitions and algorithms in this section
only consider the one-dimensional cases; however, the generalizations to the multi-
dimensional case are trivial and are explained in Sect. 3.4 (Keogh 2017).

2.1 Definitions

Here we introduce the necessary definitions and terminology, beginning with the def-
inition of a time series:

Definition 1 A time series T= t1, t2, t3, …,tn is a contagious, ordered sequence of real
values in equally spaced time intervals of length n.

Our segmentation algorithm will exploit the similarity of local patterns within T,
called subsequences:

Definition 2 A subsequence T i,L of a T is a subset of the values from T of length L
starting from position i. T i,L= ti, ti+1,…, ti+L-1, where 1≤ i ≤n-L+1.

The time seriesT is ultimately recorded because it is (perhaps indirectly)measuring
some aspect of a system S (perhaps indirectly measuring the phenomenon in some
instances).

Definition 3 Asystem S is a physical or logical process containing twoormore discrete
states separated by one or more boundaries b.

We further explain and justify our assumption that S can be considered intrinsically
discrete in Sect. 3.

The algorithms we present are built on the recently introduced Matrix Profile (MP)
representation, as well as the STAMP and STAMPI (the online variation) algorithms
used to compute it (Yeh et al. 2016). We briefly review these in the next section.

2.2 Matrix profile background

STAMP is an all-pairs, one-nearest-neighbor search algorithm for time series (also
known as similarity join) that leverages the Fast Fourier Transform for speed and
scalability. The input parameters are the time series data T and a subsequence length
L, where L is the desired length of the time series pattern to search for. For output, it
returns two vectors,MPValues andMPIndex, both of which are the same length of T
and can be seen as annotating it. At the index i of the data structure…

• MPValues, is the Euclidean distance of the subsequence T i,i+L to its nearest neighbor
elsewhere in T. To prevent trivial matches where the subsequence matches to itself,
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an exclusion region is enforced, such that the distance between T i:i+L and any
subsequence beginning at [i - L/2: i +L/2] is assumed to be infinity.

• MPIndex, is the location of i’s nearest neighbor in T. Note that in general, this
nearest neighbor information is not symmetric, i’s nearest neighbor may be j, but
j’s nearest neighbor may be k.
This review is necessarily brief, so we refer the reader to the original paper for more

details (Yeh et al. 2016).

2.3 What FLOSS is not

Even within the narrow context of time series analytics, the term segmentation is
overloaded; thus, it is necessary to explicitly explain some tasks we are not addressing.

Change point detection is amethod for detecting various changes in statistical prop-
erties of time series, such as the mean, variance or spectral density. A helpful review of
the literature on this problem is surveyed in detail in a recent paper (Aminikhanghahi
and Cook 2017). In contrast to change point detection, we are interested in regimens
which are defined by changes in the shapes of the time series subsequences, which can
change without any obvious effect on the statistical properties. Consider the following
pathological example. Suppose we took an hour of an normal electrocardiogram, and
appended to it a reversed copy of itself (to be clear, the discrete analogue of this is the
production of the palindrome..beatbeatbeattaebtaebtaeb..). While such a time series
would have a visually obvious (indeed, jarring) transition at the halfway point, virtu-
ally all change point algorithms that we are aware of would ignore this transition, as
the features they consider (mean, standard deviation, zero-crossings, autocorrelation
etc.) are invariant to the direction of time. Clearly, one can also create pathological
datasets that would stymie our proposed algorithm but be trivial formost change detec-
tion algorithms. In other words, they are only superficially similar tasks that do not
directly inform each other.

Similar to the stated goals, recentwork on change point detection has begun to stress
the need to be parameter-free and have few assumptions (Matteson and James 2014).
However, scalability is rarely a priority; therefore, a typical dataset considered in this
domain is a few hundred data points. This suggests that human inspection is often
a competitive algorithm. However, due to the scale of the data we wish to consider
and the necessity to detect regime changes where they would be difficult to discern
visually on the screen, an algorithm that surpasses the ability of human inspection is
necessary.

Another interpretation of “segmentation” refers to Piecewise Linear Approxima-
tion (PLA). The goal here is to approximate a time series T with a more compact
representation by fitting k piecewise polynomials using linear interpolation or lin-
ear regression, while minimizing the error with respect to the original T (Harguess
and Aggarwal 2009; Wang et al. 2011). Success here is measured in terms of root-
mean-squared-error, and it does not (in general) indicate any semanticmeaning of the
solution.

Finally, we are not interested in segmenting individual phrases/gestures/phonemes
etc. This type of work is almost always heavily domain dependent and requires sub-
stantial training data (Aoki et al. 2016). For example, here is a significant amount of
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work that attempts to segment the time series equivalent of the string nowthatchers-
dead to produce “now thatchers dead” (and not “now that chers dead”). In contrast,
we are interested in segmenting at a higher level, which would be the equivalent of
segmenting an entire book into chapters or themes.

2.4 Related work

Hidden Markov Models (HMMs) have been successfully used to segment discrete
strings. Examples of this include segmenting aDNAstrand into coding and non-coding
regions, and there are efforts to useHMMs in the real-valued space (but they are almost
always tied to a single domain, such as seismology (Cassisi et al. 2016)). We have
considered and dismissed HMMs for several reasons. To use HMMs with real-valued
time series, we must set at least two parameters, the level of cardinality reduction
(the number of states to discretize to) and the level of dimensionality reduction (the
number of values to average) (Cassisi et al. 2016). This is in addition to specifying the
HMM architecture, which is tricky even for domain experts (Cassisi et al. 2016) and
contrary to our hope for a domain agnostic algorithm.

The work that most closely aligns with our goals is Autoplait (Matsubara et al.
2014a), which segments time series using Minimum Description Length (MDL) to
score alterative HMMs of the data. This work also stresses the need for domain inde-
pendence and few parameters. The most significant limitation of Autoplait is that it is
only defined for the batch case. It would not be trivial to convert it to handle streaming
data. This approach requires discrete data, which is obtained by an equal division of
the range bound by the smallest and largest values seen. In the streaming case, wan-
dering baseline or linear drift ensures that at some point all the incoming values are
greater (or smaller) than the values the model can process. This is surely not unfixable,
but it is also not simple to address, and it is only one of the many issues that must be
overcome to allow an Autoplait variant to handle streaming data.

The authors of Autoplait (and various subsets thereof) have many additional papers
in this general space. However, to the best of our understanding, none of them offer a
solution for the task-at-hand. For example, while StreamScan is a streaming algorithm
(Matsubara et al. 2014b), the authors note the need to train it: “we trained several basic
motions, such as ‘walking,’ ‘jumping’” (our emphasis), and the algorithm has at least
six parameters.

3 Semantic segmentation

We are now able to formally define the task-at-hand. Assume we have a system S,
which can be in two or more discrete states (or regimes). Examples of such systems
include:

• The heart of a patient recovering from open heart surgery. The patient’s heart may
be in the state of tamponade or normal (Chuttani et al. 1994).
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• A music performance may often be envisioned a system that moves between the
states of intro, verse, chorus, bridge, and outro (Serra et al. 2014).

• Fractional distillation of petrochemicals contains cycles of heating, vaporizing,
condensing, and collecting (Nishino et al. 2003).

• An exercise routine often consists of warm-up, stretching, resistance training, and
cool-down. This special case of treating human behavior as a switching linear
dynamic system (SLDS) (Pavlovic et al. 2001) has become an increasingly pop-
ular tool for modeling human dynamics (Bregler 1997; Reiss and Stricker 2012).

We can monitor most of these systems with sensors. For the cases mentioned
above, a photoplethysmograph, a microphone, a thermocouple, and a wrist-mounted
accelerometer (smartwatch) are obvious choices. In most cases, one would expect the
time series from the sensors to reflect the current state of the underlying system. This
understanding allows us to produce the following definition of the problem regarding
the time series semantic segmentation task:

Definition 4 Given a time series T, monitoring some aspect of a system S, infer the
boundaries b between changes of state.

We recognize that this definition makes some simplifying assumptions. Some sys-
tems are not naturally in discrete states, but may be best modelled as having a degree
of membership to various states. For example,Hypokalemia, a disease where the heart
system is deficient in potassium, is often diagnosed by examining ECGS for increased
amplitude and width of the P-wave (Weiner and Charles 1997). Hypokalemia can
manifest itself continuously at any level from mild to severe. In fact, our example
of tamponade is one of the few intrinsically discrete heart conditions. Nevertheless,
many systems do switch between discrete classes, and these are our domains of inter-
est. Even though hypokalemia can change continuously, in practice it often changes
fast enough (in response to intravenous or oral potassium supplements) to be detectible
as a regimen change in a window of ten minutes, and we can easily support windows
of this length or greater.

Note that even in systems that do have some mechanism to “snap” the system
to discrete behaviors, there is often another ill-defined “other” class. For example,
consider the short section of time series shown in Fig. 1.

Here the need for precise movements forces the exercise repetitions to be highly
conserved. However, there is no reason to expect the transitions between the repetition
sets to be conserved.

Similar remarks apply to many other domains. In many cases, the majority of the
data examined may consist of ill-defined and high entropy regions. Note that these
observations cannot be used to conclude that the underlying system is not in any state.
It may simply be the case that the view given by our sensor is not adequate to make
this a determination. For example, a sensor on the ankle will help distinguish between
the states of walking and running, but it will presumably offer little information
when the system (the human) is toggling between typing and mouse-use.
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Fig. 2 Selected arcs illustrated with the corresponding Matrix Profile indices indicated. Note that nearest
neighbor subsequences indices can be symmetric, e.g., 1270 and 1892, but this is not generally true. A
subsequence’s nearest neighbors can be located to the left or to the right

3.1 Introduction FLUSS

We begin by introducing FLUSS (Fast Low-cost Unipotent Semantic Segmentation),
an algorithm that extends and modifies the (unnamed) algorithm hinted at (Yeh et al.
2016). Later, in Sect. 3.3, we will show how to take this intrinsically batch algorithm
and make it a streaming algorithm. For clarity of presentation we begin by only con-
sidering the single dimensional case and show the trivial steps to generalize to the
multi-dimensional case in Sect. 3.4.

The task of FLUSS is to produce a companion time series called the Arc Curve
(AC), which annotates the raw time series with information about the likelihood of
a regime change at each location. We also need to provide an algorithm to examine
this Arc Curve and decide how many (if any) regimes exist.; that issue is considered
separately in Sect. 3.2.

FLUSS takes both a time seriesT and a user provided subsequence length as inputs,
and outputs an AC vector of length n, where each index i contains the number of “arcs”
that cross over i. We define an “arc” as follows: the ith entry in the MPIndex vector
contains a positive integer j, which indicates the nearest neighbor location. So, for
the ith entry, containing a positive integer j, the nearest neighbor for the time series
subsequence beginning at index i is the time series subsequence beginning at index
j. We can visualize each entry pair (i,j) as an arc drawn from location i to j. The
spatial layout of the arcs, along with the number of “arc” crossing over of each index
i, is summarized by the Arc Curve. Specifically, index i of the Arc Curve contains a
non-negative integer indicating the number of arcs that cross over i. Figure 2 below
illustrates this notation.

Note that every index has exactly one arc leaving it; however, each index may have
zero, one, or multiple arcs pointing to it. We define the Arc Curve more formally
below:

Definition 5 TheArc Curve (AC) for a time seriesT of length n is itself a time series of
also length n containing non-negative integer values. The ith index in the AC specifies
how many nearest neighbor arcs from the MPIndex spatially cross over location i.
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Fig. 3 (Top) The ABP of a reclining male. At time 2400 he was rotated into a standing position. (bottom)
The AC plot for this dataset shows a clear valley at time of system change
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Thenumberofarcsthat cross a given index, if the links are assigned randomly

Fig. 4 The Idealized Arc Curve (IAC) for a time series with no localized similarity structure is an inverted
parabola with a height ½n. An empirical curve shows close agreement. As we will see later, it is actually a
special case of beta (2, 2, a, c)

Now, we can state the intuition of our segmentation algorithms.
Our Overarching Intuition Suppose a time series T has a regime change at location

i. We would expect few arcs to cross i, as most subsequences will find their nearest
neighbor within their host regime. Thus, the height of the Arc Curve should be the
lowest at the location of the boundary between the change of regimes/states.

Figure 3, shows the AC plot for the dataset shown in Fig. 2, which will be used
as a running example. We consider the Arterial Blood Pressure (ABP) of a healthy
volunteer resting on a medical tilt table (Heldt et al. 2003). At time 2400, the table
was tilted upright, invoking a response from the homeostatic reflex mechanism.

While the figure above hints at the utility of FLUSS, it also highlights a weakness.
Note that while the Arc Curve has a satisfyingly low value at the location of the regime
change, it also has low values at both the leftmost and rightmost edges. This occurs
because there are fewer candidate arcs that can cross a given location at the edges. We
need to compensate for this bias, or false positives are likely to be reported near the
edges.

This compensation is easy to achieve. We begin by imagining the case where there
is no locality structure in the time series under consideration; for example, imagine we
are examining a random vector. Under such circumstances, we would expect the arcs
from each subsequence to point to an effectively random location. Given this null case,
with no structure, what would an Idealized Arc Curve (IAC) look like? With a little
introspection, one can see that, as shown in Fig. 4, it would be an inverted parabola
with its height ½n (we relegate the derivation of this fact to (Keogh 2017)).
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Fig. 5 (Contrast with Fig. 3). (top) Our running ABP example. (bottom) The CAC minimizes in the correct
place and avoids the “edge-effect” false positives of the AC curve

To compensate for the edge effect bias in the Arc Curve, for each location i, we con-
sider the actual number of observed arc crossings relative to the number of expected arc
crossings predicted by our parabolic model (1), to obtain the Corrected Arc Crossings
(CAC):

CACi � min

(
ACi

I ACi
, 1

)
(1)

The min function is to keep the CAC bounded between 0 and 1 in the logically
possible (but never empirically observed) case that ACi >IACi.

This normalized and bounded measure is useful because it allows the following:

• Commensurate comparisons across streams monitored at different sampling rates.
• The possibility to learn domain specific threshold values. For example, suppose we
learn in ECG training data, that for patient in an ICU recovering from heart surgery,
a CAC value less than 0.2 is rarely seen unless a patient has cardiac tamponade.
Now we can monitor and alert for this condition.

Figure 5, shows the CAC for our running example. Note that the issue of the edge
bias of AC has been resolved, and the curve minimizes at the correct location of 2400.

Before continuing, we will demonstrate the invariance of the CAC to several issues
commonly encountered during real-world uses. The CAC for our running example
was recomputed after modifying the original data in several ways, including:

• Downsampling from the original 250 Hz to 125 Hz (red).
• Reducing the bit depth from 64-bit to 8-bit (blue).
• Adding a linear trend of ten degrees (cyan).
• Adding twenty dB of white noise (black).
• Smoothing, with MATLAB’s default settings (pink).
• Randomly deleting 3% of the data, and filling it back in with simple linear interpo-
lation (green).

As Fig. 6 suggests (at least for this example), the CAC is quite robust regarding
these issues, and the minimum value of the CAC still occurs in the same place.
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Fig. 6 The CAC computed for our running example after it was distorted in various ways (best viewed in
color; key is above). Contrast with Fig. 5. Note that the cyan line is hard to see, as it mostly falls beneath
the pink line (Color figure online)

0 1,000 2,000 3,000 4,000 5,000

Fig. 7 A comparison of the original TiltABP (top) and the data with twenty dB of noise added (bottom)

The only distortion to appreciably change the CAC is noise; however, as Fig. 7
shows, we added an enormous amount of noise, and we still found the correct seg-
mentation.

We have shown that the CAC is robust tomany variations of time series data, and are
now ready to fully explain the algorithm for obtaining the CAC.While the construction
of the CAC is straightforward, given the discussion above, we formalize it on Table 1
for clarity.

In lines 1–2, we obtain the length of theMPIndex and zero initialize three vectors.
Next, we iterate over theMPIndex to count the number of arcs that cross over index i in
lines 3 through 7. This information is stored in nnmark. Then, we iterate over nnmark
and cumulatively sum its values consecutively for each index i. The cumulative sum
at i is stored in ACi. This is accomplished in lines 10–13. Finally, in lines 15–18, we
normalize AC with the corresponding parabolic curve to obtain the CAC.

3.2 Extracting regimes from the CAC

With our CAC defined, we are now ready to explain how to extract the locations of
the regime changes from the CAC. Our basic regime extracting algorithm requires
the user to input k, the number of regimes. This is similar to many popular clustering
algorithms, such as k-means, which require the user to input the k number of clusters.
Later we will demonstrate a technique to remove the need to specify k, given some
training data to learn from (see Sect. 4.3).

We assume here that the regimes are distinct, for example walk, jog, run. If a
regime can be repeated, say walk, jog, walk, our algorithm may have difficulties;
that issue will be dealt with in Sect. 3.5.
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Table 1 Algorithm for construction CAC

Procedure CAC(MPIndex, L)
Input- MPIndex: a Matrix Profile index 

L: subsequence length
Output- CAC: a Corrected Arc Curve

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

n = length(MPIndex)
AC = CAC = nnmark = zero initialize array of size L
for i = 1: L

j = MPIndex[i]
nnmark[min(i,j)] = nnmark[min(i,j)] + 1
nnmark[max(i,j)] = nnmark[max(i,j)] - 1

end

numArcs = 0;
for i = 1 : L

numArcs = numArcs + nnmark[i]
AC[i] = numArcs

end

IAC = parabolic curve of length n and height ½n
CAC = min (AC/IAC, 1)
Set the L length in the beginning and ends of CAC to 1
return CAC

As hinted in Fig. 5, a small value for the lowest “valley” at location x is robust
evidence of a regime change at that location. This is based on the intuition that a
significantly fewer number of arcs would cross location x if x is a boundary point
between two discrete states (Yeh et al. 2016). Note that this intuition is somewhat
asymmetric. A large value for the lowest valley indicates that there is no evidence of
a regime change, not that there is positive evidence of no regime change. This is a
subtle distinction, but it is worth stating explicitly.

At a high level, the Regime Extracting Algorithm (REA) searches for k lowest
“valley” points in the CAC. However, one needs to avoid the trivial minimum; if x
is the lowest point, then it is almost certain that either x+1 or x−1 is the second
lowest point. To avoid this, FLUSS does not simply return the k minimum values.
Instead, it obtains one minimum “valley” value at location x. Then, FLUSS sets up
an exclusion zone surrounding x. For simplicity, we have defined the zone as five
times the subsequence length both before and after x. This exclusion zone is based
on an assumption the segmentation algorithm makes, which is that patterns must have
multiple repetitions; FLUSS is not able to segment single gesture patterns. With the
first exclusion zone in place, FLUSS repeats the process described above until all k
boundary points are found.

While this algorithm is obvious and intuitive, for concreteness, we formally outline
in Table 2. Note that numRegimes is not a parameter of the segmentation algorithm
per se; it is a parameter of our regime extraction algorithm. By analogy, you can
build a dendrogram without specifying parameters, but any algorithm to convert it to
partitional clusters will always have a parameter. There may be other ways to extract
regime; Table 2 just offers a concrete and simple method.
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Table 2 REA: Algorithm for extracting regimes

Procedure ExtractRegimes  (CAC, numRegimes, L) 
Input: CAC – a Corrected Arc Curve 
          numRegimes – number of regime changes 
          L – length of the subsequence 
Output: locRegimes – the locations of the regimes 
1 
2 
3 
4 
5 
6 

locRegimes = empty array of length numRegimes 
for i=1 : numRegimes 
    locRegimes(i) = indexOf(min(CAC)) 
    Set exclusion zone of 5×L           // To prevent matches to “self” 
end 
return locRegimes 

3.3 Introducing FLOSS

In the previous sections, we have shown that at least in our running example, FLUSS
can detect changes of regimes in batch datasets. We now turn our attention the stream-
ing case, in which we maintain the CAC over a sliding window; an example of this
could be the last ten minutes of a patient recovering from heart surgery. In principle,
this seems simple. At every time stamp, we need to ingress the newly arriving point,
and egress the oldest point, updating all the arcs in theMatrix Profile index and adjust-
ing the CAC as needed. However, there is a large asymmetry in the time complexity
for ingress and egress.

• IngressWhen the new point arrives, we must find its nearest neighbor in the sliding
window, and determine whether any item currently in the sliding window needs
to change its nearest neighbor to the newly arrived subsequence. Using the MASS
algorithm, this takes just O(nlogn) (Mueen et al. 2015).

• Egress When a point is ejected, we must update all subsequences in the sliding
window that currently point to that departing subsequence (if any). This is a problem,
because while pathological unlikely, almost all subsequences could point to the
disappearing subsequence. This would force us to do O(n2) work, forcing us to
re-compute the Matrix Profile (Yeh et al. 2016).

This issuewould not exist if the arcs in theMatrix Profile onlywent in one direction,
to a previous time. In that case, when we egress a data point, for the corresponding
subsequence being removed:

• As the arcs only go to a previous time, we do not have to delete arcs that point to it,
since it does not have one.

• As for the arcs that point away from it, we could delete that arc by removing the
first element in the Matrix Profile index in O(1).

This would indicate that the overall time to maintain the 1-Direction on CAC
O(nlogn) for ingress plus O(1) for egress, for a total of O(nlogn).

However, this begs the question, would using the CAC1D yield similar results to
using the CAC? To test this, we begin by computing the empirical one-directional IAC
(IAC1D). The empirical IAC1D is shown with the theoretical original (bi-directional)
IAC in Fig. 8.
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Fig. 8 The one-directional IAC (IAC1D) is a right skewed distribution with shorter height than the original
IAC
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Fig. 9 The empirical IAC1D is modeled closely by a beta distribution
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Fig. 10 (Top) Our running ABP example. bottom) the CAC (red) from Fig. 5 and the CAC1D (green) (Color
figure online)

Compared to the original IAC, IAC1Dhas a somewhat similar shape, but it is shorter
and skewed to the right. The skewness is caused by the fact that it is more likely for
arcs to cross later in time, since all the arcs are pointing forward in time. By theoretical
modeling/visual inspection (Keogh 2017), we note that the distribution of IAC1D can
be modeled by a beta distribution. The empirical IAC1D and a sample generated by the
beta distribution is shown in Fig. 9. Note that in retrospect, we can see the parabolic
curve of Fig. 4 was just a special case of the beta distribution with α�β�2.

As a result of this difference, IAC1D is used instead of IACwhen computingCAC1D.
We then, computed the CAC1D on our running example, which is shown in Fig. 10.

3.4 Generalizing tomulti-dimensional time series

For some applications, single dimensional data may not be sufficient to distinguish
between the regimes. In such cases, one may benefit from considering additional
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basketball-forward-dribble walk-with-wild-legs normal-walk
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Combination of CACs

Right hand Right foot

Fig. 11 An example of multi-dimensional time series segmentation on three activities:
basketball-forward-dribble, walk-with-wild-legs and normal-walk from CMU
dataset. (top) The CAC obtained from using right hand data (red) and right foot data (blue) which each
of them separately cannot be used for segmentation. (bottom) the combination of two CACs which can
segment all three activities (Color figure online)

dimensions. Below we show an intuitive motivating toy example of this, before dis-
cussing the trivial changes in our framework to leverage additional dimensions.

Consider the classic CMU Mo-Cap dataset (Mocap.cs.cmu.edu 2017). Among
the activities in this archive, we choose three sample activities to demonstrate
our point: basketball-forward-dribble, walk-with-wild-legs and
normal-walk. Intuitively, we might expect that using just sensor data from the
hand or foot data is sub-optimal for this segmentation task. For example, while
the hand data can differentiate basketball-forward-dribbling from either
normal-walk or walk-with-wild-legs, it cannot be used to differentiate
normal-walk from walk-with-wild-legs. In this case, data is needed from
another source such as foot, which can be seen as an “expert” in gait activities.

However, we might imagine that by using both data sources, all three activities
can be mutually distinguished. This only leaves the question of how best to combine
information from multiple time series. As Fig. 11 suggests, this is actually very easy
with our framework, one can simply take the mean of two or more CAC’s to produce
a single CAC that pools information from multiple sources.

While Fig. 11 visually hints at the utility of combining dimensions, one can also
objectively measure the improvement. Our formal discussion of such an objective
score is in Sect. 3.6, but previewing it, we have a segmentation scoring function that
gives zero for a segmentation, which exactly agrees with the ground truth. The score
of segmentation by using just the foot or just the hand data are 0.27, 0.28 respectively.
The score of using both is dramatically improved to just 0.05.

Note that this method of combining information from different sensors in the CAC
space has a very useful and desirable property. Because each CAC is already normal-
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Fig. 12 (Top to bottom) The accelerometer’s X data of shoe from PAMAP Dataset-Subject1 (blue), its
ground truth segmentation, into ascending stairs, descending stairs and transitional
activities (gray) which includes some low amplitude noise data. The classic CAC produces false
negatives at locations A, B and C (Color figure online)

ized to be between zero and one, it does not matter if the sensors are recording the data
at different sampling rates or precisions. For example, in Fig. 11 the data was recorded
at 120 Hz for both right foot and right hand. However, if we downsample, to just the
right hand to 40 Hz, the resulting combinations of CACs is visually indistinguishable
from the one shown (in green) in Fig. 11.botttom.

3.5 Adding a temporal constraint

There are some situations in which CAC may have difficulty in detecting a change
of regime. Consider Fig. 12.top, taken from the PAMAP dataset (Reiss and Stricker
2012), which shows an accelerometer trace of an individual walking up, then down a
flight of stairs twice, with long “transition” rest periods in-between. Note that these
transitional periods look constant at the plotted scale but contain low amplitude random
movements as the individual rests.

While the CAC correctly detects some transitions, there are three obvious false neg-
atives in locations denoted A, B and C. The reason for these false negatives is existence
of multiple periods of the same regime, which are similar but disconnected. For exam-
ple, there is a regionof ascending stairs, followedby atransistionperiod,
then descending stairs, and another period of ascending stairs. One
might expect that approximately half the arcs that originate in the first section of
ascending stairs (and vice versa), will point to the second section, crossing
over the two transitions in-between, and robbing us of the arc “vacuum” clue the CAC
exploits (recall Fig. 2).

This issue can occur in multiple domains. For example, after heart surgery some
patients may exhibit occasional symptoms of Pulsus Paradoxus (Chuttani et al. 1994),
as they adopt different sleeping postures (i.e. rolling onto their sides). The experiments
in Sect. 4 suggest that if the CAC is computed on say, any one-minute snippet of PPG
time series, it can robustly detect transitions between normal heartbeats and Pulsus
(if present). However, while segmenting hour-long snippets is computationally trivial,
many of the arcs between healthy heartbeats will span tens of minutes, and cross over
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Fig. 13 (Top to bottom) The accelerometer’s X data of shoe from PAMAP Dataset-Subject1 (blue), its
ground truth segmentation, into ascending stairs, descending stairs and transitional
activities (gray) which includes some noise data. CAC after applying Arc Constraint with the length of
constraint 6000, 8000 and 1000. Contrast with Fig. 12 (Color figure online)

the (typically) shorter regions of Pulsus, effectively “blurring” the expected decrease
in the number of arcs that signals a change of boundaries.

We can solve this problem by adding a Temporal Constraint TC. In essence, even
if examining a long or unbounded time series, the algorithm is constrained to only
consider a local temporal region when computing the CAC. Note that this constraint
does not increase the computational time; in fact, it reduces that. We can create such a
constraint easily if we simply ensure that the arcs cannot point to subsequences further
away than a user-specified distance. In this solution, we just need to set one parameter,
TC, which corresponds to the approximatemaximum length of segment in our domain.
For example, there has been a lot of interest in segmenting repetitive exercise (Morris
et al. 2014) using wearables. While the length of time for a ‘set’ depends on the
individual and the apparatus (i.e. dumbbell vs. barbell), virtually all sets last no more
than 30 s (Morris et al. 2014), thus we can set TC=30. For intuitiveness, we discuss
TC in wall-clock time; however, internally we convert it to some integer based on the
sampling rate. For example, for the PAMAP dataset which is sampled at 100 Hz, a TC
of 30 restricts the length of all arcs to less than 3000�100×30.

To test the utility of temporal constraints, we revisit the PAMAP dataset (Reiss and
Stricker 2012) snippet shown in Fig. 12.top. As shown in Fig. 13, even for a wide
range of values for the temporal constraint, the CAC can detect the regime changes
accurately. Note that because this dataset is only “weakly labeled”, the CAC result is
not precisely alignedwith boundaries givenby the original authors, but it is subjectively
correct by visual inspection.

Recall that we correct the IAC to the CAC based on the assumption that in a
time series with no locality structure, the arcs from each subsequence point to an
effectively random location. However, when using the temporal constraint, the arcs
cannot point to any arbitrary location. Thus, the previous assumption is no longer
useful here. Nonetheless, here the correction “curve”, instead of being parabolic or a
beta distribution, is simply a uniform distribution, except for the first TC× sampling-
rate, and last TC× sampling-rate data points. As these are asymptotically irrelevant, as
shown in Fig. 13, we simply hardcode the corresponding CAC to one in these regions.
Note that temporal constraints require you tomake someassumptions about the domain
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Experimental (E)
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Fig. 14 An example of our scoring function in action. The top line illustrates the locations of the ground
truth locations (GT1, GT2, GT3, GT4), and the bottom line illustrates the boundary locations (E1, E2, E3,
E4) reported by an algorithm. Note that multiple proposed boundary points may be mapped to a single
ground truth point

in question. This experiment suggests that if your assumptions are reasonable, this
algorithm will work well. If your assumptions are strongly violated, we make no
claims.

3.6 Scoring function

Most of the evaluations of segmentation algorithms have been largely anecdotal (see
(Lin et al. 2016) for a detailed survey), and indeed we also show visually convincing
examples in Sect. 4. Because of the scale of our experiments, however, as thirty-two
diverse datasets are examined, we need to have a principled scoring metric.

Many research efforts have used the familiar precision/recall or measures derived
from them. However, as (Lin et al. 2016) points out, this presents a problem. Suppose
the ground truth for transition between two semantic regimes is at location 10,700. If
an algorithm predicts the location of the transition at say 10,701, should we score this
as a success? What about, say, 10,759? To mitigate this brittleness, several authors
have independently suggested a “Temporal Tolerance” parameter to bracket the ground
truth (Lin et al. 2016). Yet, this only slightly mitigates the issue. Suppose we bracket
our running example with a range of 100, and reward any prediction in the range
10,700±100. Would we penalize an algorithm that predicted 10,801, but reward an
algorithm that predicted 10,800?

Another issue in creating a scoring function is rewarding a solution that has k bound-
aries predictions, in which most of the predictions are good, but just one (or a few) is
poor. If we insist on a one-to-one mapping of the predictions with the ground truth, we
over-penalize any solution for missing one boundary while accurately detecting others
(a similar matching issue is understood in many biometric matching algorithms).

The solution is visually explained in Fig. 14, and formally outlined in Table 3. It
gives 0 as the best score and 1 as the worst. The function sums the distances between
the ground truth boundary points and the boundary points suggested by an algorithm;
that sum is divided by the product of the number of segments, and then the length of
the time series to normalize the range to [0, 1].
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Table 3 Scoring function algorithm

Procedure ScoreRegimes(locRegimes, gtRegimes, n)
Input- locRegimes: extracted regimes 

gtRegimes: ground truth regimes
ts_length: length of the time series

Output- score: [0,1], with 0 being the best score
1
2
3
4
5
6
7
8
9

sumDiff = 0
numRegimes = length(gtRegimes)
for I = 1 : numRegimes

Find the gtRegimes[j] closest to locRegimes[i]
diff = | locRegimes[i] – gtRegimes[j] |
sumDiff = sumDiff + diff

end
score = sumDiff/n
return score

4 Experimental evaluation

We begin by stating our experimental philosophy. We have designed all experiments
such that they are easily reproducible. To this end, we have built a Web page (Keogh
2017) that contains all of the datasets and code used in this work as well as the
spreadsheets containing the raw numbers and some supporting videos. The thirty-two
benchmark segmentation test datasetswe created, in addition to the case study datasets,
will be archived in perpetuity at (Keogh 2017), independent of this work. We hope the
archive will grow as the community donates additional datasets.

4.1 Benchmark datasets

We created an extremely diverse collection of benchmark test datasets. The biological
datasets include time series taken from humans, birds, rats, pigs, and insects. The
mechanical datasets include data taken from robots and electrical power demand (both
from a single building and an entire city). The datasets fall into three categories:

• SyntheticThere is one completely synthetic dataset,mostly for calibration and sanity
checks.

• Real Themajority of our datasets are real. Inmost cases, the ground truth boundaries
are confidently known because of external information. For example, for the Pulsus
Paradoxus datasets (Chuttani et al. 1994), the boundaries were determined by the
attending physician viewing the patient’s Echocardiogram.

• Semi-Real In some cases, we contrived real data to have boundaries. For example,
we took calls from a single species of bird that were recorded at different locations
(thus theywere almost certainly different individuals) and concatenated them. Thus,
we expect the change of individual to also be a change of regime.

As Fig. 15 suggests, some of the boundaries are obvious visually. However, we can
also see that many are so subtle that finding the boundary is a non-trivial challenge for
humans, including domain experts (in fairness, these are only snippets, the excluded
data would probably give the human more context).
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PigInternalBleedingDatasetArtPressureFluidFilled

Fig. 15 Snippets (not the full traces) from a random selection of the test datasets. The snippets are centered
on a boundary (change of background color). There are no axes in this figure, as the data are at different
scales

For brevity, we omit further discussion of these datasets. However, we have created
a visual key, which gives detailed information on the provenance of each dataset and
placed it in perpetuity at (Keogh 2017).

For these experiments, we set the only parameter, the subsequence length L, by
a one-time quick visual inspection. We set it to be about one period length (i.e. one
heartbeat, one gait cycle, etc.). As we will show in Sect. 4.6, our algorithm is not
sensitive to this choice. However, as we will show in several of our case studies, it
is typically very easy to learn this parameter directly from the data, even if only one
regime is available for the parameter learning algorithm.

4.2 Rival methods

The most obvious rival method is Autoplait (Matsubara et al. 2014a). As noted above,
while there are dozens of segmentation algorithms, it is often difficult or unfair to
compare to them because:

• They are designed only for a limited domain; thus, if they are not competitive, it
might be because they are just not suited for some or most of the diverse datasets
considered.

• They require the setting of many parameters; if they are not competitive, it might
be because we tuned parameters poorly.

• The code is not publicly available; if they are not competitive, it might be because
of our unconscious implementation bias (Keogh and Kasetty 2003).

In contrast to all of the above, Autoplait is domain agnostic, parameter-free, and
the authors make their high-quality implementation freely available (Matsubara et al.
2014a) and are even kind enough to answer questions about the algorithm/code.

Autoplait segments time series by using MDL to recursively test if a region is best
modeled by one HMM or two (this is a simplification of this innovative work, we
encourage the interested reader to refer to the original paper (Matsubara et al. 2014a)).
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3,0002,0001,0000

Fig. 16 Four random examples of “no-regime-change.” Even these regions of “no change” include sensor
artifacts, wandering baseline, noise, and short disconnection artifacts

After confirming that we had the codeworking correctly by testing over the authors’
own datasets and some toy datasets, we found that Autoplait only produced a segmen-
tation on 12 out of our 32 test datasets. The underlying MDL model seems to be too
conservative. To fix this issue, for every dataset we carefully hand-tuned a parameter
W,whichwe used to reduce theweight of their Cost(T |M),making the splits “cheaper,”
encouraging the production of k regimes. This is the only change wemade to the Auto-
plait code. With this change, most, but not all, datasets produced a segmentation. We
found that we could perfectly replicate the results in the original Autoplait paper, on
the authors own chosen benchmark datasets. However, because these datasets are not
very challenging, we confine these results to our supporting webpage (Keogh 2017).

We also compared it to the HOG1D algorithm (Zhao and Itti 2016), which has
similar goals/motivations to FLOSS, but is batch only.

4.3 Case study: hemodynamics

In this case study, we revisit our running example inmore depth. Recall that in Sect. 3.1
we suggested that in some domains it may be possible to use training data to learn a
value for the CAC score that indicates a change of regime, and we expect that value
to generalize to unseen data from the same domain. To test this notion, we consider
the Physiologic Response to Changes in Posture (PRCP) dataset (Heldt et al. 2003).

The PRCP dataset consists of continuously monitored Arterial Blood Pressure
(ABP) of ten healthy volunteers (five of each sex). During sessions lasting approxi-
mately one hour each, the subject’s posture was changed in two ways; by rotating the
medical tilt table they rested on, or by asking the subject to arise from the reclined
table under their own power. Each of these posture-change events (just ‘events’ in
the below) was separated by five minutes in the resting supine position. Because the
timing of these events was carefully recorded, this dataset offers an objective ground
truth for regime change. Note that our running example showed a “clean” snippet from
this domain for clarity, but as Fig. 16 shows, this data can be more complex.

To avoid cherry picking, we chose the first subject (in the original archive), a male,
to use as the training data. Likewise, to avoid parameter tuning, we googled “normal
resting bpm.” The first result, from the Mayo Clinic, suggested “60–100 bpm”, so we
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Fig. 17 The positive and negative holdout data can be classified by a simple decision threshold; the mean
of the training negative examples minus three standard deviations

set the subsequence length to 187, which at 250 Hz corresponds to the average of these
values.

As we are attempting to learn from only negative examples, we manually selected
twenty regions, each one-minute long (possibly with overlaps) from the regions that
do not include any event. For our testing data, we selected 140 negative and 60 positive
(regions that straddle an event) from the remaining nine traces.

We ran FLUSS on the twenty training objects that recorded the minimum CAC
value encountered. As shown in Fig. 17 (left), the mean value was 0.671 with a
standard deviation 0.194. Using the classic statistical-process-control heuristic, we
set the threshold for the testing phase to the mean minus three standard deviations, or
0.089. As we can see in Fig. 17 (right), this gives us an accuracy of 93.5%, with one
false negative and twelve false positives.

Note that we cannot guarantee here that the false positives are really “false”. Inde-
pendent of the externally imposed interventions, the subjectmay have induced a regime
change by thinking about a stressful situation (Maschke and Scalabrini 2005). Further
note that we could have improved these results significantly with a little work. For
example, we could have tuned L, the only parameter, we could have built a separate
model for females, or for overweight individuals, we could have removed noise or
wandering baseline (a common practice for such data) etc. Nevertheless, this exper-
iment bodes well for our claim that we can learn a domain dependent threshold for
flagging regime changes, and then it will generalize to unseen data.

4.4 User study: comparisons to human performance

As noted above, the evaluation of semantic segmentation algorithms has often been
anecdotal and visual (Lin et al. 2016). In essence, many researchers overlay the results
of the segmentation on the original data, and we invite the reader to confirm that it
matches human intuition (Bouchard and Badler 2007; Matsubara et al. 2014a; Lin
et al. 2016; Aminikhanghahi and Cook 2017). While we are not discounting the utility
of such sanity checks (see Fig. 23), by definition, such demonstrations can only offer
evidence that the system is par-human (Anonymous 2018). It is natural to wonder
if semantic segmentation can achieve performance at human levels. To test this, we
performed a small user-study. We asked graduate students in a data mining class to
participate. Participation was voluntary and anonymous; however, to ensure that the
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Table 4 The performance of fluss versus humans

FLUSS Best human Ave human

Mean score 0.013 0.011 0.120

Win | lose | draw over FLUSS NA 2 | 4 | 6 0.81 | 9.5 | 2.0

participants were motivated to give their best effort, a cash prize was given for the best
performance.

The study was conducted as follows. The participants were briefed on the pur-
pose and meaning of semantic segmentation and where shown some simple annotated
examples (This briefing is archived in (Keogh 2017)). Then, they were given access to
an interface that showed twelve random examples1 in a serial fashion from the archive
discussed in Sect. 4.1. The interface allowed the participants to explore the data at
their leisure and then click on the screen to denote their best guess as to the location
of the regime change.

Because our scoring function is fine-grained, we only count a method as wining
if its score is less than half the score of its rival. Otherwise, we report a tie. Table 4
summarizes the outcomes.

While the scale of this experiment was modest, these results suggest that we are at,
or are approaching, human performance for semantic segmentation of time series.

4.5 Comparisons to rival methods

Despite our best efforts, we could not get the original Autoplait algorithm to produce
any segmentation on 20 of our 32 test datasets.We counted this as a “loss” forAutoplait
“classic”. By carefully adapting the algorithm (see Sect. 4.2) we could get Autoplait
to produce a segmentation on thirteen additional datasets “Autoplait Adapted”. On the
datasets it did predict segmentations for, it sometimes predicted too many or too few
segments. In those cases, we allowed both versions to “cheat”. If it predicted too few
segments, we took only the closestmatches, and gave it all themissingmatcheswith no
penalty. If it predicted too many segments, we only considered the best interpretation
of a subset of its results without penalizing the spurious segments.

In contrast, HOG1D only refused to produce a segmentation on 2 of our 32 datasets.
For the rest, it was able to produce the required k splits.

Recall that we tested twenty-two humans on a subset of the data. We invited the
best scoring individual to segment all the data, motivated to produce his best effort by
a financial incentive. Finally, for calibration, similarly to the default-rate of classifica-
tion, we considered a random algorithm, which was allowed 100 attempts at guessing
the segmentation and reports the average of all attempts. As we noted above, we set
the only parameter, the subsequence length L, to be about one period length before
we did any experiments. The result is shown in Table 5.

1 We only considered a subset of 12 from the full dataset to be respectful of the participant’s time and
attention.
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Table 5 The performance of four rivals compared to FLUSS

AutoplaitClassic AutoplaitAdapted HOG1D Best human Random

Win | lose | draw over FLUSS 3 | 26 | 3 3 | 25 | 4 8 | 15 | 9 11 | 9 | 12 0 | 32 | 0

4,0002,0000 6,000 8,000
0

1

0 40,000
0

1
Tilt ABP

Dutch Factory

Fig. 18 The CAC computed for (top) TiltABP with L�{100, 150, 200, 250, 300, 350, 400} and (bottom)
DutchFactory for L �{25, 50, 200, 250}. Even for this vast range of values for L, the output of FLUSS is
essentially unchanged (Color figure online)

A post-mortem analysis showed that if we had instead chosen between ¼ and ½ a
period length, we would have cut the number of wins by all rivals by more than half .
Nevertheless, these results strongly support our claim of the superiority of FLUSS.

4.6 Robustness of FLUSS to the only parameter choice

The performance of FLUSS is highly robust to the choice of its only parameter, the
subsequence length L. To demonstrate this, we consider two random datasets, TiltABP
and DutchFactory, changing the subsequence length to span an order of magnitude,
from 100 to 400 in TiltABP and from 25 to 250 in DutchFactory. As shown in Fig. 18,
this variation of subsequence length has insignificant effect on the segmentation.

These results generalize to the remaining 30 datasets. To see this, we did the follow-
ing experiments. For all thirty-two datasets we reran the experiments in the previous
section, after doubling the subsequence length, and measuring change on our scoring
function. Recall that because our scoring function is fine-grained, we only count a
method’s success as differing if its score was at less than half, or more than double
another score; otherwise, we report a tie.

Relative to the original experiment we found that for twenty datasets there was a
tie, one got slightly better and eleven got slightly worse.

We then repeated the experiment, this time halving the subsequence length. This
time, relative to the original experiment we found that for eight datasets there was
a tie, twelve got slightly better and twelve got slightly worse (the raw numbers are
archived at (Keogh 2017)). These results strongly support our assertion, our algorithm
is not sensitive to the subsequence length parameter.
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Fig. 19 A passive RFID tags apparatus for posture recognition that eliminates the need for the monitored
subjects to wear any devices. Because the line-of-sight between the RFID tags and the RFID antenna are at
different heights, difference signals can (weakly) be seen as “experts” in providing information about the
participants legs, torso and head Adapted from Yao et al. (2015)

4.7 Segmentation of multi-dimensional data

In Sect. 3.4 we showed an example of how we can trivially extend our framework to
the multi-dimensional case (Machné et al. 2017). Here we test this ability with some
formal experiments.

Note that there are two issues here: Given a D-dimensional time series, we must:

1. Choose which subset of D, Dsub to use as input to the segmentation algorithm.
Note the Dsub may be as large as all D dimensions, or as few as one. However,
work in the related problems of time series clustering and classification suggest
that it will be rare that all D dimensions are useful (Hu et al. 2016).

2. Combine the results of theDsub dimensions into a single segmentation prediction.

In this work, we gloss over the first issue, and assume that it is known, either from
domain knowledge, or by learning it on snippets of labeled data.

We consider the Received Signal Strength Indicator (RSSI) dataset from (Yao et al.
2015). In this dataset, twenty-two activities for each of twelve time series from RFID
data are provided. Figure 19 illustrates how the data was collected. It is obvious from
this illustration that different time series have a different “view” of the participant.
For example, some of the time series only register changes in the head/upper torso
region.

We beginwith a simple demonstration to illustrate the utility of incorporatingmulti-
dimensional information into the segmentation process here. Segmentation of three
activities on RSSI dataset is shown in Fig. 20 As we can see, Signal 5 is able to
discover the transition from bendover to crouchtostand, but not the transition
from crouchtostand to sittostand. In contrast, Signal 3 does not allow the
discovery of the transition from bendover to crouchtoStand but does easily
find the change from crouchtostand to sittostand.
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Fig. 20 Multi-dimensional time series segmentation’s example on RSSI dataset-person 5. top) The CAC
obtained from the signal number 3 (red) and the signal number 5 (blue) which each of them separately
cannot be used for segmentation. bottom) the combination of two CACs which can segment all three
activities (Color figure online)
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Combination of two best CACs

Combination of all CACs

Fig. 21 Anexample of ourmulti-dimensional time series segmentation on the three activities ofRSSI dataset:
bendover, crouchtostand and sittostand. The combination of CAC of two selected best time
series (blue). The combination of all time series’CAC (green) (Color figure online)

Gratifyingly, as shown in Fig. 20.bottom, using both dimensions helps us find a
more accurate segmentations than using either of the single dimensions.

In addition, to see how effective using all dimensions can be for segmentation, we
calculate the score using all time series to segment the two activities. As it is shown
in Fig. 21 the combination of all CAC’s “blurs” the resulting CAC somewhat.

To test the effectiveness of using Dsub dimensions in segmentation, we performed
the following experiment. Two of the activities are selected randomly thirteen times
and we calculate the CAC for combination of all time series and the two best time
series. The result is compared with using just one time series, which has a best score
for segmenting activities. In each run, we select two time series which have the best
result in comparison to other two combinations and obtain the score of them. A time
series counts as winning if its score is less than the score of best time series’ score.
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Table 6 The performance of all CACs and two of best CACs vs. only one time series

Combination of all CAC’s Combination of two time series’
CAC

Win | lose | draw over best CAC 1 | 11| 1 7 | 0 | 6

800000
0.2
0.4
0.6
0.8

1

0 2000 4000 6000 8000
0.6

0.7

0.8

0.9

1

Fig. 22 (Left-panel) A figure taken from (Matsubara et al. 2014a). The original caption reads “AUTOPLAIT
can detect un-repeated regimes: a It captures all distinctmotions (walking, running, etc.), while bDynaMMo
was not completely successful in finding optimal cut points, c pHMM cannot find high-level motion pat-
terns”. (right-panel) Our proposed algorithm achieves a segmentation that is also objectively correct and
achieves a tying (near-perfect) score with AUTOPLAIT

We report a tie when the score of two time series is equal. Table 6 summarizes the
outcomes.

As shown in Table 6, in general, just using two (or some other small subset) of all
the dimensions can segment the activities much more accurately than either using all
dimensions or a single dimension. This can be seen as a classic “goldilocks” observa-
tion, and a similar observation is made in the context of time series classification in
(Hu et al. 2016). This begs the question of which small subset of dimensions to use.
We leave such considerations for future work.

As shown in Fig. 22 we also compare to the most cited multidimensional segmen-
tation algorithm, Autoplait (Matsubara et al. 2014a).

As we noted in the previous section, we could not get the original Autoplait algo-
rithm to produce any segmentation on 20 of our 32 single-dimensional test datasets.
Recall that the algorithm was too conservative and did not produce any segmentation.
We found this issue is even worse for the multidimensional segmentation setting. This
is possibly because we are considering datasets for which the authors did not intend it
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to be applied to (although (Matsubara et al. 2014a) does not state any such limitations).
Fortunately, we can bypass such issues. In Fig. 22.left-panel we show a screen capture
of the original authors keystone multidimensional segmentation example. As this was
a dataset was chosen by the authors to showcase their method, it is ideal for us to com-
pare to. As the reader can see in Fig. 22.left-panel, our algorithm produces an equally
successful segmentation. Moreover, the original authors use the example to compare
to two other methods (DynaMMo and pHMM) they had invented and published in
previous papers, showing that these methods failed on this example (Matsubara et al.
2014a). On this comparison our method and Autoplait tie. However, recall that we can
segment such data in a streaming fashion, whereas Autoplait is batch algorithm only.

4.8 The speed and utility of FLOSS

Our evaluation of FLOSS is brief, since it essentially inherits all the qualities of
FLUSS but allows for online segmentation. However, to demonstrate the speed and
utility of FLOSS, we performed the following experiment. We considered the Y-axis
shoe acceleration from Subject 3 from the PAMAP dataset’s (Reiss and Stricker 2012)
outdoor activity. The data is 270,000 data points sampled at 100 Hz, giving us 45 min
of wall-clock time.We used FLOSS tomaintain a slidingwindow of the last 20-s of the
subject’s behavior, using a 65 subsequence length (suggested by (Reiss and Stricker
2012)). We discovered:

• It took us only 73.7 s to process the data; thus, we can process the data about 36
times faster than real time.

• In a post hoc sanity check, we examined the three lowest values of the CAC
in this trace. By comparing the locations to the ground truth provided, we dis-
covered that the Top-3 regimes changes we discovered correspond exactly to
the following transitions: normal-walking|transient-activities,
Nordic-walking|transient-activities and running
|transient-activities.

The output of FLOSS for this time series is shown in Fig. 23, and at (Keogh 2017),
we have placed a video showing a trace of the process.

4.9 Automatically setting FLUSS/FLOSS’s parameter

As discussed above, a great strength of FLUSS/FLOSS is that it has only one main
parameter, the subsequence length L. Moreover, as we showed explicitly in Fig. 18,
our algorithms are not particularly sensitive L’s value. Nevertheless, it is reasonable
ask how one might go about setting this parameter, when faced with a novel domain.

While we will not exhaustively solve this issue here (it perhaps merits its own paper
to do it full justice), we will show a simple heuristic that we empirically have found
to be very effective. We consider our running example of Arterial Blood Pressure
segmentation, which is shown in its entirety in Fig. 18.top.

Note that the problem reduces to a lack of labelled data. If we have some labeled
data for the domain of interest, we can simply test all values of L and choose the
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Fig. 23 The CRC1D (red) of a time series (blue) from PAMAP. The ground truth is shown in the center,
where WS is walking slowly, NM is normal walking, ND is Nordic walking, RU is running
, CY is cycling, RJ is rope jumping, and SO is playing soccer. The top three segmentation
locations are marked with broad yellow translucent lines (Color figure online)
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Fig. 24 (Left) The real snippet of ABP data, with the regime change marked, and a snippet of ABP data
(from the same individual) with a synthetic regime change created by appending the snippet to itself after
rescaling it to 95% of its original length. (right) The L vs. score plots for both datasets a very similar, and
more importantly, the value of L the minimized the score for the synthetic dataset also produces a very
competitive value when applied to the real data

one that minimizes our scoring function (Sect. 3.6). Our proposed heuristic is based
on an idea that has been used for other data mining problems (Ha and Bunke 1997;
Dau et al. 2016). If we only have snippets of a single class from our domain, but we
also need labelled data that illustrates what the data looks like with a “distortion”, we
can synthetically create such data by copying and then distorting our “clean” data.
The success of this idea depends on our ability to produce a realistic distortion of the
data. For example, in (Dau et al. 2016) the authors need to learn a parameter that is
sensitive to time warping (local accelerations of the time series), so they introduce
a function to artificially add warping to their limited training set. Here, the possible
“distortions”, by definition, are unlimited and unknowable in advance. Although there
are sophisticated methods (Esteban et al. 2017) for creating synthetic data, we simply
used a change-of-rate by 5% as the regime change.

For concreteness, if R is our snippet of real data, then the following line of Matlab
code Synthetic_Data = [R, R(1:0.95:end)]; produces our training data,
and the correct location of the regime change should be at |R|. As Fig. 24.left shows,
such a change is barely perceptible.
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For the real data, the optimal value of L is 43, and this gives us a near perfect score
of 0.0014. For our synthetic data, the optimal value of L is 68. If we had used this
predicted value on the real dataset, the score would have been 0.0151. This is about
equivalent to missing the regime change by plus or minus one half of a heartbeat.

An additional observation of this experiment is that it reinforces that claim that the
algorithm is not too sensitive to the parameter length, any value of L from 20 to 590
would have discovered the correct location of the regime change within the length of
a single heartbeat.

4.10 A detailed case study in segmenting physical activity

In this section, we consider a case study that requires all three of the novel elements of
this work. In particular, the temporal arc constraint (Sect. 3.5), the generalization to
multi-dimensional segmentation (Sect. 4.7) and learning the best subsequence length
from unsupervised data (Sect. 4.9).

Accurate measurement of physical activity in youth is extremely important as this
behavior plays an important role in the prevention and treatment of obesity, cardio-
vascular disease, and other chronic diseases (Kozey-Keadle et al. 2011; Cain et al.
2013; Mu et al. 2013; Crouter et al. 2015). The use of wearables (i.e. accelerometers
mounted on the wrist or ankle) reduce recall-bias common with questionnaires, but
they do not provide contextual information needed by health care workers (Cain et al.
2013). Current methods use to map accelerometer data to physical activity outcomes
rely on static regression models that have been shown to have poor individual accu-
racy during free-living measurements (Lyden et al. 2014). Recently, several research
groups have recognized that segmentation of the data can be used as preprocessing step
to improve accuracy of behavior classification (Cain et al. 2013; Crouter et al. 2015).
This observation has an apparent chicken-and-egg nature to it, as many segmentation
algorithms require at least much model-building, domain knowledge and parameter
tuning, as the classification method they could potentially benefit (Lan and Sun 2015;
Lin et al. 2016). However, as we have argued in this work, our proposed segmentation
method is domain independent and only requires a single intuitive parameter to be set
or learned.

The dataset we consider is the first “sanity check” dataset collected as part of a
large-scale five-year NIH-funded project at the University of Tennessee Knoxville.
Eventually, more than one hundred youth will be measured during a semi-structured
simulated free-living period (development group) and one hundred youth will be mea-
sured during true free-living activity during an after-school program and at home
(validation group). The need to segment this massive archive was one of the major
motivations to develop FLOSS. Our initial dataset contains ten activities from a hip
mounted sensor, including accelerometer and gyroscope data which is collected at
90 Hz. The data contains repeated activities, and both a visual inspection of the data
and discussions with the domain experts that collected it strongly suggest that using
just one dimension is not sufficient to meaningfully segment the activities.

In addition, we do not have a good intuition for what is an appropriate value for
parameter L in this domain. However, as described in Sect. 4.9, we can estimate the

123



Domain agnostic online semantic segmentation

dusting
reclining

dusting

basketball

Acc_x

Gyro_y

0

0

1 UnconstrainedAcc_x
Gyro_y

20000

A

B
C

0
0

With constraint

Acc_x

Gyro_y

1

A

B
C

20000

0
0

1

Combination of CACs

A
B C

20000

Fig. 25 (Top to bottom) Ground truth segmentation, into dusting, reclining, basketball and
dusting (gray). The accelerometer’s X (red) and the gyroscope’s Y (blue) data of hip from dataset
provided by project (Crouter et al.). The classic CAC produces false negatives at locations A in both CAC.
By applying arc constraint, gyroscope’s Y has detected the segment in location A, and accelerometer’s X
data can detect the segments in location B and C. Combining two dimensions of data accelerometer’s X
and gyroscope’s Y and considering all the properties can help us to detect all the segments in time series
(Color figure online)

best value of L using synthetic data. Our goal is to autonomously segment a time series
containing multiple activities types with repetition into separate behaviors.

To illustrate this goal, we perform an experiment on a time series from dataset
(Crouter et al.). As shown in Fig. 25, we considered four sequences of activities,
dusting, reclining, basketball and (a return to) dusting. This figure
clearly shows using one-dimension of data is not sufficient to segment the data, and
not considering the possibility of repeated but disconnected activities misleads the
algorithm. However, by addressing these issues produces more accurate results.

In producing Fig. 25, for simplicity we hardcode the L value. However, we can also
learn the value of subsequence length by using synthetic data from just one randomly
chosen class, in this casewalking slow, and applying5%rescaling trick discussed
in Sect. 4.9. We evaluate our prediction of the best value for L by comparing the
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Fig. 26 (Left) The real snippet of activity data, with the regime change marked, and a snippet of activity
data with a synthetic regime change created by appending the snippet to itself after rescaling it to 95% of
its original length. (right) The L vs. score plots for both datasets. The value of L that minimized the score
for the synthetic real dataset is very similar

results on real data from segmenting two activities of walking slow and catch.
As shown in Fig. 26 the subsequence length is predicted from synthetic data is very
similar to value obtained with real data.

As it is shown in Fig. 26. right, the value of L which minimizes the score function
in both the synthetic proxy data and ground truth data is about 100 (about one second).
The experiments in Figs. 25 and 26 strongly suggest that for segmenting real-world
data, all the elements proposed in this paper is necessary.

5 Summary and future work

We have introduced a fast, domain-independent, online segmentation algorithm and
have shown its utility and its versatility by applying it to dozens of diverse datasets.

A limitation of our algorithm is that it requires setting a parameter. However, we
demonstrate that our algorithm is insensitive to the value of this parameter. Moreover,
we show that in at least some cases, it can be learned directly from unlabeled data
from the same domain. Another limitation of our algorithm is that is assumes that each
regime will manifest with at least two repeated periods.

We have further shown that our algorithm alsoworks for themulti-dimensional case
(Keogh 2017), and allows the user to specify a domain dependent temporal constraint,
to allow segmentation of shorter repeated regimes set within longer period repetitions.

We have made all code and data freely available to the community to confirm,
extend, and exploit our work. For future work, we are interested in applications of
our ideas, for example, to learning from weakly labeled-data (Hao et al. 2013), and to
time series summarization and visualization.
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Aoki T, Lin JF-S, Kulić D, Venture G (2016) Segmentation of human upper body movement using multiple

IMU sensors. In: Engineering in medicine and biology society (EMBC), 2016 IEEE 38th annual
international conference of the. IEEE, pp 3163–3166

Bouchard D, Badler N (2007) Semantic segmentation of motion capture using laban movement analysis.
In: International workshop on intelligent virtual agents. Springer, pp 37–44

Bregler C (1997) Learning and recognizing human dynamics in video sequences. In: 1997 IEEE Computer
society conference on computer vision and pattern recognition, 1997. Proceedings, IEEE, pp 568–574

Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L (2013) Using accelerometers in youth physical
activity studies: a review of methods. J Phys Act Health 10:437–450

Cassisi C, PrestifilippoM, Cannata A, Montalto P, Patanè D, Privitera E (2016) Probabilistic reasoning over
seismic time series: volcano monitoring by hidden markov models at mt. etna. Pure appl Geophys
173:2365–2386

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista GWelcome to the UCR Time Series Clas-
sification/Clustering Page. http://www.cs.ucr.edu/~eamonn/time_series_data/. Accessed 7 Sep 2018

Chuttani K, Tischler MD, Pandian NG, Lee RT, Mohanty PK (1994) Diagnosis of cardiac tamponade after
cardiac surgery: relative value of clinical, echocardiographic, and hemodynamic signs. Am Heart J
127:913–918

Crouter SE, Flynn JI, Bassett DR Jr (2015) Estimating physical activity in youth using awrist accelerometer.
Med Sci Sports Exerc 47:944

Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under
dynamic time warping. In: Proceedings of the 25th ACM international on conference on information
and knowledge management. ACM, pp 999–1008

Esteban C, Hyland SL, Rätsch G (2017) Real-valued (medical) time series generation with recurrent con-
ditional GANs. arXiv preprint arXiv:170602633

Ha TM, Bunke H (1997) Off-line, handwritten numeral recognition by perturbation method. In: IEEE
transactions on pattern analysis & machine intelligence, pp 535–539

HaoY,ChenY, Zakaria J, HuB,RakthanmanonT,KeoghE (2013) Towards never-ending learning from time
series streams. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp 874– 882

Harguess J, Aggarwal JK (2009) Semantic labeling of track events using time series segmentation and
shape analysis. In: 2009 16th IEEE international conference on image processing (ICIP), IEEE, pp
4317–4320

Heldt T, Oefinger MB, Hoshiyama M, Mark RG (2003) Circulatory response to passive and active changes
in posture. In: Computers in cardiology, 2003. IEEE, pp 263–266

Hu B, Chen Y, Keogh E (2016) Classification of streaming time series under more realistic assumptions.
Data Min Knowl Disc 30:403–437

Keogh E (2017) Supporting website for this paper. http://www.cs.ucr.edu/~eamonn/FLOSS/. Accessed 7
Sep 2018

Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical
demonstration. Data Min Knowl Disc 7:349–371

Keogh E, Chu S, Hart D, Pazzani M (2004) Segmenting time series: A survey and novel approach. In: Data
mining in time series databases. World Scientific, pp 1–21

Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS (2011) Validation of wearable mon-
itors for assessing sedentary behavior. Med Sci Sports Exerc 43:1561–1567

Lainscsek C, Hernandez ME, Weyhenmeyer J, Sejnowski TJ, Poizner H (2013) Non-linear dynamical
analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals.
Front Neurol. https://doi.org/10.3389/fneur.2013.00200

Lan R, SunH (2015) Automated humanmotion segmentation viamotion regularities. Vis Comput 31:35–53
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