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Abstract 

Knowledge representation is essential for semantics modeling and intelligent information 

processing. For decades researchers have proposed many knowledge representation techniques. 

However, it is a daunting problem how to capture deep semantic information effectively and 

support the construction of a large-scale knowledge base efficiently. This paper describes a new 

knowledge representation model, SenseNet, which provides semantic support for commonsense 

reasoning and natural language processing. SenseNet is formalized with a Hidden Markov 

Model. An inference algorithm is proposed to simulate human-like natural language 

understanding procedure. A new measurement, confidence, is introduced to facilitate the natural 

language understanding. We present a detailed case study of applying SenseNet to retrieving 

compensation information from company proxy filings. 
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A Lexical Knowledge Representation Model for Natural Language Understanding 

1. Introduction 

A natural language represents and models information of real world entities and relations. 

There exist a large number of entities in the world, and the number of relations among entities is 

even higher. Entities and relations together make a highly complex multiple dimensional lattices. 

It is not a surprise that it usually takes a lot of training for a human being to speak, write and 

understand a natural language even with the fact that the computation power packed in a small 

human brain surpasses the most powerful supercomputer in many aspects.  

Human beings receive information through vision, hearing, smelling and touching, and 

send information through facial and body expressions, talking and writing. Of these 

communication channels, reading (from human vision), hearing, talking and writing are related 

to natural languages. All of them are temporally one-dimensional, and only one signal is sent out 

or received at a certain time point, so a natural language is communicated one dimensionally. 

With one-dimensional natural languages used by human being, in order to understand and 

describe a highly dimensional environment a series of filtering and transformations are necessary 

as illustrated in Figure 1. These transformations can be N-dimensional to N-dimensional or one-

dimensional to N-dimensional in input process, and N-dimensional to one-dimensional or N-

dimensional to N-dimensional in an output process. After these transformations information 

should be ready to be used by the central processing unit directly. Effectiveness and efficiency of 

these transformations are very important to knowledge representation and management.  

A knowledge model describes structure and other properties of a knowledge base which 

is part of a central processing system. A knowledge representation model is simply a mirror of 



our world, since one important requirement for a model is its accuracy. In this sense there is 

hardly any intelligence in a knowledge model or a knowledge base. Instead it is the 

communication process consisting of filtering and transformations that shows more intelligent 

behaviors. As expressed by Robert C. Berwick, et al., in a white paper of MIT Genesis project 

(Berwick, et. al., 2004), “The intelligence is in the I/O”. As shown in Figure 1, a knowledge 

model may be the easiest component to start since its input has been filtered and transformed 

tremendously from the original format, and is ready to be stored in the knowledge base directly. 

On the other hand, a knowledge representation (KR) model plays a central role to any 

knowledge-based systems, and it eventually decides how far such a system can go. Furthermore, 

knowledge and experience can make the process of filtering and transformations more efficient 

and effective.  

 

Figure 1 Communication process for a knowledge-based system 

A KR model captures the properties of real world entities and their relationships. 

Enormous amounts of intervened entities constitute a highly complex multi-dimensional 

structure. Thus a KR method needs powerful expressiveness to model such information.  



Many cognitive models of knowledge representation have been proposed in cognitive 

informatics. Several cognitive models are discussed in (Wang & Wang, 2006). Object-Attribute-

Relation model is proposed to represent the formal information and knowledge structures 

acquired and learned in the brain (Wang, 2007). This model explores several interesting physical 

and physiological aspects of brain learning and gives a plausible estimation of human memory 

capability. The cognitive foundations and processes of consciousness and attention are critical to 

cognitive informatics. How abstract consciousness is generated by physical and physiological 

organs are discussed in (Wang & Wang 2008). A nested cognitive model to explain the process 

of reading Chinese characters is presented in (Zheng, et. al., 2008), which indicates that there are 

two distinctive pathways in reading Chinese characters, and this can be employed to build 

reading models. Visual semantic algebra (VSA), a new form of denotational mathematics, is 

presented for abstract visual object and architecture manipulation (Wang, 2008). VSA can serve 

as a powerful man-machine interactive language for representing and manipulating visual 

geometrical objects in computational intelligence systems.  

In Artificail Intelligence many KR techniques have been proposed since 1960’s, such as 

semantic network, frame, scripts, logic rules etc. However, we still know little about how to 

capture deep semantic information effectively and support the construction of a large-scale 

commonsense knowledge base efficiently. Previous research focuses more on the expressiveness 

of KR. Recently there is an emerging interest of how to construct a large-scale knowledge base 

efficiently. In this paper we present a new KR model, SenseNet, which provides semantic 

support for commonsense reasoning and natural language understanding.  

1.1. Our contributions 



SenseNet shares the same goal of building a large-scale commonsense knowledge base. 

Compared with WordNet, Cyc, and ConceptNet, our contributions are: 

• We use a sense instead of a word as the building block for SenseNet, because a sense 

encodes semantic information more clearly. 

• A relationship is defined as a probability matrix, which allows adaptive learning and 

leads naturally to human-like reasoning. 

• Relationships among senses are formalized with a Hidden Markov Model (HMM), which 

gives SenseNet a solid mathematical foundation. 

• A new measurement, confidence, is introduced to facilitate natural language 

understanding procedure. 

• After the regular learning, SenseNet uses a “thinking” phase to generate new knowledge. 

This paper is organized as follows. Section 2 discusses related work. We present our KR 

model, SenseNet, in section 3 and its inference algorithm in section 4. Section 5 shows how 

SenseNet can be used to model the human communication process. Section 6 describes a real 

world application on information extraction. Finally we conclude in section 7. 

2. Related work 

2.1. Knowledge acquisition 

A lot of research on building general-purpose or commonsense knowledge bases has 

recognized the importance of representing relations among words. Here we will discuss three 

major knowledge acquisition projects, Cyc, WordNet and ConceptNet. 

WordNet is a widely used semantic resource in computational linguistics community 

(Fellbaum, 1998). It is a database of linked words, primarily nouns, verbs, adjectives and 



adverbs. These words are organized into synonym sets called synsets, and each synset represents 

one lexical concept. Meanings of each word are organized into “senses”. Links are predefined 

semantic relations among words, not senses. Currently WordNet contains about 150,000 

words/strings, 110,000 synsets and 200,000 word-sense pairs. Predefined relations can only 

satisfy some applications or domains no matter how carefully they are chosen, also lack of 

adaptiveness limits its learning capability. 

The Cyc project emphasizes on formalization of commonsense knowledge into a logical 

framework (Witbrock, Baxter, & Curtis, 2003). Same as WordNet, its knowledge base is 

handcrafted by knowledge engineers. To use Cyc a natural language has to be transformed to a 

proprietary logical representation. Although a logical foundation has some nice properties, it is 

complex and expensive to apply Cyc to practical textual mining tasks. 

ConceptNet is proposed in Open Mind Common Sense project in MIT. Comparing with 

WordNet and Cyc, the main advantage of ConceptNet is its unique way to acquire knowledge. 

Thousands of common people contribute through the Web by inputting sentences in a fill-in-the-

blank fashion. Then concepts and binary-relational assertions are extracted to form ConceptNet’s 

semantic network. At present ConceptNet contains 1.6 million edges connecting more than 

300,000 nodes (Liu & Singh, 2004). Nodes are semi-structured English fragments, interrelated 

by an ontology of twenty predefined semantic relations.  

Even with efforts of lots of people (about 14,000 people contributed to ConceptNet) in a 

long time (both WordNet and Cyc started almost twenty years ago), building a comprehensive 

knowledge base is still remote. Unstructured or general texts are still too complex for current text 

mining techniques. That is why a lot of research focuses only on constrained text, which is either 



format constrained (such as tables) or content constrained (such as extracting only location 

information). In the rest of this section we will discuss some techniques on named entity 

extraction and table analysis, which are related to our case study. 

2.2. Named entity extraction 

Named entity detection and extraction techniques try to locate and extract the entity 

names (such as of company, people, locations (Li, et. al., 2003), biological terms (Goutte, et. al., 

2002), etc.), dates (Mckay & Cunningham, 2001), monetary amounts, references (Agichtein & 

Ganti, 2004) and other similar entities in unstructured text. In early systems usually a domain-

specific dictionary and a pattern/rule base are built manually and tuned for a particular corpus. 

Extraction quality depends on the quality of these external dictionaries and bases, sufficiency of 

training and consistency of documents within the corpus. Recently more systems utilize context 

information to deal better with inconsistency among documents, which results in a more robust 

system. In (Cohen & Sarawagi, 2004) a semi-Markov model is proposed to make better use of 

external dictionaries. In (McCallum, Freitag, & Pereira, 2000) a maximum entropy Markov 

model is introduced to segment FAQ's. Maximum entropy (ME) is also used in (Borthwick, et. 

al., 1998) to combine diverse knowledge sources. Both hidden Markov model (HMM) and ME 

can generate statistical models of words and simple word features. Document (not the whole 

corpus) specific rules are learned for named entities extraction to keep more knowledge of 

original documents (Callan & Mitamura, 2002). 

Named entity extraction focuses on extracting simple terms, hopefully to get some 

insights for development of general NLP techniques. However, a named entity often has 

semantic relations with other parts of text, and focusing on only named entities ignores these 



semantic connections. Instead we choose text with constrained structures, such as tables for our 

case study. Table is semantically complete and usually rich in information.  

2.3. Table analysis 

Tables are widely used in documents, and are self-contained in semantics and structure. 

Unstructured text, semi-structured text (such as HTML, LATEX), structured text (such as XML), 

all utilize table to represent information with repeated patterns. 

There exists a lot of work in table analysis, and usually they can be divided into (Zanibbi, 

Blostein, & Cordy, 2004): 

• table detection 

• table modeling 

• table structure analysis 

• table information extraction 

After a table is detected, physical and logical structures of tables are studied. Data 

structures and operations are defined for more complex table processing, such as table 

regeneration, transformation and inferences (Wang & Wood, 1998). Then tables are decomposed 

with a table model, such as constraint-based table structure derivation (Hurst, 2001), graph 

theory based system (Amano & Asada, 2003), extraction using conditional random fields (Pinto, 

et. al., 2003). Even after table structure analysis, the task of table information extraction is still 

non-trivial. Table 2 shows that semantic information has to be considered, which may result in 

changes of original table model based on structure information, such as splitting or merging 

cells. 



Recently due to the popularity of web pages, detection and analysis of tables in HTML 

documents get a lot of attention (Wang & Hu, 2002; Chen, Tsai, & Tsai, 2000). HTML provides 

table tags which often help detect and segment tables, but offers little help on semantic analysis. 

And due to inconsistent quality of web pages, erroneous tags become noise and require 

additional processing. 

Most of above methods are developed for table analysis only. Instead, our work is 

primarily concerned with broader application of SenseNet in text mining, and entity extraction 

from tables is used as an application in this context. Consequently it is meaningless to compare 

our experimental results to those obtained by these methods designed just for table analysis, and 

often just for tables with specific structures and in a narrow domain. With information extraction 

from tables as a case study, we want to show SenseNet as a methodological study which can be 

applied more broadly. Additionally performing a fair comparison of our work with other entity 

extraction techniques is not straightforward due to the difficulty of obtaining the same set of 

documents and knowledge base used in their experiments and determining the effects of 

preprocessing performed in lots of those techniques. 

3. SenseNet: a knowledge representation model 

We divide the natural language understanding process into three phases: 

• learning phase 

• thinking phase 

• testing phase 

Learning or knowledge acquisition to set up a general purpose knowledge base requires 

large amounts of resources and time as shown by Cyc, WordNet and CommonSense projects. 



For SenseNet we could reuse the knowledge bases built by WordNet, but need to build semantic 

connections among word senses. In our case study, SenseNet is effectively applied to a specific 

domain, tables in financial documents. Even with this small domain, the amount of knowledge 

required is large. Difficulty of learning is a common and severe problem to any existing 

knowledge bases. Whether there exists an automatic learning method which can build a high 

quality, general-purpose, practical knowledge base is still an open question.  

3.1. SenseNet model 

Lexicon is the knowledge of words, which includes a large amount of “character string to 

real entity” mappings. Memorization of these mappings is difficult for human beings. It explains 

why in many natural languages a word often represents multiple meanings. In computational 

linguistics a meaning of a word is called a sense. From the view of semantics a sense is a better 

choice for a knowledge base than a word because a sense encodes a single and clear meaning. 

Our KR model, SenseNet, uses a sense as the basic semantic unit.  

 

Figure 2 (a) An instance of SenseNet (b) A node of SenseNet represents a word 

An instance of SenseNet is shown in Figure 2 (a). Each node represents a word. A node 

has multiple attributes representing the senses of a word, and each sense represents a single 



unambiguous entity (meaning). Entity is defined as “something that has independent, separate, or 

self-contained existence and objective or conceptual reality” by Webster dictionary. A word 

wordα is defined as the set of all its senses {sensei}, which is shown in the Figure 2 (b), where i = 

1, … , n. 

A simple edge connects two semantically related words, for example, edge1 in Figure 2. 

As shown in Figure 3, a simple edge represents the semantic relationship between wordα and 

wordβ, that is, the probability of wordα taking sense i and wordβ taking sense j at the same time. 

A simple edge connecting wordα and wordβ is defined as a probability matrix: 

Rn × m = P{wordα = sensei, wordβ = sensej}, i = 1, … , n; j = 1, … , m 

R is a reflective matrix, that is, the probability of wordα taking the sensei if wordβ takes 

the sensej is equal to the probability of wordβ taking sensej and wordα takes sensei. 

 

Figure 3 An edge of SenseNet 

A complex edge connects more than two words (for example, edge2 in Figure 2 connects 

three words, word2, word3, and word5), which means that these words are semantically related 

together to express combined or more specific information. For example, to correctly analyze 



“give Tom a book”, “give”, “Tom”, and “book” need to be processed together to capture the 

complete information. A complex edge is formally defined as: 

RNwα× Nwβ× … × Nwγ = P{wordα = sensei, wordβ = sensej, … , wordγ = sensek} 

where sensei is a sense of wordα, 1 ≤ i ≤ Nwα, Nwα is the total number of senses of wordα; 

sensej is a sense of wordβ, 1 ≤ j ≤ Nwβ, Nwβ is the total number of senses of wordβ; sensek is a 

sense of wordγ, 1 ≤ k ≤ Nwγ, Nwγ is the total number of senses of wordγ. 

A complex edge that connects m nodes is called an m-edge, hence a simple edge is also a 

2-edge. Of course, different edges will contain different probabilities reflecting different strength 

among connected words. 

3.2. Confidence 

Most machine learning algorithms discard duplicate samples during training as no new 

information can be gained. However, the number of these identical samples indicates how often a 

sample occurs and how many users agree upon them. During human learning process, duplicate 

samples do not give new information, but will build our confidence on the indicated information. 

Similarly in SenseNet we use the number of identical samples as confidence for that sample. We 

define three types of confidence: sense confidence, connection confidence and global 

confidence. 

Suppose a word w has n senses, for each sense there exists a sense confidence. A sense 

confidence represents the frequency that this sense is encountered during training and is 

normalized to a value between 0 and 1. A connection confidence is defined on a connection 

between two senses. Similarly, it represents the frequency of this connection is encountered 



during training and is also normalized to a value between 0 and 1. Global confidence shows our 

overall confidence of the current SenseNet, and it serves as Cthreshold in our inference algorithm 

discussed in Section 4.2. Global confidence is statistically derived from sense and connection 

confidence existed in a SenseNet, for example, it can be the average value, minimum, or 

maximum of all existing confidence. As shown in the inference algorithm (Section 4.2), if global 

confidence takes the minimum value, a great number of low-confidence senses will be activated, 

which mimics an over-confident human being. 

Confidence can also be affected by the source of samples. For example, we may be very 

confident with word definitions in a dictionary. We thus assign a high confidence to these trusted 

sources directly. By this way training is shortened because the closer the confidence is to 1, the 

less learning is required. Just like a human being, if he is confident with his knowledge on a 

topic, he will not spend much time learning it. 

3.3. Implication operation 

Training is expensive for most machine learning algorithms. To make the best use of 

training efforts we apply implication operation to generate new edges and expand the newly built 

SenseNet. We denote this phase as thinking phase. 

Suppose that two edges are learned (Figure 4). Then through implication operation we try 

to determine whether an edge (semantic relationship) exists between word1 and word3. 

Implication operation is defined as: 

R l×k = R l×m × R m×k 



 

Figure 4 Implication process 

where R l×m is the probability matrix between word1 and word2, R m×k is the probability 

matrix between word2 and word3, and R l×k is the calculated probability matrix between word1 

and word3. word1 and word3 are not semantically related if all values in Rl× k are zero. Otherwise, 

a new edge is inserted into the SenseNet between word1 and word3. It is possible that there exist 

multiple routes connecting word1 and word3. In this case first we will generate multiple 

temporary edges from these routes, then these temporary edges are averaged to generate the new 

edge between two words. 

The confidence of the newly generated edge is the multiplication of two original edge 

confidence. Because confidence values have been normalized between 0 and 1, the calculated 

confidence is smaller than either of the original values. This process exactly simulates the 

learning process of human beings, as we usually have lower confidence with indirect knowledge 

generated by reasoning than directly taught knowledge.  

3.4. Combination operation 

After multiple simple edges connecting the same set of nodes are generated, we can 

combine them into a complex edge. The combination of two simple edges is defined as: 

Rl, k, x = Rl, k, 1 × R1, k, x × θ 



where Rl, k is rewritten to Rl, k, 1, Rk, x is rewritten as R1, k, x, θ is within [0,1], θ shows the 

decreasing confidence. As the number of nodes involved becomes large, the cost of combination 

operation will also go up. But the new relation matrix for combined edge is usually very sparse, 

and storage and processing techniques of sparse matrix can be very helpful in this case. Also 

some hybrid techniques can be used, such a look-up table or hash table. Combination of more 

than two edges can be performed in a similar way. 

In summary, both implication and combination operations will generate new knowledge 

which may be unique to a specific SenseNet, fortify the learning capabilities and reduce the 

training cost. In SenseNet both edges and nodes are learned and updated locally and flexibly. 

Therefore, like human intelligence, SenseNet is robust in dealing with inconsistent and 

incomplete data. 

3.5. Disambiguation with SenseNet 

According to SenseNet ambiguity arises when there is more than one way to activate the 

senses or edges. The following example shows how to use SenseNet to analyze word sense 

ambiguity. This process is formalized in section 4.2. 

Example 1: A gambler lost his lot in the parking lot. 

Webster dictionary defines “lot” as: 

• an object used as a counter in determining a question by chance; 

• a portion of land; 

• a considerable quantity or extent;  

• … 



Which senses of “lot” should be activated? This problem is called word sense 

disambiguation in natural language processing. Because of the edge between “gambler” and 

“lot”, “an object used as a counter in determining a question by chance” is activated for the first 

“lot”, and “a portion of land” for the second “lot” due to its relation to “parking” (shown in 

Figure 5). 

 

Figure 5 Sense disambiguation for “lot” 

Another form of ambiguity lies in the syntactic structure of the sentence or fragment of 

language. In the next example it is not clear whether the adjective “small” applies to both dogs 

and cats or just to dogs. 

Example 2: small dogs and cats 

As shown in Figure 6, SenseNet has two options to activate edges, which leads to 

ambiguity. 



 

Figure 6 Left side is a fragment of SenseNet. Right side shows two options to activate edges. 

The sentence below shows an example of implication ambiguity. 

Example 3: The chicken is ready to eat. 

 

Figure 7 Whether to activate another node gives ambiguity. Left side is a fragment of SenseNet, and right side only keeps 
activated edges and nodes. 



For this sentence the ambiguity comes from whether to activate another node as shown in 

Figure 7. Although the node “people” does not appear in the sentence, but since implication or 

omission is very common in communication, we may assume “people” is omitted due to 

simplicity. Again there are two options to activate the SenseNet, which leads to ambiguity. 

Basically ambiguity arises when there are two or more ways to activate the senses, nodes 

or edges in a SenseNet. These examples show that flexibility and ambiguity of a natural language 

come from the same source. To avoid ambiguity more constraints are needed for only one 

activation. 

4. Natural language understanding with SenseNet 

A Hidden Markov Model (HMM) is a discrete-time finite-state automation with 

stochastic state transition and symbol emission (Durbin, et. al., 1998). Recently HMM is gaining 

popularity in text mining as researchers pay more attention to relations and context of entities 

(Seymore, McCallum, & Rosenfeld, 1999). HMM has been widely used for segmentation 

(Teahan, 2000), text classification (Hughes, Guttorp, & Charles, 1999), and entity extraction 

(Cohen & Sarawagi, 2004). For details about HMM, please refer to (Rabiner, 1989). 

4.1. Formalizing natural language understanding with a Hidden Markov Model 

In SenseNet, the natural language understanding process is the process of selecting 

appropriate senses for each word in the text. To understand a document, a human being tries to 

determine meanings (senses) of words, which is an analysis and reasoning process. We formalize 

this process with a HMM using SenseNet as the knowledge base. Suppose there are M states in 

the HMM. The state at time t is st, where t = 0, 1, 2, … , M is the time index. The initial state s0 

is an empty set. The state st consists of the senses of all processed word set Wt. At time t+1, we 



will determine the sense of next unprocessed word wt+1 that has connections (edges in SenseNet) 

with Wt. Which sense of wt+1 will be activated is decided by strength (probability and 

confidence) of edges between wt+1 and Wt in SenseNet. The transition from st to st+1 is given by 

the conditional probability P(st+1|Wt), which is specified by a state transition matrix A. Elements 

of A are defined as: 

aij = P(st+1 = st U wt+1
j | Wt=Wt

i) 

where j is the jth sense of word wt+1, and Wt
i denotes the ith combination of senses of the 

words in Wt. Notice that ∑ij aij = 1.  

If probability is the only measure in determining word senses, we simply choose the wt+1
j 

that has the highest probability. However, as demonstrated by human natural language 

understanding process, probability itself is not sufficient, thus confidence is desired to measure 

how confident we are with our decisions. For example, the transition with highest probability is 

not trustworthy if it has a very low confidence. This is guarded by the Cthreshold in our inference 

algorithm in section 4.2. HMM has so-called “zero-frequency problem” (Witten & Bell, 1991) if 

transitions of zero probability (no training samples) are activated. SenseNet solves this problem 

by assigning a small value to every transition as its initial probability.  

In SenseNet, suppose there is a node wi, confidence for its jth sense is denoted as cij. 

Suppose there are two related nodes, wi and wm, the confidence of probability connecting their 

jth and nth sense is denoted by cij,mn. We define that the confidence for the overall SenseNet C as 

average of all sense confidence and relation confidence. We use C as Cthreshold in our inference 

algorithm during testing phase.  

4.2. Inference algorithm for natural language understanding 



The inference problem of a regular HMM is to find the state with highest probability, 

which is efficiently solved by Viterbi algorithm (Viterbi, 1967). However, in SenseNet the goal 

is to find a state set S with high probability and confidence for a given document, which consists 

of the word sequence W = w1, w2, … , wn. Thus, the inference algorithm returns all states that 

satisfy: 

S = { si | P(si|W) > Pthreshold, C(si|W) > Cthreshold} 

where Pthreshold and Cthreshold are the minimum requirements for probability and 

confidence. S is generated from the line 21 to 26. If S is empty, either SenseNet does not have 

enough knowledge or the document is semantically wrong; if S has one state, SenseNet 

understands the document unambiguously; if S has multiple states, there exist multiple ways to 

understand the document, which results in ambiguity. Ambiguity is very common in a natural 

language. With SenseNet we can successfully detect and analyze ambiguity. Here is the 

SenseNet inference algorithm for sense disambiguation. 

Inference (W = w1, w2, …, wn) { 

1.  S = Ω;  

2.  put a word with the highest confident sense into W0, choose the first one if more than one 

word have the same sense confidence; 

3.  for each sense i of word(s) in W0 {  

4.  TBDi = W - W0;  

5.  Si =  W0; 



6.  for each state sik in Si {  

7.  Pik = P(sik); 

8.  Cik = C(sik); 

9.  TBDik = TBDi; 

10.  while TBDik is not empty {  

11. choose any words in TBDik that have edges to words in sik, add them to sik, 

these newly added words are denoted as W’, activate the senses with the 

highest probability; 

12. TBDik = TBDik -  W’; 

13. Pik = Pik × P(newly_added_edges);  

14. Cik = Cik × C(newly_added_edges)  × C(newly_added_senses);  

15. if  Cik < Cthreshold or Pik < Pthreshold  

16. remove sik from Si, go to 6;  

17. }; // end of TBDik loop  

18. }; // end of Si loop 

19.  S = S U Si; 

20. }; // end of W0 loop  

21. if S is empty  



22. output “failure”;  

23. else if there is only one state in S  

24. output this state as result;  

25. else  

26. output all states, their probabilities and confidences;  

27. } 

The inference algorithm simulates how a human being interprets documents. It starts with 

a word that owns a sense with the highest confidence (line 1 - 2). If there exist multiple such 

words, we choose the first one occurring in the document. Then the algorithm performs a breath-

first searching of all possible paths with probability and confidence above given thresholds and 

save them into S (line 3 - 20). If a word in S0 has multiple senses, all of them are enumerated by 

the loop starting at line 3. Within the loop TBDi (TBD means “to be determined”) saves all 

unprocessed words; Si saves all partial state sequences found so far for the ith sense. Then the 

algorithm tries to complete each partial state sequence by activating the related senses in 

SenseNet (line 11). During the process, the probability and confidence for each state sequence 

are updated with newly added edges and senses. If either probability or confidence falls below its 

threshold, this state sequence is discarded (line 16). P(newly_added_edges) in line 13 is the 

product of probabilities of all newly added edges; C(newly_added_edges) in line 14 is the 

product of confidences of all newly added edges, and C(newly_added_senses) is the product of 

confidences of all newly added senses. Line 19 saves all qualified state sequences into S. As 

more words in W are processed, Pik and Cik become lower, which precisely mimics the process 



of human natural language understanding. When a human being reads a long and hard article, he 

feels more and more confused and less and less confident. 

5. Analyzing communication process using SenseNet 

A natural language is a very common communication tool. There are two phases in a 

communication process, encoding phase and decoding phase. Encoding generates texts from 

SenseNet, and decoding converts texts to a multiple dimensional model with help of SenseNet. 

5.1. Encoding and decoding at the single entity level 

Let's look at how a single entity is processed first. In the encoding phase, the language 

generator (either a human being or a machine) searches a vocabulary base for a word to represent 

the entity. Multiple matches are possible, and mismatch often exists due to the constraints of the 

language or insufficient learning of the language as shown in Figure 8. 

 

Figure 8 Encoding process, dash-lined shape shows the original entity to be described, solid-lined shape shows the word 
chosen to represent it. Mismatch is possible due to language or user constraints. 



In the decoding phase a receiver is able to figure out the meaning or represented entity 

from a single word only if the word has only one sense as shown in Figure 9. 

 

Figure 9 Decoding process, solid-lined shape shows the word a receiver gets, and mismatch can happen. 

Encoding or decoding a single entity is somewhat pointless since usually more 

constraints are necessary to reach a decision. 

5.2. Encoding and decoding at the scenario level 

When a scenario is to be described, usually there involve multiple entities. After choosing 

nodes for every entity, the language generator will organize these words together into texts as 

shown in Figure 10. In this organization or encoding phase, a multiple dimensional model is 

transformed to one dimensional text based on heuristics and syntax. During this process 

prepositions are used to encode time or space information, and conjunctions are used to further 

specify or constrain the relations among nodes. 



 

Figure 10 Encoding at the scenario level 

In the decoding phase, when the receiver tries to find out what entity each word describes 

by performing the sense determination process described previously, and convert the one 

dimensional text back to multiple dimensional information modeled in SenseNet. The whole 

process is shown in Figure 11. It includes activation of senses, nodes and edges. And it is clear 

that the relations among words provide the only way for us to determine the word senses and 

identify the original entities. 

 

Figure 11 Decoding at the scenario level 

In the scenario case, not all entities play the same roles or of the same importance. In 

efficient communications, such as a well-written article, there usually exist a few “core” entities 



which connect to lots of entities. Naturally these “core” entities can be used as keywords or for 

text summarization. Efficient communication is also affected by careful encoding, decoding 

capabilities and common knowledge shared by encoders and decoders. 

6. A case study 

We used a corpus of public company proxy filings retrieved from the online repository of 

the United States Securities and Exchange Commission (SEC). SEC names these documents as 

DEF 14A. Every DEF 14A contains one executive compensation table (e.g., Table 1 and Table 

2). There exist a wide range of structural differences among these tables, such as different 

number of lines or columns for each executive entry, incomplete data. As shown in Table 1, 

without semantic information we cannot understand that this table describes compensation of 

two executives for three years. An example of ambiguity is shown in Table 2, “Jr” could be a 

suffix for “Ed J. Rocha”, or a prefix for “CFO”. Utilization of mere structural information results 

in a “brittle” system. 

We built an Executive Compensation Retrieval System (ECRS) to extract the data fields 

from these tables and save them in a database. ECRS includes, 

• a web crawler to download the latest DEF 14A regularly. 

• a knowledge base generated from a list of personal names from the U.S. Census Bureau 

and a list of titles of company executives. According to the Census Bureau, this name list 

contains approximately 90 percent of all of the first and last names in use in the U.S.  The 

list was partitioned by first and last name and the total number of entrees is 91,933. Each 

first or last name will be a node in SenseNet, and there exist one edge between each pair 

of first name and last name. For the company executive title list, titles were manually 



extracted from about 25 randomly picked financial documents. Example titles include 

Chief Executive Officer, CFO, Chairman, Chief, and CIO etc. We converted this list into 

SenseNet with each word as a node, and there are edges for words appearing in one title. 

We found that some words appear in both the name and title list, such as “president”, 

“chairman”. And these words have two senses and require disambiguation. Since the 

names and titles come from trusted sources, we assign all confidence values as 1. 

• an extraction module, which locates executive compensation tables and extracts 

executive names, titles, salary, bonus, stock options and other data fields. 

• a database that saves all the extracted information. 

Name Year Salary Bonus 
Other 

compensation

Edwin M. Crawford 

Chairman of Board and Chief Executive 

Officer 

2003 1500000 127456 ... 

2002  103203 ... 

2001 1294231 207299 ... 

A.D. Frazier, Jr 

President and Chief Operating Officer 

2003 1000000 450000 ... 

2002 392308 418167 ... 

2001 N/A N/A ... 

... 

Table 1   A segment of a DEF 14A Form 

Name and Position Year Salary 
Other 

compensation

CAPITAL CORP OF THE 2000 181,538 ... 



WEST 

Thomas T. Hawker 

President/CEO 

1999 173,115 ... 

1998 170,219 ... 

COUNTY BANK 

Ed J. Rocha Jr. CFO 

2000 118,750 ... 

1999 104,167 ... 

1998 N/A … 

... 

Table 2 Another sample table from a SEC DEF 14A Form 

The experiment was conducted using randomly picked Standard and Poor's 500 

companies from different industries based on Global Industry Classification Standard: 1. 

Automobile; 2. Bank; 3. Commercial Supply and Service; 4. Energy; 5. Food Beverage and 

Tobacco; 6. Health Care; 7. Insurance; 8. Pharmaceutical and Biotechnology; 9. Real Estate; 10. 

Software and Service; 11. Transportation. Since the only way to validate the results is by manual 

checking, a large-scale experiment is not feasible. Instead, we try to diversify the DEF 14A used 

in the experiment. At least one company of each industry was selected, and the total number of 

tested companies is 19. Depending on availability one to three years' reports were retrieved for 

each company. Total number of compensation records in these documents is 184. 149 of them 

are successfully extracted as shown in Table 3. 

Industry Number of years Number of records Extracted records 

1 2 10 5 

2 2 18 15 

3 3 27 25 



4 1 3 2 

5 3 15 13 

6 2 40 34 

7 3 18 13 

8 3 12 8 

9 1 3 3 

10 2 20 15 

11 2 18 16 

Table 3   Information extraction results 

7. Conclusion and future work 

This paper presents a new Knowledge Representation model called SenseNet at the 

lexical level. We formalize SenseNet model with HMM. SenseNet models some important 

aspects of human reasoning in natural language understanding, can dissolve ambiguity, and 

simulate human communication process. We evaluate the SenseNet model by an application in 

table extraction. To achieve human-level intelligence there are still many open problems, e.g., 

• How to build a high-quality commonsense knowledge base automatically? 

• How to build knowledge at a higher level of granularity than lexicon (such as frame)? 

 

  



References 

Agichtein, E., & Ganti, V. (2004). Mining Reference Tables for Automatic Text Segmentation, 

the Tenth ACM International Conference on Knowledge Discovery and Data Mining, 

2004. Seattle, WA 

Amano, A., & Asada, N. (2003). Graph Grammar Based Analysis System of Complex Table 

Form Document, Seventh International Conference on Document Analysis and 

Recognition Volume II. August, 2003, Edinburgh, Scotland  

Berwick, R., Knight, T., Shrobe, H., Sussman, G., Ullman, S., Winston, P., & Yip, K. (2004) The 

Human Intelligence Enterprise. Retrieved from http:// 

genesis.csail.mit.edu/HIE/white.html. 

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). Exploiting diverse knowledge 

sources via maximum entropy in named entity recognition. In Proceedings of the Sixth 

Workshop on Very Large Corpora, New Brunswick, New Jersey, 1998.  

Callan, J., & Mitamura, (2002). T. Knowledge-based extraction of named entities. In 

Proceedings of the Eleventh International Conference on Information and Knowledge 

Management pages 532-537. McLean, VA, 2002. 

Chen, H., Tsai, S., & Tsai, J. (2000). Mining Tables from Large Scale HTML Texts. The 18th 

International Conference on Computational Linguistics. Germany, August 2000. 

Cohen, W., & Sarawagi, S. (2004). Exploiting dictionaries in named entity extraction: combining 

semi-Markov extraction processes and data integration methods, the Tenth ACM 

International Conference on Knowledge Discovery and Data Mining, 2004. Seattle, WA 



Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological Sequence Analysis: 

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 

Cambridge UK, 1998. 

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database, Bradfords Books, ISBN 0-262-

06197-X, 1998. 

Goutte, C., Déjean, H., Gaussier, E., Cancedda, N., & Renders, J. (2002). Combining labelled 

and unlabelled data: a case study on Fisher kernels and transductive inference for 

biological entity recognition, Sixth Conference on Natural Language Learning, Taipei, 

Taiwan, August 31 - September 1, 2002. 

Hughes, J., Guttorp, P., & Charles, S. (1999). A non-homogeneous hidden Markov model for 

precipitation occurrence. Applied Statistics, vol. 48, page 15-30, 1999 

Hurst, M. (2001). Layout and language: Challenges for table understanding on the web. In 

Proceeding of International Workshop on Web Document Analysis, Seattle, USA, 

September 2001, pp. 27-30. 

Li, H., Srihari, R., Niu, C., & Li, W. (2003). Cymfony A hybrid approach to geographical 

references in information extraction. Human Language Technology conference: North 

American chapter of the Association for Computational Linguistics annual meeting, 

2003. Edmonton, Canada 

Liu, H., & Singh, P. (2004). Commonsense reasoning in and over natural language. Proceedings 

of the 8th International Conference on Knowledge-Based Intelligent Information and 

Engineering Systems (KES-2004). 



McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for 

information extraction and segmentation. In proceedings of 17th International Conf. on 

Machine Learning, 2000. San Francisco, CA 

Mckay, D., & Cunningham, S. (2001). Mining dates from historical documents. The Fourth New 

Zealand Computer Science Research Students Conference. April 2001. New Zealand. 

Pinto, D., McCallum, A., Wei, X., & Croft, W. (2003). Table extraction using conditional 

random fields. Proceedings of the ACM SIGIR, 2003. 

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech 

recognition. Proceedings of the IEEE, 77(2), 257–286. 1989. 

Seymore, K., McCallum, A., & Rosenfeld, R. (1999). Learning hidden Markov model structure 

for information extraction. In AAAI Workshop on Machine Learning for Information 

Extraction, 1999. 

Teahan, W., Wen, Y.,  McNab, R., & Witten, I. (2000). A compression-based algorithm for 

Chinese word segmentation. Computational Linguistics, 26(3):375–393, September 2000.  

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding 

algorithm. IEEE Transaction on Information Theory, IT-13(2): page 260 - 269, April 

1967. 

Wang, X., &Wood, D. (1998). A Conceptual Model for Tables, Principles of Digital Document 

Processing, PODDP '98, E. Munson, C. Nicholas and D. Wood (Eds.), Springer-Verlag 

Lecture Notes in Computer Science 1481, (1998), 10-23. 



Wang, Y., & Hu, J. (2002). Detecting Tables in HTML Documents, D. Lopresti, J. Hu, and R. 

Kashi (Eds.),  Document Image Analysis System V, 5th International Workshop DAS 

2002, Princeton, NJ, USA, August 2002. 

 

Wang, Y. (2007). The OAR Model of Neural Informatics for Internal Knowledge Representation 

in the Brain, The International Journal of Cognitive Informatics and Natural 

Intelligence, IGI Publishing, Hershey, PA, USA, 1(3), July, pp. 64-75. 

 

Wang, Y., & Wang, Y. (2006). Cognitive Informatics Models of the Brain, IEEE Transactions 

on Systems, Man, and Cybernetics (C), Vol.26, No. 2, March, pp. 203-207. 

Wang, Y., & Wang, Y. (2008). The cognitive processes of consciousness and attention. 7th IEEE 

International Conference on Cognitive Informatics. page(s): 30-39, Stanford, CA 

Wang, Y., (2008). On Visual Semantic Algebra (VSA) and the cognitive process of pattern 

recognition. 7th IEEE International Conference on Cognitive Informatics. Page(s): 384-

393, Stanford, CA 

Witbrock, M., Baxter, D., & Curtis, J., (2003). An Interactive Dialogue System for Knowledge 

Acquisition in Cyc. In Proceedings of the Eighteenth International Joint Conference on 

Artificial Intelligence, Acapulco, Mexico, 2003. 

Witten, I., & Bell, T. (1991). The zero-frequency problem: Estimating the probablitiies of novel 

events on adaptive text compression. IEEE Transaction of Information Theory, 

37(4):1085–1094, 1991. 



R. Zanibbi, R., Blostein, D., & Cordy, J. (2004). A Survey of Table Recognition: Models, 

Observations, Transformations, and Inferences. International Journal of Document 

Analysis and Recognition, Vol. 7, No. 1, pp. 1-16, March 2004. 

Zheng, L., Luo, F., Shan, C., Yin, W., (2008). A novel cognitive model of reading: 

Neuropsychology research on internal processing of the brain. 7th IEEE International 

Conference on Cognitive Informatics. Page(s): 122-127. Stanford, CA. 


