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Abstract 

This paper introduces entropy quad-trees, which are structures derived from quad-trees by 

allowing nodes to split only when those correspond to sufficiently complex sub-domains of a 

data domain. Complexity is evaluated using an information-theoretic measure based on the 

analysis of the entropy associated to sets of objects designated by nodes. An alternative measure 

related to the concept of box-counting dimension is also explored. Experimental results 

demonstrate the efficiency of entropy quad-trees to mine complex regions. As an application, we 

used our proposed technique in the initial stage of a crater detection algorithm using digital 

images taken from Mars surface. Additional experimental results are provided that demonstrate 

the crater detection performance and analyze the effectiveness of entropy quad-trees for 

high-complexity regions detection in the pixel space with significant presence of noise. This 

work is focused on 2-dimensional image domains, but can be generalized to higher dimensional 

data. 
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Entropy Quad-Trees for High Complexity Regions Detection 

 

The concept of complexity relates to the presence of variation. In science there are many 

approaches that characterize complexity. A variety of scientific fields have dealt with complex 

mechanisms, simulations, systems, behavior and data complexity as those have always been a 

part of our environment. In this work, we focus on the topic of data complexity which is studied 

in information theory. While randomness is not considered complexity in certain areas such as 

those related to the study of complex systems, information theory tends to assign high values of 

complexity to random noise. Many fields benefit from the identification of content or noise 

related complex areas. In data hiding, adaptive steganography takes advantage of high 

concentration of self-information on high complexity areas originated from both content and 

noise to embed data. The authors of [1] describe the benefits of selective embedding related to 

the reduction of perceptual degradation for transform domain steganographic techniques. Bio 

diversity is another area where complexity can be used for identification and localization of dif-

ferent species. In this case, the complexity originated from content is more important than the 

one originated from noise.  

Our goal in this paper is to introduce a variant of quad-trees for mining high complexity 

sub-domains of a data domain. A quad-tree is a tree structure defined on a finite set of nodes that 

either contains no nodes or is comprised of a root node and 4 quad-subtrees. In a full quad-tree, 

each node is either a leaf or has degree exactly 4. Our variant of quad-trees requires that each 

node that has descendants corresponds to a region that has a sufficient level of diversity as 

assessed by the value of an information-theoretical measure. We also present an alternative 

measure that has its roots in fractal geometry where the so called box-counting dimension (BCD) 



is used to determine the fractal dimension of a set S in a Euclidean space R
n
. We then provide an 

algorithm to capture high complexity areas of 2 dimensional images domains and observe that 

diversity originated from both data content and noise are mined.  

As an application, we used our proposed data structure in the initial stage of a crater 

detection algorithm. The algorithm is composed by two methods. The first method uses an 

information-theoretical approach with entropy quad-trees to create an edge filter that generates a 

binary image from complex areas which may contain edges. The second method applies a Circle 

Hough Transform (CHT) with modified threshold to detect the presence of circular shapes in 

complex areas. The new threshold is imposed to increase the quality of the results given the lack 

of prior knowledge about the number of craters in an image and the difficulty to estimate a good 

threshold for the minimum number of votes required in the parameter space to indicate true 

center points. Efficient methods for crater detection such as [2], [3] and many others referenced 

by the authors of [4] have been proposed. We provide a distinct approach where no external 

pre-processing of the original image other than conversion to the JPEG format and resizing is 

needed. Likewise, no external image filters are used.  

In the next section we introduce a framework for the rest of the paper. The notion of 

entropy associated to a partition is presented as well as its usefulness in measuring diversity. In 

section 2 we introduce the proposed data structures, an algorithm for high complexity detection 

and explain the searching process. In subsection 2.1 we describe the information-theoretic 

method used for mining complex sub-domains. An alternative method uses the concept of 

box-counting dimension and is introduced in subsection 2.2. We provide a brief description 

about implementation details in subsection 2.3. In subsection 2.4 we discuss the experiments and 

compare the results generated by both methods. In Section 3 we introduce the crater detection 



algorithm. In subsection 3.1 we describe the information theoretic method used for mining 

complex subareas that may contain edges. The CHT method with modified threshold is described 

in subsection 3.2. Subsection 3.3 contains a description of the experiments and major challenges 

we faced. Finally, Section 4 contains our conclusions and ideas for future work.  

 
1. Partitions, Entropy, and Trees 

 

The notion of entropy quantifies the uncertainty associated with probability distributions. 

Let S be a finite set. A partition on S is a non-empty collection of non-empty subsets of S, π = 

{B1,...,Bn} such that  

(i) Bi ∩ Bj = ∅ for 1 ≤ i, j ≤ n and i≠j; 

(ii)  {Bi | 1 ≤ i ≤ n} = S. 

The sets B1,...,Bn are referred to as the blocks of π.  

We denote by Part(S) the set of partitions of S. For π, σ ∈ Part(S) define π ≥ σ if each 

block B of π is a union of blocks of σ. It is well-known that the relation “≥” is a partial order on 

Part(S). The largest partition on S is the single-block partition ωS = {S}, while the smallest 

partition on S is ιS = {{x}| x ∈ S}.  

We now define a partial order relation ≥k on Part(S) as follows. If π = {B1,...,Bn} and σ = 

{C1,...,Cm}, then π ≥k σ if the following conditions are satisfied:  

1. there exists a sub-collection of σ that consists of k blocks {Cj1 
,...,Cjk 

} such that  {Cj  
| 

1 ≤   ≤ k} is a block Bh of π; 

2. for 1 ≤ i ≤ n and i   h, Bi is a block of σ.  

For k=2 the relation ≥2 is the direct coverage relation, where the larger partition π is 

obtained by fusing two blocks of σ.  



If π ∈ Part(S) and π = {B1,...,Bn}, its entropy is the number  
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which is actually the entropy of the discrete probability distribution  
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Defining the entropy for partitions rather than for probability distributions has the ad-

vantage of linking the entropy properties to the partially ordered set of partitions. An important 

fact is that the entropy is anti-monotonic relative to the partial order defined on partitions. In 

other words, for π, σ ∈ Part(S), π ≤ σ implies H(π) ≥ H(σ). It is easy to verify that H(ωS)=0 and 

that H(ιS) = log
2 

|S|. This shows that the entropy can be used to evaluate the uniformity of the 

elements of S in the blocks of π since the entropy value increases with the uniformity of the 

distribution of the elements of S. Note that as the uniformity increases, so does the associated 

uncertainty.  

If C is a non-empty subset of S, and π ∈ Part(S), the trace of π on C is the partition  

πC = {B ∩ C | B ∈ π and B ∩ C ≠ ∅}. 

The trace of a partition allows us to define the conditional entropy of two partitions. 

Namely, if π, σ ∈ Part(S) and σ = {C1,...,Cm}, then the entropy of π conditioned by σ is the 

number  
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It can be shown [5, 6] that the conditional entropy is an anti-monotonic function of the 

first argument and a monotonic function of the second. In other words, π1 ≤ π2 implies H(π1|σ) 



≥ H(π2|σ) and σ1 ≤ σ2 implies H(π|σ1) ≤ H(π|σ2).  

A measure on S is a function m : P(S) → R≥0 such that m(U   V ) = m(U) + m(V) for 

every disjoint subsets U and V of S. For example, if S is the set of pixels of a gray image S, 

m(U) can be defined as the number of pixels having a certain degree of grayness contained by 

the subset U. 

Let D be a finite set. A D-feature function on S is a function f : S → D. Each feature 

function f : S → D defines a partition ker f on S defined by  

ker f = {f
−1

(d) | d ∈ D, f
−1

(d) ≠ ∅}.  

We refer to ker f as the kernel partition of f.  

For example, if S is the set of pixels of an image, we could define f(p) as the degree of 

grayness of the pixel p ∈ S. Another example that is relevant in the study of biodiversity is to 

consider a set S of observation points in a territory, and define f(p) as the number of species of 

birds sighted in a certain day in p.  

If C ⊆ S, then the characteristics of the trace partition (ker f)C define the concentration of 

the values that f takes on the set C. If D = {d1,...,dk}, the blocks of the partition (ker f)C have the 

relative sizes  
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and the distribution of these sizes can be conveniently represented using a histogram.  

Definition 1. Let   = (π1,π2,...,πn) be a descending chain of partitions on S such that π1 = ωS, f : 

S → D be a feature function, m : P(S) → R≥0 be a measure defined on S and let θ,µ > 0 be two 

positive numbers referred to as the entropy threshold and the measure threshold, respectively.  



The entropy tree defined by  , f, m, θ and µ is a tree  (         ) whose set of 

nodes consists of blocks of the partitions πi such that the following conditions are satisfied:  

(i) the root of the tree is the set S, the unique block of ωS; 

(ii) an edge (B, C) exists in the tree only if B ∈ πi, C ∈ πi+1, and C ⊆ B;  

(iii) if B is a block of the partition πi, then  (         ) contains the set of edges {(B, C) | B 

∈ πi and C ∈ πi+1,C ⊆ B} if and only if H((ker f)B) ≥ θ and m(B) ≥ µ.  

If  (         ) contains the set of edges {(B, C) | B ∈ πi and C ∈ πi+1} we say that 

the node B is split in the tree  (         ). Since splitting involves a sufficiently large value 

of the entropy and a node of sufficiently large measure, longer paths in the tree point towards 

subsets of S that contain a large diversity of values of the feature function f.  

An entropy quad-tree is an entropy tree  (         ) such that  =(π1,...,πn) is a 

descending chain of partitions on S, π1 ≥4 π2 ≥4 ··· ≥4 πn. The entire image area S corresponds to 

the root of the quad-tree.  

The expansion of a node B is based on its entropy value and the predetermined threshold 

used for the splitting condition, as well as the size of the corresponding subarea. Only nodes with 

area greater or equal to the defined minimum window size are expanded. The complex areas 

correspond to leaves at the highest level on the quad-tree.  

 

2. An Algorithm for Detection of High Complexity Regions 

 
The algorithm proposed constructs a full quad-tree related to the image entropy or 

box-counting dimension concentration to find high complexity areas.  

The construction of the quad-tree is based on the measurements of the feature in image 



sub-areas, which can also be regarded as tree nodes. The algorithm receives as input the gray 

scale version of an image, a minimum area size for analysis and arguments relevant to the node 

splitting condition. For the entropy based method described in subsection 2.1, we use a 

predetermined threshold for the entropy in order to decide whether or not to split a node. For the 

box-counting dimension method, two distinct arguments are used in the splitting condition: a 

predefined threshold for the fraction of intercepting boxes or rectangles at any image sub-area 

and a predefined threshold for the number of gray shades to be considered at the intercepting 

analysis. The entire image area corresponds to the root of the quad-tree. The expansion of each 

node is based on its feature value and the predetermined threshold(s) used for the splitting 

condition, as well as the size of the corresponding sub-area. Only nodes with area greater or 

equal to the defined minimum area size are expanded.  

Our algorithm corresponding to Table 1 outputs a quad-tree showing the feature 

concentration along the whole image area. In this representation, leaves are assigned with a 

shade of gray, depending on their location on the tree level. Leaves located closer to the root 

correspond to areas of the image assigned with darker shades of gray whereas leaves located 

further from the root correspond to areas of the image assigned with lighter shades of gray. The 

algorithm also highlights the leaves at the highest tree level with highest feature value. In most 

cases, those leaves correspond to high complexity regions of the image.  

The function ComputeFeature evaluates the feature associated with the histogram of the 

pixels in the node’s area. We present two versions for this function in subsection 2.1 and 

subsection 2.2 as it differs according to the measure used. The recursive method Split introduced 

in Table 2 expands a node if its feature satisfies the method related splitting condition and if its 

area is greater or equal to the defined minimum area size. A gray shade corresponding to a level 



in the final tree is assigned to every leaf node by the method Draw. The higher the level value, 

the lighter is the shade of gray assigned to the leaf. Information about each leaf such as its id, 

feature value and level is saved in a text file by the method SaveNodeInfo. The method Release 

frees the memory space previously allocated to a node. Finally, the method 

HighlightHighFeatureLeaves highlights in pink or white the leaves at the highest tree level with 

highest feature values, corresponding in most cases to high complexity regions. The white color 

leaves are the ones with the highest feature value among all pink leaves.  

 
2.1 Information-theoretical Method  

Our method evaluates the entropy of the local histograms of image sub-areas to find high 

complexity regions. The partition blocks of a node, used for the entropy analysis, consist of 

pixels with the same shade of gray.  

Table 3 presents an algorithm for the information-theoretic method proposed. It computes 

the entropy associated with the histogram of the pixels in a node’s area. This histogram is created 

by the method InsertGrayShade. The result generated by ComputeFeature is successively used 

by the recursive method Split shown in Table 2. Only the nodes corresponding to sub-areas of 

the image where the entropy is above the predefined entropy threshold and have area greater or 

equal to the pre-defined minimum area size are expanded. We observed that leaves at the highest 

level in the resultant quad-tree may naturally have different associated entropy values.  

 
2.2 Box-counting dimension Method  

The box-counting dimension is a measure used to determine the fractal dimension of a set 

S in a metric space. It reflects the variation of the results of measuring a set at a diminishing 

scale, which allows the observation of progressively smaller details.  



Let (S,Od) be a topological metric space and let T be a precompact set. For every positive 

r, there exists a r-net for T; that is a finite subset Nr of S such that T ⊆ { C(x, r|x ∈ Nr} for every 

r > 0. Denote by nT(r) the smallest size of an r-net of T. It is clear that r < r’ implies nT(r) ≥ 

nT(r’). The box-counting dimension is introduced next (see [7]).  

 
Definition 2. Let (S,Od) be a topological metric space and let T be a precompact set. The upper 

box-counting dimension of T is the number 
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The lower box-counting dimension of T is the number 
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If ubd(T) = lbd(T), we refer to their common values as the box-counting dimension of T, denoted 

by bd(T). 

We use the box-counting dimension of the local histograms of image sub-areas to find 

high complexity regions. The box-counting dimension of a sub-area is based on to the number of 

intercepting boxes in the sub-area.  

 
Definition 3. A box is a sub-area of the image with size equal to the predefined minimum area 

size. An intercepting box corresponds to a box where the number of different shades of gray is 

greater or equal to a predefined threshold. 

 
The version of the function ComputeFeature presented in Table 4 corresponds to the 

box-counting dimension method. It computes the box-counting dimension associated with the 

histogram of the boxes in a node’s area. As in the Information-theoretic version, the method 



InsertGrayShade constructs a histogram of each box in the node or image sub-area. If the area 

corresponding to the node is equal to a box area, the number of intercepting boxes is the same as 

the number of different shades of gray in its histogram. Otherwise, the number of intercepting 

boxes is equal to the number of boxes with histogram containing a number of shades of gray 

greater or equal to a predefined threshold. When the box-counting dimension method is used, the 

recursive method Split shown in Table 2 expands a node according to a threshold related to the 

fraction of intercepting boxes found. For instance, a fraction threshold=0.1 represents a node 

having 10% of intercepting boxes among all its boxes. So in this case, the algorithm expands a 

node if its box-counting dimension corresponds to a fraction greater than 10% of intercepting 

boxes. The area corresponding to the node should also be greater or equal to the predefined 

minimum area size in order to promote expansion. As in the Information-theoretic method, we 

also observed that leaves at the highest level in the resultant quad-tree may naturally have 

different BCD values associated. We show in subsection 2.4 that the leaves with highest BCD 

value among the ones at highest level can better represent high complexity areas of the image.  

 
2.3 System Description  

The algorithm was implemented in Java (JDK 6 Update 7) and the program is composed 

by 8 classes: Main, Image, Tree, EntropyTree, BoxCountingTree, Node, EntropyNode and 

BoxCountingNode. The class Tree is a super class for the classes EntropyTree and 

BoxCountingTree and the class Node is a super class for the classes EntropyNode and 

BoxCountingNode. The class Main instantiates an Image object. The class Image implements the 

methods for encoding and decoding images, as well as for treating the image prior to the 

generation of the quad-tree. Image treatment may involve resizing and conversion to gray scale. 

The class Tree is a super class with attributes and methods shared by both classes EntropyTree 



and BoxCountingTree. Those two classes, together with the classes EntropyNode and 

BoxCountingNode contain the implementation of the methods presented in 2.1 and in 2.2. The 

class Node is a super class with attributes and methods shared by both classes EntropyNode and 

BoxCountingNode.  

 
2.4 Experimental Results  

Experiments were performed over decompressed gray scale version of JPEG images. 

The use of gray scale images allowed the methods to be applied over a reduced color space. The 

resultant image files were again compressed and presented as JPEG files. The values chosen for 

all the thresholds promote a good capture of the complexity. The resultant images and statistics 

show that the quad-trees generated by both methods are quite similar. Fig. 1(a) and Fig. 1(b) 

present the relation between the values chosen as threshold for both methods and the percentage 

of the number of pixels located in high complexity areas relative to the total number of pixels in 

each sample image. One can notice that the percentages of pixels in high complexity areas 

generated for each image file are very close in value for both methods. The files corresponding 

to the quad-trees generated for the first four sample images are presented in Fig. 2. As 

mentioned in section 2, a gray shade corresponding to a level in the final tree, is assigned to 

every leaf node. The leaves at the highest tree level with highest feature values, corresponding 

in most cases to high complexity regions, are highlights in pink or white. The white color leaves 

are the ones with the highest feature value among all pink leaves. Results for both methods also 

show the relation between the characteristics of the images and the values used for the node 

splitting condition. Images corresponding to natural scenes or objects and faces with a textured 

background require a higher value for the entropy threshold, as well as for the threshold used for 

the box-counting dimension evaluation in order to capture well the complex regions. Those 



images present a higher number of pixels located in high complexity areas. Images with objects 

and faces exposed over a more uniform background require lower values for those parameters. 

Those images present a lower number of pixels located in high complexity areas.  

Although only JPEG files were used in the experiments here presented, the algorithm and 

methods described in this paper are independent of image type. So in order to compare the 

results between different formats, we also performed experiments with BMP image files. In this 

case, each JPEG file was created from an original Bmp image. Results for both formats 

regarding both methods were also quite similar and demonstrate that our algorithm can capture 

high complexity domains independent of an image format. We also observed that as we lowered 

the compression quality of JPEG images, there was a decrease on the number of pixels located in 

high complexity sub-domains. JPEG compression removes high frequency details from images 

as considered by Pevny and Fridrich [8]. Furthermore, the number of image artifacts increases as 

we lower the compression quality. Uncompressed formats (BMP, PCX) or lossless compression 

formats (PGM, TIFF) usually carry a higher degree of noise and less artifacts. As a consequence 

of the high frequency removal and addition of more artifacts, JPEG files with low quality usually 

have less high complexity areas when compared to the correspondent JPEG image files 

compressed with higher quality and Bmp images.  

 
3. An Algorithm for Crater Detection Using Entropy Quad-trees 

We applied entropy quad-trees to the first stage of an algorithm for crater detection. The 

proposed algorithm locates craters on the surface of Mars, represented by circles in digital 

images. The algorithm proposed constructs a full entropy quad-tree related to the image entropy 

concentration to find high complexity areas that can also contain edges. Later, a slightly 

modified CHT is used to detect the presence of circles in the complex areas found during the 



entropy analysis. The algorithm receives as input the 8 bits gray scale version of an image, a 

minimum window size for analysis, a threshold relevant to the node splitting condition, the 

minimum and maximum radius values for the searched craters and a threshold for the CHT. Its 

output lists the detected craters as well as their estimated center points highlighted and 

superimposed over the original image. A text file with data indicating the center points, radius 

and Hough Space bin points of each detected crater is also generated.  

The construction of the entropy quad-tree is based on an information-theoretical method 

similar to the one described in subsection 2.1. The most significant difference between both 

versions is that the one used for crater detection also classifies complex areas corresponding to 

leaves at the highest level on the quad-tree according to the possibility of presence of an edge. 

Our new method is presented in subsection 3.1.  

First, the algorithm determines the average gray intensity of the original image, as well as 

the low intensity average (average of gray shades below average intensity) and high intensity 

average (average of gray shades above average intensity). Then, the pixels in each area with 

minimum size for analysis are mapped to two different sets according to the thresholds 

corresponding to the average of low intensity shades or the average of high intensity shades of 

the original image. Crater edges can be found in areas that contain only dark shades of gray or 

areas containing light shades of gray.  

The classification considers the number of pixels in a minimum size window that are 

above the high intensity average threshold if at least one pixel in the area has gray shade above 

the average intensity. Otherwise, if all the pixels in the area have low intensity, the classification 

considers the number of pixels in the minimum size window that have shade below the low 

intensity average threshold.  



Let n be the number of pixels satisfying one of those conditions and h the height of our 

minimum window. Also, suppose we have a square window. When h−2 < n < h
2
−1, the entropy 

value remains considerably high and the area is classified as a leaf that possibly contains an 

edge. Only those leaves are relevant to our algorithm.  

After the high complexity regions that may contain edges are found, the algorithm 

determines another threshold corresponding to a high intensity shade which is higher than the 

high intensity average shade, lower than the maximum intensity found in the image and has the 

highest histogram value among the shades satisfying the couple previous conditions. This last 

threshold which we will call “near maximum intensity” threshold is used to highlight high 

intensity pixels corresponding to edges. Pixels with light shades of gray (higher than average 

intensity) that form edges usually have intensity greater than the “near maximum intensity” 

threshold.  

Finally, the entropy analysis generates a binary image where pixels with shades of gray 

below the low intensity threshold and pixels with shades of gray above the near maximum 

intensity threshold are mapped to white. All the other pixels are mapped to black. The resultant 

binary image corresponds to the output of the entropy analysis and input of the Circle Hough 

Transform method. As previously mentioned, the original image does not need any 

pre-processing. The entropy analysis works as an information theoretic edge filter that generates 

a binary image from complex areas which may contain edges.  

Our next step is to apply the CHT to detect circles in the binary image. The CHT method 

maintains an accumulator array to find triplets (a, b, r) that describe circles where (a, b) is the 

center of a circle with radius r. Each point (a, b) in the image receives a score value referred to as 

the number of votes equal to the number of points (x, y) fall on the perimeter of the circle (a, b, 



r). This score is stored in an accumulator array. The detected center points have the highest 

numbers of votes. 

Two stopping conditions are commonly used by the CHT algorithm: the maximum 

number of circles to be found and a threshold for the minimum number of votes related to a point 

in the parameter space. In our application, there is no systematic way to reasonably predict both 

values. Furthermore, it was observed that for any set of radius where the difference between the 

minimum and maximum radius is relatively small, the chances of a point to represent a real 

circle center decreases as the number of votes related to the point gets further from the peak 

value found in the accumulator array. Points with a number of votes relatively far from the peak 

value usually correspond to near true center points, near center points of poorly delimited circles 

or points that received votes in the parameter space simply due to noisy pixels that are not part of 

any circle edge. To alleviate this problem, we created a new threshold for the number of votes 

corresponding to the maximum distance from the peak value in the accumulator array as our 

stopping condition for the CHT method. We also restricted each search to small sets of 

contiguous radii. Details are provided in subsection 3.2. 

The algorithm for crater detection corresponds to Table 5. The recursive method Split 

shown in Table 2 was introduced in section 2. Our method ComputeFeature corresponds to a 

slightly modified version of the one presented in Table 3 and described in section 2, since it also 

classifies each leaf according to the presence of an edge. Only leaves which may contain an edge 

are considered by the method ProcessImageEntropy. This method generates a binary image 

representing the entropy analysis to find complex areas that may contain edges. Pixels with 

shades of gray below the low intensity threshold and pixels with shades of gray above the near 

maximum intensity threshold are highlighting in white. All remaining pixels are mapped to 



black.  

The method ComputeCHT detects circles in the binary image with radii between the 

minimum and maximum values given as arguments. It also highlights the detected craters as well 

as their estimated center points over the original image and generates a text file with data related 

to the craters found such as radius, center points and number of points in the bins associated with 

each center point.  

 
3.1 Information-theoretical Method  

Table 6 presents an algorithm for the information-theoretic method similar to the one 

presented in Table 3. It computes the entropy associated with the histogram of the pixels in the 

area corresponding to a node. This histogram is created by the method InsertGrayShade. 

ClassifyLeaf classifies a minimum area node according to the possible presence of an edge. As 

previously mentioned, only leaves that may contain edges are relevant to our algorithm. The 

result generated by ComputeFeature is successively used by the recursive method Split shown in 

Table 2.  

 
3.2 Circular Hough Transform Method  

The Hough Transform is a standard method for shape recognition in digital images. It 

was first applied to the recognition of straight lines [9, 10] and later extended to circles [11, 12], 

ellipses [13], and arbitrary shaped objects [14]. The Circular Hough Transform (CHT) can be 

used to determine the parameters of a circle when a number of points that fall on the perimeter 

are known. A circle with radius r and center (a, b) can be described with the parametric 

equations:  

x = a + r cos α and y = b + r sin α, where 0 ≤ α ≤ 2 π 



The locus of (x, y) points in the Hough or parameter space falls on a circle of radius r 

centered at (a, b). The true center point will be common to all parameter circles, and can be 

found with an accumulator array that stores the number of votes for each point in the parameter 

space. Multiple circles with the same radius can be found with the same technique.  

The main disadvantage of the transform is the fact that the parameter space corresponds 

to a 3-dimensional space, which makes the computational complexity and storage requirements 

O(n
3
). If the circles in an image are of known radius r, the search can be reduced to a 

2-dimensional space.  

The method used in our algorithm searches for all circles with radius between two values 

given as arguments. It differs from other version of CHT methods because of its stopping 

condition. For reasons previously mentioned, our method does not use the maximum number of 

circles or the minimum threshold for the number of votes in order to end the search. Instead, it 

uses a threshold corresponding to the maximum allowed difference between the peak value in the 

accumulator array of votes and any other number of votes related to a point in the parameter 

space.  

Let A[W][H][R] denote the accumulator array of votes where W is the image width, H is the 

image height and R depends on the size of the radius set with minimum element rmin and 

maximum element rmax, and on the value for the chosen radius increment i. Let t denote the 

introduced threshold and v be the greatest value stored in the accumulator array A corresponding 

to a point (w, h, r) where 0 ≤ w ≤ W−1, 0 ≤ h ≤ H−1 and 0 ≤ r <= (rmax − rmin) / i. Then an 

arbitrary point (w’,h’,r’) where 0 ≤ w’
 
≤ W−1, 0 ≤ h’

 
≤ H−1 and 0 ≤ r’ <= (rmax − rmin) / i 

having v’
 
votes in A is detected as a circle center iff v – v’

 
≤ t. We observed that our threshold 

works well for small groups of contiguous radii. Since the size of the group is small, all the radii 



are close in value and points corresponding to the center of a circle with one of those radii also 

have a relatively close number of votes in the parameter space. Therefore, the difference between 

the number of votes corresponding to centers of true circles that are reasonably well delimited 

cannot be large when the search is performed for a small group of contiguous radii.  

Table 7 presents an algorithm for the CHT proposed. HoughTransform computes the 

Hough Transform of the binary image generated during the entropy analysis and ComputeHS 

generates an image corresponding to the Hough Space. ComputeCenterPoints finds circles and 

their center points by checking the accumulator array containing votes for each pixel in the 

image. DrawCircles highlights the detected craters as well as their estimated center points over 

the original image. PrintCirclesData generates a text file with data related to the craters found 

such as radius, center points and number of points in the bins associated with each center point. 

3.3 Experimental Results  

Experiments were performed over the decompressed 768x768, 8 bits gray scale version 

of a JPEG digital image corresponding to a picture of Mars surface presented in Fig. 3(a). This 

image was obtained from the original 24 bits/pixel PGM digital image labeled 3_24 used as 

training site by the authors of [3]. 3_24 corresponds to one section of a footprint image (h0905 

0000) from the High Resolution Stereo Camera (HRSC) instrument of the MarsExpress orbiter. 

This footprint is about 8248 x 65448 pixels in size and was split into 264 (6 x 44) sections of 

1700 x 1700 pixels each. Image 3_24 corresponds to one of those sections.  

The use of gray scale images allowed the methods to be applied over a reduced color 

space. We used a 3 × 3 minimum area for the entropy analysis and a high entropy threshold 

equal to 3 due to the heavy presence of texture in the original image. Images corresponding to 

natural scenes, objects and faces with a textured background or images with a high level of noise 



contain a large amount of information. It is natural that those images contain more areas with 

high entropy than images with less textured background. Fig. 4(a) shows the binary image 

generated during the entropy analysis.  

We chose a threshold equal to 30 for the CHT method and divided the search into runs 

containing 15 contiguous values of the radius. We focused on searching for craters with radii 

varying from 5 to 52 pixels. It was also observed that the choice regarding the search for only 15 

radii at a time, combined with a threshold equals to 30 provided reasonably good results. Since 

the values of the radius in each run are close, the difference between the number of votes for the 

points corresponding to centers of well delimited circles is usually not greater than 30. Our 

algorithm was able to detect 50 craters with radii varying between 5 and 20 pixels, 2 craters with 

radii varying from 20 to 36 pixels and one crater with radius equal to 45 pixels.  

Fig. 3(b) shows the final image generated by the algorithm. The detected craters and 

estimated center points are highlighted over the original image. Notice that for some craters, the 

center points are slightly shifted to the left or right of the true center point because the 

characteristic shadow inside the crater is also detected as an edge by the entropy analysis. As 

presented in Figs. 4(b), 4(c) and 4(d), the algorithm cleans the areas of the entropy analysis 

image corresponding to the craters found (by mapping their pixels to black) after each CHT run. 

This cleaning process helps to decrease the amount of noise and therefore undesirable circles 

overlapping for subsequent runs.  

The heavy presence of texture in the image can highly impact the quality of the inter-

mediate image generated by the entropy analysis, which works also as a edge detector tool based 

on entropy. As the level of texture or noise increases, so does the entropy of regions in the 

picture. As consequence, the distinction between high entropy nodes that may contain edges 



becomes harder. On the other hand, the quality of the results generated by the CHT method 

highly depends on the quality of the entropy analysis image taken as input. Specially, as the 

detected edges get more and more similar to the real crater edges, it becomes easier for the CHT 

method to accurately recognize those circles corresponding to craters. We noticed that the image 

generated by the entropy analysis does not show all the possible true edges corresponding to 

crater borders. In order to avoid the capturing of heavy noise, we use a high entropy threshold. 

By using such high threshold, the algorithm cannot capture true crater borders in areas where the 

variance among the pixels is not high. As a consequence, those craters cannot be detected by the 

CHT method. Therefore, improving the detection of edges for heavily noisy or textured images 

during the entropy analysis can directly impact the quality of the final results. Results also show 

that the algorithm may detect a larger number of false positives craters as the radius increases. 

Remains of smaller circles that were not completely cleaned from the binary image due to the 

imperfection of circle edges, may contribute for undesirable circle overlapping in the Hough 

Space. 

4. Conclusions 

In this paper we introduced entropy quad-trees and demonstrate that those structures 

successfully capture high complexity sub-domains of a data domain. The analysis of 

2-dimensional image domains showed that similar results are obtained by quad-trees generated 

with the BCD measure. Quad-trees created for different image formats – medium/high quality 

JPEG and BMP – are also similar for both measures. We observed that besides capturing image 

regions corresponding to content related complex areas, entropy and BCD quad-trees also mine 

other regions with high variance of shades among pixels caused by external factors such as light 

reflection originated from a camera flash. Nevertheless, the identification of any kind of high 



complexity region plays an important role for a variety of applications such as data hiding and 

bio-diversity systems.  

As an application of our proposed technique, an algorithm using entropy quad-trees to 

detect circles that can possibly correspond to craters in images was introduced. The algorithm 

performs an information-theoretic analysis of the histogram of sub regions of the image in order 

to find complex areas that may contain edges. A modified CHT detects circles in those complex 

areas and provides information about center points and radius of the circles found. A threshold 

corresponding to the maximum distance from the peak value in the accumulator array is used as 

stopping condition for the method. There is no external pre-processing of the original PGM 

image 3_24 other than conversion to JPEG format and resizing. No external edge filter is used to 

process the original image prior to the CHT method. The entropy analysis works as an edge filter 

that generates the binary image given as input to the CHT method. The heavy presence of noise 

and texture may compromise the quality of the complex areas found during the entropy analysis 

and impact the quality of the final results. Therefore, by improving the robustness of the entropy 

analysis against heavy noise and texture, more craters will accurately be detected.  

We intend to extend the application of information-theoretical techniques to other 

structures associated with spatial data sets such as grid-files, KD-trees, and R-trees. Another area 

of great potential is the application of entropy quad-trees to the identification of terrain areas that 

contain a high level of biodiversity.  
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Figure 1(a). Fraction of pixels in high complexity areas of the image given the corresponding 

lower bound used for the entropy.  

Figure 1(b). Fraction of pixels in high complexity areas of the image given the corresponding 

lower bound used for the BCD threshold.  

Figure 2(a-d). Sample simulation results for original images comparing the corresponding 

Entropy Tree(Top right in each subfigure) and the corresponding BCD Tree(bottom right in each 

subfigure).  

Figure 3(a). Original image from Mars surface(768x768, 24 bits per pixel). 

Figure 3(b). Final image generated by the algorithm where detected craters and their estimated 

centers are highlighted in pink or white. 

Figure 4(a). Intermediate result of crater detection. Binary image generated by the entropy 

analysis.  

Figure 4(b). Intermediate result of crater detection. Binary image generated after detection of 

craters with radius between 5 and 20. The pixels corresponding to the circles detected by the 

CHT are mapped to black.  

Figure 4(c). Intermediate result of crater detection. Binary image generated after detection of 

craters with radius between 21 and 36. The pixels corresponding to the circles detected by the 

CHT are mapped to black.  

Figure 4(d). Intermediate result of crater detection. Binary image generated after detection of 

craters with radius between 37 and 52. The pixels corresponding to the circles detected by the 

CHT are mapped to black.  
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Table 1. Algorithm 1: ComputeHCRegions(image, minArea, thr1, thr2)  

Table 2. Algorithm 2: Split(n) 

Table 3. Algorithm 3: ComputeFeature(n) for Information-Theoretical Method 

Table 4. Algorithm 4: ComputeFeature(n) for Box-Counting Dimension Method 

Table 5. Algorithm 5: ComputeCraters(image, minArea, thrEntropy, minRadius, maxRadius, 

thrCHT) 

Table 6. Algorithm 6: ComputeFeature(n) for crater detection application 

Table 7. Algorithm 7: ComputeCHT(entropyImg, minRadius, maxRadius, thrCHT ) 

 
  



Algorithm 1 ComputeHCRegions(image, minArea, thr1, thr2)  

 

Input: Gray scale image, minimum area size for the analysis, feature threshold, threshold 

corresponding to the number of shades of gray (used only by the BCD method)  

Output: Quad-tree showing the feature concentration along the whole image area  

nId ←ROOT  

nLevel ← 0  

root ← newNode(nId, nLevel, image.width, image.height) 

ComputeFeature(root)  

Split(root)  

HighlightHighFeatureLeaves()  

 
 

  



Algorithm 2 Split(n)  

 

Input: A node n from a quad-tree  

Output: Expands the node creating four children, if node satisfies the necessary requirements  

if (n.feature > method lower bound) and (n.area > minArea) then  

    nLevel ← n.level +1 

    nId ← n.id + A 

    topLeft ← newNode(nId, nLevel, n.rect.x, n.rect.y, n.rect.width/2, n.rect.height/2)       

    ComputeFeature(topLeft)  

    nId ← n.id + B 

    topRight ← newNode(nId, nLevel, n.rect.x + n.rect.width/2, n.rect.y, n.rect.width/2, 

    n.rect.height/2)  

    ComputeFeature(topRight) 

    nId ← n.id + C  

    bottonLeft ←newNode(nId, nLevel, n.rect.x, n.rect.y + n.rect.height/2, n.rect.width/2,  

    n.rect.height/2)  

    ComputeFeature(bottonLeft) 

    nId ← n.id + D 

    bottonRight ← newNode(nId, nLevel, n.rect.x + n.rect.width/2, n.rect.y+ n.rect.height/2, 

    n.rect.width/2, n.rect.height/2)  

    ComputeFeature(bottonRight) 

    Release(n)  

    Split(topLeft)  

    Split(topRight)  



     

    Split(bottonLeft)      

    Split(bottonRight)  

else  

   SaveNodeInfo(n)  

   Draw(n)  

   Release(n)  

end if 

 

  



Algorithm 3 ComputeFeature(n) 

 

Input: A node n from a quad-tree  

Output: The node entropy related to the histogram of the pixels in the area.  

entropy ← 0  

for all pixel in n.area do  

    InsertGrayShade(histogram,pixel.shade)  

 end for  

 for all shade in histogram do  

     p ← number of pixels with shade 

     s ← total number of pixels in the node  

     g ← (p / s)  

     entropy− =(g) × (lg2(g))  

   end for  

   return entropy 

 

  



Algorithm 4 ComputeFeature(n)  

 

Input: A node n from a quad-tree  

Output: Box-counting dimension associated to the node’s area.  

 boxesIntercepting ← 0 

 bcd ← 0 

 for all box in n.area do 

      for all pixel in box do  

          InsertGrayShade(box.histogram,pixel.shade)  

  end for  

  if n.area = box.area then  

      boxesIntercepting ← box.histogram.size  

  else if box.histogram.size ≥ threshold then  

      boxesIntercepting ← boxesIntercepting +1  

   end if  

   Release(box.histogram)  

end for  

if boxesIntercepting > 0 then  

    bcd− = boxesIntercepting / lg10(1 / (n.area))  

end if  

return bcd  

 

  



Algorithm 5 ComputeCraters(image, minArea, thrEntropy, minRadius, maxRadius, thrCHT)  

 

 Input: 8 bits gray scale version of an image, a minimum area size, entropy threshold, the 

minimum and maximum radius, CHT threshold  

 Output: Detected craters as well as their estimated center points highlighted and superimposed 

over the original image; a text file with data indicating the center points, radius and Hough 

Space bin points of each detected crater  

   nId ← ROOT 

   nLevel ← 0  

   root ← newNode(nId, nLevel, image.width, image.height) 

   ConputeFeature(root) 

   Split(root)  

   entropyImg ← ProcessImageEntropy()  

   ComputeCHT (entropyImg, minRadius, maxRadius, thrCHT )  

 

  



Algorithm 6 ComputeFeature(n) 

 

Input: A node n from a quad-tree  

Output: The node entropy related to the histogram of the pixels in the area.  

entropy ← 0  

for all pixel in n.area do   

    InsertGrayShade(histogram,pixel.shade)  

 end for  

 for all shade in histogram do  

     p ← number of pixels with shade 

     s ← total number of pixels in the node  

     g ← (p / s)  

     entropy− =(g) × (lg2(g))  

 end for  

 if (n.area == minArea) then  

     relevantLeaf ← ClassifyLeaf(histogram)  

     if (!relevantLeaf) then  

      return 0  

   end if  

end if  

return entropy  

 

  



Algorithm 7 ComputeCHT(entropyImg, minRadius, maxRadius, thrCHT )  

 

 Input: image generated by the entropy analysis, minimum and maximum radius, new threshold 

for stop condition  

 Output: Detected circles, their estimated center points and radius  

   HoughTransform(entropyImg,minRadius,maxRadius)  

   ComputeHS()  

   ComputeCenterPoints(thrCHT)  

   DrawCircles()  

   PrintCirclesData()  

 


