
 Entropy Quad-Trees for High Complexity Regions Detection

Rosanne Vetro, Dan A. Simovici, Wei Ding

University of Massachusetts Boston, Department of Computer Science

Abstract

This paper introduces entropy quad-trees, which are structures derived from quad-trees by

allowing nodes to split only when those correspond to sufficiently complex sub-domains of a

data domain. Complexity is evaluated using an information-theoretic measure based on the

analysis of the entropy associated to sets of objects designated by nodes. An alternative measure

related to the concept of box-counting dimension is also explored. Experimental results

demonstrate the efficiency of entropy quad-trees to mine complex regions. As an application, we

used our proposed technique in the initial stage of a crater detection algorithm using digital

images taken from Mars surface. Additional experimental results are provided that demonstrate

the crater detection performance and analyze the effectiveness of entropy quad-trees for

high-complexity regions detection in the pixel space with significant presence of noise. This

work is focused on 2-dimensional image domains, but can be generalized to higher dimensional

data.

Keywords: Entropy, Box-Counting Dimension, Quad-trees, Circular Hough Transform

Entropy Quad-Trees for High Complexity Regions Detection

The concept of complexity relates to the presence of variation. In science there are many

approaches that characterize complexity. A variety of scientific fields have dealt with complex

mechanisms, simulations, systems, behavior and data complexity as those have always been a

part of our environment. In this work, we focus on the topic of data complexity which is studied

in information theory. While randomness is not considered complexity in certain areas such as

those related to the study of complex systems, information theory tends to assign high values of

complexity to random noise. Many fields benefit from the identification of content or noise

related complex areas. In data hiding, adaptive steganography takes advantage of high

concentration of self-information on high complexity areas originated from both content and

noise to embed data. The authors of [1] describe the benefits of selective embedding related to

the reduction of perceptual degradation for transform domain steganographic techniques. Bio

diversity is another area where complexity can be used for identification and localization of dif-

ferent species. In this case, the complexity originated from content is more important than the

one originated from noise.

Our goal in this paper is to introduce a variant of quad-trees for mining high complexity

sub-domains of a data domain. A quad-tree is a tree structure defined on a finite set of nodes that

either contains no nodes or is comprised of a root node and 4 quad-subtrees. In a full quad-tree,

each node is either a leaf or has degree exactly 4. Our variant of quad-trees requires that each

node that has descendants corresponds to a region that has a sufficient level of diversity as

assessed by the value of an information-theoretical measure. We also present an alternative

measure that has its roots in fractal geometry where the so called box-counting dimension (BCD)

is used to determine the fractal dimension of a set S in a Euclidean space R
n
. We then provide an

algorithm to capture high complexity areas of 2 dimensional images domains and observe that

diversity originated from both data content and noise are mined.

As an application, we used our proposed data structure in the initial stage of a crater

detection algorithm. The algorithm is composed by two methods. The first method uses an

information-theoretical approach with entropy quad-trees to create an edge filter that generates a

binary image from complex areas which may contain edges. The second method applies a Circle

Hough Transform (CHT) with modified threshold to detect the presence of circular shapes in

complex areas. The new threshold is imposed to increase the quality of the results given the lack

of prior knowledge about the number of craters in an image and the difficulty to estimate a good

threshold for the minimum number of votes required in the parameter space to indicate true

center points. Efficient methods for crater detection such as [2], [3] and many others referenced

by the authors of [4] have been proposed. We provide a distinct approach where no external

pre-processing of the original image other than conversion to the JPEG format and resizing is

needed. Likewise, no external image filters are used.

In the next section we introduce a framework for the rest of the paper. The notion of

entropy associated to a partition is presented as well as its usefulness in measuring diversity. In

section 2 we introduce the proposed data structures, an algorithm for high complexity detection

and explain the searching process. In subsection 2.1 we describe the information-theoretic

method used for mining complex sub-domains. An alternative method uses the concept of

box-counting dimension and is introduced in subsection 2.2. We provide a brief description

about implementation details in subsection 2.3. In subsection 2.4 we discuss the experiments and

compare the results generated by both methods. In Section 3 we introduce the crater detection

algorithm. In subsection 3.1 we describe the information theoretic method used for mining

complex subareas that may contain edges. The CHT method with modified threshold is described

in subsection 3.2. Subsection 3.3 contains a description of the experiments and major challenges

we faced. Finally, Section 4 contains our conclusions and ideas for future work.

1. Partitions, Entropy, and Trees

The notion of entropy quantifies the uncertainty associated with probability distributions.

Let S be a finite set. A partition on S is a non-empty collection of non-empty subsets of S, π =

{B1,...,Bn} such that

(i) Bi ∩ Bj = ∅ for 1 ≤ i, j ≤ n and i≠j;

(ii) {Bi | 1 ≤ i ≤ n} = S.

The sets B1,...,Bn are referred to as the blocks of π.

We denote by Part(S) the set of partitions of S. For π, σ ∈ Part(S) define π ≥ σ if each

block B of π is a union of blocks of σ. It is well-known that the relation “≥” is a partial order on

Part(S). The largest partition on S is the single-block partition ωS = {S}, while the smallest

partition on S is ιS = {{x}| x ∈ S}.

We now define a partial order relation ≥k on Part(S) as follows. If π = {B1,...,Bn} and σ =

{C1,...,Cm}, then π ≥k σ if the following conditions are satisfied:

1. there exists a sub-collection of σ that consists of k blocks {Cj1
,...,Cjk

} such that {Cj
|

1 ≤ ≤ k} is a block Bh of π;

2. for 1 ≤ i ≤ n and i h, Bi is a block of σ.

For k=2 the relation ≥2 is the direct coverage relation, where the larger partition π is

obtained by fusing two blocks of σ.

If π ∈ Part(S) and π = {B1,...,Bn}, its entropy is the number

 () ∑
| |

| |

| |

| |

which is actually the entropy of the discrete probability distribution

 (
| |
| |

| |
| |

)

Defining the entropy for partitions rather than for probability distributions has the ad-

vantage of linking the entropy properties to the partially ordered set of partitions. An important

fact is that the entropy is anti-monotonic relative to the partial order defined on partitions. In

other words, for π, σ ∈ Part(S), π ≤ σ implies H(π) ≥ H(σ). It is easy to verify that H(ωS)=0 and

that H(ιS) = log
2

|S|. This shows that the entropy can be used to evaluate the uniformity of the

elements of S in the blocks of π since the entropy value increases with the uniformity of the

distribution of the elements of S. Note that as the uniformity increases, so does the associated

uncertainty.

If C is a non-empty subset of S, and π ∈ Part(S), the trace of π on C is the partition

πC = {B ∩ C | B ∈ π and B ∩ C ≠ ∅}.

The trace of a partition allows us to define the conditional entropy of two partitions.

Namely, if π, σ ∈ Part(S) and σ = {C1,...,Cm}, then the entropy of π conditioned by σ is the

number

 (|) ∑
| |

| |

 ()

It can be shown [5, 6] that the conditional entropy is an anti-monotonic function of the

first argument and a monotonic function of the second. In other words, π1 ≤ π2 implies H(π1|σ)

≥ H(π2|σ) and σ1 ≤ σ2 implies H(π|σ1) ≤ H(π|σ2).

A measure on S is a function m : P(S) → R≥0 such that m(U V) = m(U) + m(V) for

every disjoint subsets U and V of S. For example, if S is the set of pixels of a gray image S,

m(U) can be defined as the number of pixels having a certain degree of grayness contained by

the subset U.

Let D be a finite set. A D-feature function on S is a function f : S → D. Each feature

function f : S → D defines a partition ker f on S defined by

ker f = {f
−1

(d) | d ∈ D, f
−1

(d) ≠ ∅}.

We refer to ker f as the kernel partition of f.

For example, if S is the set of pixels of an image, we could define f(p) as the degree of

grayness of the pixel p ∈ S. Another example that is relevant in the study of biodiversity is to

consider a set S of observation points in a territory, and define f(p) as the number of species of

birds sighted in a certain day in p.

If C ⊆ S, then the characteristics of the trace partition (ker f)C define the concentration of

the values that f takes on the set C. If D = {d1,...,dk}, the blocks of the partition (ker f)C have the

relative sizes

| ()⋂ |

| |

| ()⋂ |

| |

and the distribution of these sizes can be conveniently represented using a histogram.

Definition 1. Let = (π1,π2,...,πn) be a descending chain of partitions on S such that π1 = ωS, f :

S → D be a feature function, m : P(S) → R≥0 be a measure defined on S and let θ,µ > 0 be two

positive numbers referred to as the entropy threshold and the measure threshold, respectively.

The entropy tree defined by , f, m, θ and µ is a tree () whose set of

nodes consists of blocks of the partitions πi such that the following conditions are satisfied:

(i) the root of the tree is the set S, the unique block of ωS;

(ii) an edge (B, C) exists in the tree only if B ∈ πi, C ∈ πi+1, and C ⊆ B;

(iii) if B is a block of the partition πi, then () contains the set of edges {(B, C) | B

∈ πi and C ∈ πi+1,C ⊆ B} if and only if H((ker f)B) ≥ θ and m(B) ≥ µ.

If () contains the set of edges {(B, C) | B ∈ πi and C ∈ πi+1} we say that

the node B is split in the tree (). Since splitting involves a sufficiently large value

of the entropy and a node of sufficiently large measure, longer paths in the tree point towards

subsets of S that contain a large diversity of values of the feature function f.

An entropy quad-tree is an entropy tree () such that =(π1,...,πn) is a

descending chain of partitions on S, π1 ≥4 π2 ≥4 ··· ≥4 πn. The entire image area S corresponds to

the root of the quad-tree.

The expansion of a node B is based on its entropy value and the predetermined threshold

used for the splitting condition, as well as the size of the corresponding subarea. Only nodes with

area greater or equal to the defined minimum window size are expanded. The complex areas

correspond to leaves at the highest level on the quad-tree.

2. An Algorithm for Detection of High Complexity Regions

The algorithm proposed constructs a full quad-tree related to the image entropy or

box-counting dimension concentration to find high complexity areas.

The construction of the quad-tree is based on the measurements of the feature in image

sub-areas, which can also be regarded as tree nodes. The algorithm receives as input the gray

scale version of an image, a minimum area size for analysis and arguments relevant to the node

splitting condition. For the entropy based method described in subsection 2.1, we use a

predetermined threshold for the entropy in order to decide whether or not to split a node. For the

box-counting dimension method, two distinct arguments are used in the splitting condition: a

predefined threshold for the fraction of intercepting boxes or rectangles at any image sub-area

and a predefined threshold for the number of gray shades to be considered at the intercepting

analysis. The entire image area corresponds to the root of the quad-tree. The expansion of each

node is based on its feature value and the predetermined threshold(s) used for the splitting

condition, as well as the size of the corresponding sub-area. Only nodes with area greater or

equal to the defined minimum area size are expanded.

Our algorithm corresponding to Table 1 outputs a quad-tree showing the feature

concentration along the whole image area. In this representation, leaves are assigned with a

shade of gray, depending on their location on the tree level. Leaves located closer to the root

correspond to areas of the image assigned with darker shades of gray whereas leaves located

further from the root correspond to areas of the image assigned with lighter shades of gray. The

algorithm also highlights the leaves at the highest tree level with highest feature value. In most

cases, those leaves correspond to high complexity regions of the image.

The function ComputeFeature evaluates the feature associated with the histogram of the

pixels in the node’s area. We present two versions for this function in subsection 2.1 and

subsection 2.2 as it differs according to the measure used. The recursive method Split introduced

in Table 2 expands a node if its feature satisfies the method related splitting condition and if its

area is greater or equal to the defined minimum area size. A gray shade corresponding to a level

in the final tree is assigned to every leaf node by the method Draw. The higher the level value,

the lighter is the shade of gray assigned to the leaf. Information about each leaf such as its id,

feature value and level is saved in a text file by the method SaveNodeInfo. The method Release

frees the memory space previously allocated to a node. Finally, the method

HighlightHighFeatureLeaves highlights in pink or white the leaves at the highest tree level with

highest feature values, corresponding in most cases to high complexity regions. The white color

leaves are the ones with the highest feature value among all pink leaves.

2.1 Information-theoretical Method

Our method evaluates the entropy of the local histograms of image sub-areas to find high

complexity regions. The partition blocks of a node, used for the entropy analysis, consist of

pixels with the same shade of gray.

Table 3 presents an algorithm for the information-theoretic method proposed. It computes

the entropy associated with the histogram of the pixels in a node’s area. This histogram is created

by the method InsertGrayShade. The result generated by ComputeFeature is successively used

by the recursive method Split shown in Table 2. Only the nodes corresponding to sub-areas of

the image where the entropy is above the predefined entropy threshold and have area greater or

equal to the pre-defined minimum area size are expanded. We observed that leaves at the highest

level in the resultant quad-tree may naturally have different associated entropy values.

2.2 Box-counting dimension Method

The box-counting dimension is a measure used to determine the fractal dimension of a set

S in a metric space. It reflects the variation of the results of measuring a set at a diminishing

scale, which allows the observation of progressively smaller details.

Let (S,Od) be a topological metric space and let T be a precompact set. For every positive

r, there exists a r-net for T; that is a finite subset Nr of S such that T ⊆ { C(x, r|x ∈ Nr} for every

r > 0. Denote by nT(r) the smallest size of an r-net of T. It is clear that r < r’ implies nT(r) ≥

nT(r’). The box-counting dimension is introduced next (see [7]).

Definition 2. Let (S,Od) be a topological metric space and let T be a precompact set. The upper

box-counting dimension of T is the number

 ()

sup
 ()

The lower box-counting dimension of T is the number

 ()

inf
 ()

If ubd(T) = lbd(T), we refer to their common values as the box-counting dimension of T, denoted

by bd(T).

We use the box-counting dimension of the local histograms of image sub-areas to find

high complexity regions. The box-counting dimension of a sub-area is based on to the number of

intercepting boxes in the sub-area.

Definition 3. A box is a sub-area of the image with size equal to the predefined minimum area

size. An intercepting box corresponds to a box where the number of different shades of gray is

greater or equal to a predefined threshold.

The version of the function ComputeFeature presented in Table 4 corresponds to the

box-counting dimension method. It computes the box-counting dimension associated with the

histogram of the boxes in a node’s area. As in the Information-theoretic version, the method

InsertGrayShade constructs a histogram of each box in the node or image sub-area. If the area

corresponding to the node is equal to a box area, the number of intercepting boxes is the same as

the number of different shades of gray in its histogram. Otherwise, the number of intercepting

boxes is equal to the number of boxes with histogram containing a number of shades of gray

greater or equal to a predefined threshold. When the box-counting dimension method is used, the

recursive method Split shown in Table 2 expands a node according to a threshold related to the

fraction of intercepting boxes found. For instance, a fraction threshold=0.1 represents a node

having 10% of intercepting boxes among all its boxes. So in this case, the algorithm expands a

node if its box-counting dimension corresponds to a fraction greater than 10% of intercepting

boxes. The area corresponding to the node should also be greater or equal to the predefined

minimum area size in order to promote expansion. As in the Information-theoretic method, we

also observed that leaves at the highest level in the resultant quad-tree may naturally have

different BCD values associated. We show in subsection 2.4 that the leaves with highest BCD

value among the ones at highest level can better represent high complexity areas of the image.

2.3 System Description

The algorithm was implemented in Java (JDK 6 Update 7) and the program is composed

by 8 classes: Main, Image, Tree, EntropyTree, BoxCountingTree, Node, EntropyNode and

BoxCountingNode. The class Tree is a super class for the classes EntropyTree and

BoxCountingTree and the class Node is a super class for the classes EntropyNode and

BoxCountingNode. The class Main instantiates an Image object. The class Image implements the

methods for encoding and decoding images, as well as for treating the image prior to the

generation of the quad-tree. Image treatment may involve resizing and conversion to gray scale.

The class Tree is a super class with attributes and methods shared by both classes EntropyTree

and BoxCountingTree. Those two classes, together with the classes EntropyNode and

BoxCountingNode contain the implementation of the methods presented in 2.1 and in 2.2. The

class Node is a super class with attributes and methods shared by both classes EntropyNode and

BoxCountingNode.

2.4 Experimental Results

Experiments were performed over decompressed gray scale version of JPEG images.

The use of gray scale images allowed the methods to be applied over a reduced color space. The

resultant image files were again compressed and presented as JPEG files. The values chosen for

all the thresholds promote a good capture of the complexity. The resultant images and statistics

show that the quad-trees generated by both methods are quite similar. Fig. 1(a) and Fig. 1(b)

present the relation between the values chosen as threshold for both methods and the percentage

of the number of pixels located in high complexity areas relative to the total number of pixels in

each sample image. One can notice that the percentages of pixels in high complexity areas

generated for each image file are very close in value for both methods. The files corresponding

to the quad-trees generated for the first four sample images are presented in Fig. 2. As

mentioned in section 2, a gray shade corresponding to a level in the final tree, is assigned to

every leaf node. The leaves at the highest tree level with highest feature values, corresponding

in most cases to high complexity regions, are highlights in pink or white. The white color leaves

are the ones with the highest feature value among all pink leaves. Results for both methods also

show the relation between the characteristics of the images and the values used for the node

splitting condition. Images corresponding to natural scenes or objects and faces with a textured

background require a higher value for the entropy threshold, as well as for the threshold used for

the box-counting dimension evaluation in order to capture well the complex regions. Those

images present a higher number of pixels located in high complexity areas. Images with objects

and faces exposed over a more uniform background require lower values for those parameters.

Those images present a lower number of pixels located in high complexity areas.

Although only JPEG files were used in the experiments here presented, the algorithm and

methods described in this paper are independent of image type. So in order to compare the

results between different formats, we also performed experiments with BMP image files. In this

case, each JPEG file was created from an original Bmp image. Results for both formats

regarding both methods were also quite similar and demonstrate that our algorithm can capture

high complexity domains independent of an image format. We also observed that as we lowered

the compression quality of JPEG images, there was a decrease on the number of pixels located in

high complexity sub-domains. JPEG compression removes high frequency details from images

as considered by Pevny and Fridrich [8]. Furthermore, the number of image artifacts increases as

we lower the compression quality. Uncompressed formats (BMP, PCX) or lossless compression

formats (PGM, TIFF) usually carry a higher degree of noise and less artifacts. As a consequence

of the high frequency removal and addition of more artifacts, JPEG files with low quality usually

have less high complexity areas when compared to the correspondent JPEG image files

compressed with higher quality and Bmp images.

3. An Algorithm for Crater Detection Using Entropy Quad-trees

We applied entropy quad-trees to the first stage of an algorithm for crater detection. The

proposed algorithm locates craters on the surface of Mars, represented by circles in digital

images. The algorithm proposed constructs a full entropy quad-tree related to the image entropy

concentration to find high complexity areas that can also contain edges. Later, a slightly

modified CHT is used to detect the presence of circles in the complex areas found during the

entropy analysis. The algorithm receives as input the 8 bits gray scale version of an image, a

minimum window size for analysis, a threshold relevant to the node splitting condition, the

minimum and maximum radius values for the searched craters and a threshold for the CHT. Its

output lists the detected craters as well as their estimated center points highlighted and

superimposed over the original image. A text file with data indicating the center points, radius

and Hough Space bin points of each detected crater is also generated.

The construction of the entropy quad-tree is based on an information-theoretical method

similar to the one described in subsection 2.1. The most significant difference between both

versions is that the one used for crater detection also classifies complex areas corresponding to

leaves at the highest level on the quad-tree according to the possibility of presence of an edge.

Our new method is presented in subsection 3.1.

First, the algorithm determines the average gray intensity of the original image, as well as

the low intensity average (average of gray shades below average intensity) and high intensity

average (average of gray shades above average intensity). Then, the pixels in each area with

minimum size for analysis are mapped to two different sets according to the thresholds

corresponding to the average of low intensity shades or the average of high intensity shades of

the original image. Crater edges can be found in areas that contain only dark shades of gray or

areas containing light shades of gray.

The classification considers the number of pixels in a minimum size window that are

above the high intensity average threshold if at least one pixel in the area has gray shade above

the average intensity. Otherwise, if all the pixels in the area have low intensity, the classification

considers the number of pixels in the minimum size window that have shade below the low

intensity average threshold.

Let n be the number of pixels satisfying one of those conditions and h the height of our

minimum window. Also, suppose we have a square window. When h−2 < n < h
2
−1, the entropy

value remains considerably high and the area is classified as a leaf that possibly contains an

edge. Only those leaves are relevant to our algorithm.

After the high complexity regions that may contain edges are found, the algorithm

determines another threshold corresponding to a high intensity shade which is higher than the

high intensity average shade, lower than the maximum intensity found in the image and has the

highest histogram value among the shades satisfying the couple previous conditions. This last

threshold which we will call “near maximum intensity” threshold is used to highlight high

intensity pixels corresponding to edges. Pixels with light shades of gray (higher than average

intensity) that form edges usually have intensity greater than the “near maximum intensity”

threshold.

Finally, the entropy analysis generates a binary image where pixels with shades of gray

below the low intensity threshold and pixels with shades of gray above the near maximum

intensity threshold are mapped to white. All the other pixels are mapped to black. The resultant

binary image corresponds to the output of the entropy analysis and input of the Circle Hough

Transform method. As previously mentioned, the original image does not need any

pre-processing. The entropy analysis works as an information theoretic edge filter that generates

a binary image from complex areas which may contain edges.

Our next step is to apply the CHT to detect circles in the binary image. The CHT method

maintains an accumulator array to find triplets (a, b, r) that describe circles where (a, b) is the

center of a circle with radius r. Each point (a, b) in the image receives a score value referred to as

the number of votes equal to the number of points (x, y) fall on the perimeter of the circle (a, b,

r). This score is stored in an accumulator array. The detected center points have the highest

numbers of votes.

Two stopping conditions are commonly used by the CHT algorithm: the maximum

number of circles to be found and a threshold for the minimum number of votes related to a point

in the parameter space. In our application, there is no systematic way to reasonably predict both

values. Furthermore, it was observed that for any set of radius where the difference between the

minimum and maximum radius is relatively small, the chances of a point to represent a real

circle center decreases as the number of votes related to the point gets further from the peak

value found in the accumulator array. Points with a number of votes relatively far from the peak

value usually correspond to near true center points, near center points of poorly delimited circles

or points that received votes in the parameter space simply due to noisy pixels that are not part of

any circle edge. To alleviate this problem, we created a new threshold for the number of votes

corresponding to the maximum distance from the peak value in the accumulator array as our

stopping condition for the CHT method. We also restricted each search to small sets of

contiguous radii. Details are provided in subsection 3.2.

The algorithm for crater detection corresponds to Table 5. The recursive method Split

shown in Table 2 was introduced in section 2. Our method ComputeFeature corresponds to a

slightly modified version of the one presented in Table 3 and described in section 2, since it also

classifies each leaf according to the presence of an edge. Only leaves which may contain an edge

are considered by the method ProcessImageEntropy. This method generates a binary image

representing the entropy analysis to find complex areas that may contain edges. Pixels with

shades of gray below the low intensity threshold and pixels with shades of gray above the near

maximum intensity threshold are highlighting in white. All remaining pixels are mapped to

black.

The method ComputeCHT detects circles in the binary image with radii between the

minimum and maximum values given as arguments. It also highlights the detected craters as well

as their estimated center points over the original image and generates a text file with data related

to the craters found such as radius, center points and number of points in the bins associated with

each center point.

3.1 Information-theoretical Method

Table 6 presents an algorithm for the information-theoretic method similar to the one

presented in Table 3. It computes the entropy associated with the histogram of the pixels in the

area corresponding to a node. This histogram is created by the method InsertGrayShade.

ClassifyLeaf classifies a minimum area node according to the possible presence of an edge. As

previously mentioned, only leaves that may contain edges are relevant to our algorithm. The

result generated by ComputeFeature is successively used by the recursive method Split shown in

Table 2.

3.2 Circular Hough Transform Method

The Hough Transform is a standard method for shape recognition in digital images. It

was first applied to the recognition of straight lines [9, 10] and later extended to circles [11, 12],

ellipses [13], and arbitrary shaped objects [14]. The Circular Hough Transform (CHT) can be

used to determine the parameters of a circle when a number of points that fall on the perimeter

are known. A circle with radius r and center (a, b) can be described with the parametric

equations:

x = a + r cos α and y = b + r sin α, where 0 ≤ α ≤ 2 π

The locus of (x, y) points in the Hough or parameter space falls on a circle of radius r

centered at (a, b). The true center point will be common to all parameter circles, and can be

found with an accumulator array that stores the number of votes for each point in the parameter

space. Multiple circles with the same radius can be found with the same technique.

The main disadvantage of the transform is the fact that the parameter space corresponds

to a 3-dimensional space, which makes the computational complexity and storage requirements

O(n
3
). If the circles in an image are of known radius r, the search can be reduced to a

2-dimensional space.

The method used in our algorithm searches for all circles with radius between two values

given as arguments. It differs from other version of CHT methods because of its stopping

condition. For reasons previously mentioned, our method does not use the maximum number of

circles or the minimum threshold for the number of votes in order to end the search. Instead, it

uses a threshold corresponding to the maximum allowed difference between the peak value in the

accumulator array of votes and any other number of votes related to a point in the parameter

space.

Let A[W][H][R] denote the accumulator array of votes where W is the image width, H is the

image height and R depends on the size of the radius set with minimum element rmin and

maximum element rmax, and on the value for the chosen radius increment i. Let t denote the

introduced threshold and v be the greatest value stored in the accumulator array A corresponding

to a point (w, h, r) where 0 ≤ w ≤ W−1, 0 ≤ h ≤ H−1 and 0 ≤ r <= (rmax − rmin) / i. Then an

arbitrary point (w’,h’,r’) where 0 ≤ w’

≤ W−1, 0 ≤ h’

≤ H−1 and 0 ≤ r’ <= (rmax − rmin) / i

having v’

votes in A is detected as a circle center iff v – v’

≤ t. We observed that our threshold

works well for small groups of contiguous radii. Since the size of the group is small, all the radii

are close in value and points corresponding to the center of a circle with one of those radii also

have a relatively close number of votes in the parameter space. Therefore, the difference between

the number of votes corresponding to centers of true circles that are reasonably well delimited

cannot be large when the search is performed for a small group of contiguous radii.

Table 7 presents an algorithm for the CHT proposed. HoughTransform computes the

Hough Transform of the binary image generated during the entropy analysis and ComputeHS

generates an image corresponding to the Hough Space. ComputeCenterPoints finds circles and

their center points by checking the accumulator array containing votes for each pixel in the

image. DrawCircles highlights the detected craters as well as their estimated center points over

the original image. PrintCirclesData generates a text file with data related to the craters found

such as radius, center points and number of points in the bins associated with each center point.

3.3 Experimental Results

Experiments were performed over the decompressed 768x768, 8 bits gray scale version

of a JPEG digital image corresponding to a picture of Mars surface presented in Fig. 3(a). This

image was obtained from the original 24 bits/pixel PGM digital image labeled 3_24 used as

training site by the authors of [3]. 3_24 corresponds to one section of a footprint image (h0905

0000) from the High Resolution Stereo Camera (HRSC) instrument of the MarsExpress orbiter.

This footprint is about 8248 x 65448 pixels in size and was split into 264 (6 x 44) sections of

1700 x 1700 pixels each. Image 3_24 corresponds to one of those sections.

The use of gray scale images allowed the methods to be applied over a reduced color

space. We used a 3 × 3 minimum area for the entropy analysis and a high entropy threshold

equal to 3 due to the heavy presence of texture in the original image. Images corresponding to

natural scenes, objects and faces with a textured background or images with a high level of noise

contain a large amount of information. It is natural that those images contain more areas with

high entropy than images with less textured background. Fig. 4(a) shows the binary image

generated during the entropy analysis.

We chose a threshold equal to 30 for the CHT method and divided the search into runs

containing 15 contiguous values of the radius. We focused on searching for craters with radii

varying from 5 to 52 pixels. It was also observed that the choice regarding the search for only 15

radii at a time, combined with a threshold equals to 30 provided reasonably good results. Since

the values of the radius in each run are close, the difference between the number of votes for the

points corresponding to centers of well delimited circles is usually not greater than 30. Our

algorithm was able to detect 50 craters with radii varying between 5 and 20 pixels, 2 craters with

radii varying from 20 to 36 pixels and one crater with radius equal to 45 pixels.

Fig. 3(b) shows the final image generated by the algorithm. The detected craters and

estimated center points are highlighted over the original image. Notice that for some craters, the

center points are slightly shifted to the left or right of the true center point because the

characteristic shadow inside the crater is also detected as an edge by the entropy analysis. As

presented in Figs. 4(b), 4(c) and 4(d), the algorithm cleans the areas of the entropy analysis

image corresponding to the craters found (by mapping their pixels to black) after each CHT run.

This cleaning process helps to decrease the amount of noise and therefore undesirable circles

overlapping for subsequent runs.

The heavy presence of texture in the image can highly impact the quality of the inter-

mediate image generated by the entropy analysis, which works also as a edge detector tool based

on entropy. As the level of texture or noise increases, so does the entropy of regions in the

picture. As consequence, the distinction between high entropy nodes that may contain edges

becomes harder. On the other hand, the quality of the results generated by the CHT method

highly depends on the quality of the entropy analysis image taken as input. Specially, as the

detected edges get more and more similar to the real crater edges, it becomes easier for the CHT

method to accurately recognize those circles corresponding to craters. We noticed that the image

generated by the entropy analysis does not show all the possible true edges corresponding to

crater borders. In order to avoid the capturing of heavy noise, we use a high entropy threshold.

By using such high threshold, the algorithm cannot capture true crater borders in areas where the

variance among the pixels is not high. As a consequence, those craters cannot be detected by the

CHT method. Therefore, improving the detection of edges for heavily noisy or textured images

during the entropy analysis can directly impact the quality of the final results. Results also show

that the algorithm may detect a larger number of false positives craters as the radius increases.

Remains of smaller circles that were not completely cleaned from the binary image due to the

imperfection of circle edges, may contribute for undesirable circle overlapping in the Hough

Space.

4. Conclusions

In this paper we introduced entropy quad-trees and demonstrate that those structures

successfully capture high complexity sub-domains of a data domain. The analysis of

2-dimensional image domains showed that similar results are obtained by quad-trees generated

with the BCD measure. Quad-trees created for different image formats – medium/high quality

JPEG and BMP – are also similar for both measures. We observed that besides capturing image

regions corresponding to content related complex areas, entropy and BCD quad-trees also mine

other regions with high variance of shades among pixels caused by external factors such as light

reflection originated from a camera flash. Nevertheless, the identification of any kind of high

complexity region plays an important role for a variety of applications such as data hiding and

bio-diversity systems.

As an application of our proposed technique, an algorithm using entropy quad-trees to

detect circles that can possibly correspond to craters in images was introduced. The algorithm

performs an information-theoretic analysis of the histogram of sub regions of the image in order

to find complex areas that may contain edges. A modified CHT detects circles in those complex

areas and provides information about center points and radius of the circles found. A threshold

corresponding to the maximum distance from the peak value in the accumulator array is used as

stopping condition for the method. There is no external pre-processing of the original PGM

image 3_24 other than conversion to JPEG format and resizing. No external edge filter is used to

process the original image prior to the CHT method. The entropy analysis works as an edge filter

that generates the binary image given as input to the CHT method. The heavy presence of noise

and texture may compromise the quality of the complex areas found during the entropy analysis

and impact the quality of the final results. Therefore, by improving the robustness of the entropy

analysis against heavy noise and texture, more craters will accurately be detected.

We intend to extend the application of information-theoretical techniques to other

structures associated with spatial data sets such as grid-files, KD-trees, and R-trees. Another area

of great potential is the application of entropy quad-trees to the identification of terrain areas that

contain a high level of biodiversity.

REFERENCES

1. K.Solanki, O.Dabeer, U.Madhow, B.S.Manjunath, S.Chandrasekaran: Robust image-adaptive

data hiding: Modeling, source coding, and channel coding. Proceedings of the Annual

Allerton Conference on Communication Control and Computing 41(2) (2003) 829– 838

2. B.D.Bue, T.F.Stepinski: Machine detection of martian impact craters from digital topography

data. IEEE Transactions on Geoscience and Remote Sensing 45(1) (2007) 265–274

3. E.R.Urbach, T.F.Stepinski: Automatic detection of sub-kilometer craters in high resolution

planetary images. Planetary and Space Science 57 (2009) 880–887

4. G.Salamuniccar, S.Loncaric: Gt-57633 catalougue of martian impact craters developed for

evaluation of crater detection algorithms. Planetary and Space Science 56 (2008) 1992–2008

5. Simovici, D.A., Jaroszewicz, S.: An axiomatization of partition entropy. IEEE Transactions

on Information Theory 48 (2002) 2138–2142

6. Simovici, D., Jaroszewicz, S.: Generalized conditional entropy and decision trees. In: Ex-

traction et Gestion des connaissances – EGC 2003, Lavoisier, Paris (2003) 363–380

7. Simovici, D.A., Djeraba, C.: Mathematical Tools for Data Mining – Set Theory, Partial

Orders, Combinatorics. Springer-Verlag, London (2008)

8. Pevny, T., Fridrich, J.: Benchmarking for steganography. In: Information Hiding: 10th Inter-

national Workshop, IH 2008, Sana Barbara, CA, USA. Volume 5284., (Springer)

9. V.F.Leavers: Survey: which hough transform? Computer Vision Graphics and Image

Pro-cessing:Image Understanding 58(2) (1993) 250–264

10. J.Illingworth, Kittler, J.: Survey: a survey of the hough transform? Computer Vision

Graphics and Image Processing 44(1) (1988) 87–116

11. R.O.Duda, P.E.Hart: Use of the hough transformation to detect lines and curves in pictures.

Communications of the Association of Computin Machinery 15(1) (1972) 11–15

12. E.R.Davis: A modified hough scheme for general circle location. Pattern Recognition Letters

7 (1987) 37–43

13. R.K.K.Yip, P.K.S.Tam, D.N.K.Leung: Modification of hough transform for circles and el-

lipses detection using a 2-dimensional array. Pattern Recognition 25 (1992) 1007–1022

14. D.C.W.Pao, H.F.Li, R.Jayakumar: Shape recognition using the straight line hough transform:

theory and generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence

14(11) (1992) 1076–1089

Rosanne Vetro received the B.S. degree in Computer Science from the Federal University

of Rio de Janeiro, Brazil. After graduation, she worked for 3 years as a team leader in the

Research and Development Engineering Department of TV Globo, a Brazilian broadcast

company. In recognition of her work on television broadcast systems, she received an

Outstanding Engineer Award. She also held a visiting researcher position at the Tokyo Science

& Technology Research Labs of NHK, a Japanese broadcast company, where she contributed to

the development of the ISO/IEC MPEG-7 International Standard. Since 2008, she has been

pursuing a Ph.D. degree in Computer Science of the University of Massachusetts Boston. Her

research interests are in the area of data mining with application to multimedia content,

clustering, security and data hiding. In 2010, she received a best paper award for her work on

mining high complexity regions.

Dr. Dan Simovici is a Professor of Computer Science and Graduate Program Director at

the University of Massachusetts Boston. He obtained his Ph.D. from the University of Bucharest

and is the author of several books and of more than 150 research papers. His most recent book

"Mathematical Tools for Data Mining" was published by Springer-Verlag in 2008. His main

research interests are in Data Mining (clustering, genetic algorithms in data mining, graph mining,

classification) and in algebraic and information-theoretical methods in Multiple-Valued logic. He

is a managing editor of the "Journal for Multiple-Valued Logic and Soft Computing".

Wei Ding has been an Assistant Professor of Computer Science at the University of

Massachusetts Boston since 2008. She received her Ph.D. degree in Computer Science from the

University of Houston in 2008. Her main research interests include Data Mining, Machine

Learning, Artificial Intelligence, Computational Semantics, and with applications to astronomy,

geosciences, and environmental sciences. She has published more than 30 referred research

papers and has 1 patent. She is the recipient of a Best Paper Award at IEEE ICCI 2010, a Best

Poster Presentation award at ACM SIGSPAITAL GIS 2008, and the Best PhD Work Award

between 2007 and 2010 from the University of Houston. Her research projects are currently

sponsored by NASA, DOE, and NSF.

Figure 1(a). Fraction of pixels in high complexity areas of the image given the corresponding

lower bound used for the entropy.

Figure 1(b). Fraction of pixels in high complexity areas of the image given the corresponding

lower bound used for the BCD threshold.

Figure 2(a-d). Sample simulation results for original images comparing the corresponding

Entropy Tree(Top right in each subfigure) and the corresponding BCD Tree(bottom right in each

subfigure).

Figure 3(a). Original image from Mars surface(768x768, 24 bits per pixel).

Figure 3(b). Final image generated by the algorithm where detected craters and their estimated

centers are highlighted in pink or white.

Figure 4(a). Intermediate result of crater detection. Binary image generated by the entropy

analysis.

Figure 4(b). Intermediate result of crater detection. Binary image generated after detection of

craters with radius between 5 and 20. The pixels corresponding to the circles detected by the

CHT are mapped to black.

Figure 4(c). Intermediate result of crater detection. Binary image generated after detection of

craters with radius between 21 and 36. The pixels corresponding to the circles detected by the

CHT are mapped to black.

Figure 4(d). Intermediate result of crater detection. Binary image generated after detection of

craters with radius between 37 and 52. The pixels corresponding to the circles detected by the

CHT are mapped to black.

Figure 1(a)

Figure 1(b)

Figure 2(a)

Figure 2(b)

Figure 2(c)

Figure 2(d)

Figure 3(a)

Figure 3(b)

Figure 4(a)

Figure 4(b)

Figure 4(c)

Figure 4(d)

Table 1. Algorithm 1: ComputeHCRegions(image, minArea, thr1, thr2)

Table 2. Algorithm 2: Split(n)

Table 3. Algorithm 3: ComputeFeature(n) for Information-Theoretical Method

Table 4. Algorithm 4: ComputeFeature(n) for Box-Counting Dimension Method

Table 5. Algorithm 5: ComputeCraters(image, minArea, thrEntropy, minRadius, maxRadius,

thrCHT)

Table 6. Algorithm 6: ComputeFeature(n) for crater detection application

Table 7. Algorithm 7: ComputeCHT(entropyImg, minRadius, maxRadius, thrCHT)

Algorithm 1 ComputeHCRegions(image, minArea, thr1, thr2)

Input: Gray scale image, minimum area size for the analysis, feature threshold, threshold

corresponding to the number of shades of gray (used only by the BCD method)

Output: Quad-tree showing the feature concentration along the whole image area

nId ←ROOT

nLevel ← 0

root ← newNode(nId, nLevel, image.width, image.height)

ComputeFeature(root)

Split(root)

HighlightHighFeatureLeaves()

Algorithm 2 Split(n)

Input: A node n from a quad-tree

Output: Expands the node creating four children, if node satisfies the necessary requirements

if (n.feature > method lower bound) and (n.area > minArea) then

 nLevel ← n.level +1

 nId ← n.id + A

 topLeft ← newNode(nId, nLevel, n.rect.x, n.rect.y, n.rect.width/2, n.rect.height/2)

 ComputeFeature(topLeft)

 nId ← n.id + B

 topRight ← newNode(nId, nLevel, n.rect.x + n.rect.width/2, n.rect.y, n.rect.width/2,

 n.rect.height/2)

 ComputeFeature(topRight)

 nId ← n.id + C

 bottonLeft ←newNode(nId, nLevel, n.rect.x, n.rect.y + n.rect.height/2, n.rect.width/2,

 n.rect.height/2)

 ComputeFeature(bottonLeft)

 nId ← n.id + D

 bottonRight ← newNode(nId, nLevel, n.rect.x + n.rect.width/2, n.rect.y+ n.rect.height/2,

 n.rect.width/2, n.rect.height/2)

 ComputeFeature(bottonRight)

 Release(n)

 Split(topLeft)

 Split(topRight)

 Split(bottonLeft)

 Split(bottonRight)

else

 SaveNodeInfo(n)

 Draw(n)

 Release(n)

end if

Algorithm 3 ComputeFeature(n)

Input: A node n from a quad-tree

Output: The node entropy related to the histogram of the pixels in the area.

entropy ← 0

for all pixel in n.area do

 InsertGrayShade(histogram,pixel.shade)

 end for

 for all shade in histogram do

 p ← number of pixels with shade

 s ← total number of pixels in the node

 g ← (p / s)

 entropy− =(g) × (lg2(g))

 end for

 return entropy

Algorithm 4 ComputeFeature(n)

Input: A node n from a quad-tree

Output: Box-counting dimension associated to the node’s area.

 boxesIntercepting ← 0

 bcd ← 0

 for all box in n.area do

 for all pixel in box do

 InsertGrayShade(box.histogram,pixel.shade)

 end for

 if n.area = box.area then

 boxesIntercepting ← box.histogram.size

 else if box.histogram.size ≥ threshold then

 boxesIntercepting ← boxesIntercepting +1

 end if

 Release(box.histogram)

end for

if boxesIntercepting > 0 then

 bcd− = boxesIntercepting / lg10(1 / (n.area))

end if

return bcd

Algorithm 5 ComputeCraters(image, minArea, thrEntropy, minRadius, maxRadius, thrCHT)

 Input: 8 bits gray scale version of an image, a minimum area size, entropy threshold, the

minimum and maximum radius, CHT threshold

 Output: Detected craters as well as their estimated center points highlighted and superimposed

over the original image; a text file with data indicating the center points, radius and Hough

Space bin points of each detected crater

 nId ← ROOT

 nLevel ← 0

 root ← newNode(nId, nLevel, image.width, image.height)

 ConputeFeature(root)

 Split(root)

 entropyImg ← ProcessImageEntropy()

 ComputeCHT (entropyImg, minRadius, maxRadius, thrCHT)

Algorithm 6 ComputeFeature(n)

Input: A node n from a quad-tree

Output: The node entropy related to the histogram of the pixels in the area.

entropy ← 0

for all pixel in n.area do

 InsertGrayShade(histogram,pixel.shade)

 end for

 for all shade in histogram do

 p ← number of pixels with shade

 s ← total number of pixels in the node

 g ← (p / s)

 entropy− =(g) × (lg2(g))

 end for

 if (n.area == minArea) then

 relevantLeaf ← ClassifyLeaf(histogram)

 if (!relevantLeaf) then

 return 0

 end if

end if

return entropy

Algorithm 7 ComputeCHT(entropyImg, minRadius, maxRadius, thrCHT)

 Input: image generated by the entropy analysis, minimum and maximum radius, new threshold

for stop condition

 Output: Detected circles, their estimated center points and radius

 HoughTransform(entropyImg,minRadius,maxRadius)

 ComputeHS()

 ComputeCenterPoints(thrCHT)

 DrawCircles()

 PrintCirclesData()

