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ABSTRACT
For face recognition, we show that knowing that each subject
corresponds to multiple face images can improve classifica-
tion performance. For domains such as video surveillance,
it is easy to deduce which group of images belong to the
same subject; in domains such as family album identifica-
tion, we lose group membership information but there is
still a group of images for each subject. We define these two
types of problems as multiple faces per subject. In this pa-
per, we propose a Bipart framework to take advantage of this
group information in the testing set as well as in the train-
ing set. From these two sources of information, two models
are learned independently and combined to form a unified
discriminative distance space. Furthermore, this framework
is generalized to allow both subspace learning and distance
metric learning methods to take advantage of this group
information. Bipart is evaluated on the multiple faces per
subject problem using several benchmark datasets, including
video and static image data, subjects of various ages, various
lighting conditions, and many facial expressions. Compar-
isons against state-of-the-art distance and subspace learning
methods demonstrate much better performance when utiliz-
ing group information with the Bipart framework.

Categories and Subject Descriptors
G.4.9 [Image Precessing and Computer Vision]: Ap-
plications; I.2.6 [Learning]: Parameter learning
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Face recognition, Set classification, Set distance metric learn-
ing
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1. INTRODUCTION
When recognizing a face present in many images, these im-

ages can be thought of as forming a group. Intuitively, using
this group information, i.e. knowing what other images have
the same face, should improve recognition performance. In
this paper, we consider this information in two scenarios.

In the first, what images have the same face is known
in the test set. This information is trivially present in the
training set. This scenario applies to face recognition in
videos, in which object tracking can recognize the same face
across frames, but cannot deduce the identity of that face.
We call this the multiple faces with group identity problem.

In the second scenario, only the existence of face groups
is known. For example, in face recognition in a family al-
bum, each person corresponds to a group of face images,
but we do not know which images constitute this group. We
call this multiple faces with unknown groups. We show that
just knowing that image groups exist can provide valuable
information through unsupervised learning.

In both scenarios, we show that by using group informa-
tion, which is available in both training and test data, facial
recognition accuracy can be improved.

Our proposed Bipart framework takes advantage of this
information. The approach independently learns distance
metrics from the training and test sets, then combines them
into one distance metric. This framework differs from semi-
supervised discriminant analysis (SDA) [2], which does not
consider group identity information, and from set classifi-
cation methods [3, 9], which only work when group identity
information is known. The Bipart framework can be applied
to both cases [6].

We demonstrate the Bipart framework by using two locally-
learned distance metrics. In addition to using our own dis-
tance metrics, Bipart can also combine any two projection
matrices, including those formed by subspace learning tech-
niques [5, 13], or distance metric learning methods [12, 10].
Furthermore, these matrices can be learned via supervised
methods [10] or unsupervised methods [5].

In its supervised form, Bipart can utilize group identity
information in the test set to form constraints. In its semi-
supervised form, Bipart can deal with situations where this
information is not available; instead of utilizing known group
identities, these groups are inferred in an unsupervised way.
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Figure 1: The Bipart framework in its supervised and semi-
supervised forms. Both learn two distance metrics from the
training and test sets. When the test set has group identity
information, its metric can be learned with labeled groups,
resulting in supervised Bipart. When this information is
not available, the test metric must be learned unsupervised,
resulting in semi-supervised Bipart.

It is assumed that group identity information is always avail-
able in the training set; see Figure 1 for a visual description.

2. BIPART DISTANCE LEARNING
We propose the Bipart method, which uses two distance

metrics: one learned from the training set, and the other
from the test set.

2.1 Bipart Trick
With any two images xi and xj in the data set, the dis-

tance metric A is in the form of

dA(xi,xj) = ‖xi − xj‖A =
√

(xi − xj)TA(xi − xj), (1)

where A is positive semi-definite, and parameterizes a fam-
ily of Mahalanobis distances. Replacing A with WTW in
Equation (1) using Cholesky decomposition, we get:

dA(xi,xj) =
√

(xi − xj)TWWT (xi − xj)

=
∥∥∥WT (xi − xj)

∥∥∥ . (2)

The Bipart trick fuses two distance metrics by replacing
W with W1W2. Therefore, the Bipart distance metric is:

dA(xi,xj) =
∥∥∥WT

2 W
T
1 (xi − xj)

∥∥∥ , (3)

where W1 and W2 correspond to the distance metrics learned
from test and training data respectively. Note the similarity
between Equations (2) and (3).

Equation (3) is equivalent to projecting the original face
images to Rd1 space using W1, then to Rd2 space using W2.

W2 plays a more important role, as it preserves the previ-
ously projected information. Which set (testing or training)
we use to learn which matrix is discussed in Section 3.

2.2 Bipart Distance Metric Objective
To demonstrate how W1 and W2 in Equation (3) are

learned, we show W1. W2 follows the same procedure.
For each image xi, we minimize the distance from the

other images in the block Bs
i containing xi, where Bs

i is the
group of face images corresponding to the same subject:

arg min
A1

n1∑
i=1

ks
i∑

p=1

d2A1
(xi,x

Bs
i

p ), (4)

Likewise, Bd
i , which contains images similar to xi but cor-

responds to different subject with xi, form the dissimilarity
constraints:

arg max
A1

n1∑
i=1

kd
i∑

q=1

d2A1
(xi,x

Bd
i

q ), (5)

where A1 = WT
1 W1 is the distance metric learned; n1, ksi

and kdi are the numbers of examples in the test set blocks

Bs
i and Bd

i respectively; x
Bs

i
p and x

Bd
i

q are the pth and qth

images in Bs
i and Bd

i .
Equations (4) and (5) combine to form the objective func-

tion:

arg min
A1

n1∑
i=1

 ks
i∑

p=1

d2A1
(xi,x

Bs
i

p )− β
kd
i∑

q=1

d2A1
(xi,x

Bd
i

q )

, (6)

where β quantifies the relative importance of the two types
of constraints.

The distance metric A1 as well as W1 can be solved from
Equation (6). Under A1, the distance between any two ex-
amples is equivalent to the Euclidean distance projected us-
ing the projection matrix W1 [7]. W2 is learned from the
training set. With W1 and W2, we can obtain the final
distance metric A by Equation (3).

3. BIPART FRAMEWORK
Bipart bridges subspace learning and distance metric learn-

ing. In Equation (3), we can use a projection matrix W, as
done in subspace learning; conversely, we can use Equation
(4), replacing A1 with any metric A used in distance learn-
ing.

The objectives of linearized subspace learning algorithms
can be transformed into the following form:

arg min
W

tr(WTXLXTW). (7)

For example, LPP [5] adds the constraint WTXXTW =
Id, and PCA, LDA, ONPP add the constraint WTW = Id
on Equation (7). The differences in constructing the matrix
L embody the various motivations of spectral analysis based
subspace learning methods.

On the other hand, distance metric approaches can be
formulated as follows:

arg min
A

∑
(xi,xj)∈S d

2
A(xi,xj),

s.t.
∑

(xi,xj)∈D d
2
A(xi,xj) ≥ θ

(8)



where S contains sample pairs with the same class label,
while D contains sample pairs from different classes. Al-
most all distance metric approaches minimize the similar-
ity constraint as their main objective. The differences lie
in optimizing the dissimilarity constraints. For example,
Xing’s method [12] sets θ = 1, while LMNN[10] defines
θ = 1 +

∑
(xi,xj)∈S d

2
A(xi,xj) in Equation (8). Our Bipart

method simply maximizes θ when optimizing the similarity
objective function, which is defined in Equations (4) and (5).

To incorporate and improve subspace learning and dis-
tance metric learning methods, Bipart can be used as either
a part of a supervised or semi-supervised framework.

Supervised Form: Supervised Bipart can be used to
deal with multiple faces with known groups. In this form,
group identity in the test set is known and used to train
a distance metric. Though W1 and W2 can learned from
either the test or training set, W1 should be learned from
the set with more information. In our case, we learn W1

from the test set, since there are more testing images.
After learning W1 and W2, we combine the two distance

metrics using the Bipart trick. This sequential projection re-
sults in a single projection which contains information from
both the training and test sets.

A similar method for combining two matrices is LFDA [8],
which combines and optimizes both LPP and LDA into one
objective function. However, unlike LFDA which only uses
training set information, Bipart sequentially combines data
from both the training set and test set. In addition, Bipart
does not require Laplacian matrices, and thus is applicable
to any method which can be formulated as either Equation
(7) or (8) [12, 10].

Performance for the Bipart metric W1W2 will be no worse
than the performance either W1 or W2. When W2 is full
rank, the performance of W1W2 will always be the same as
W1, since there is no dimensionality reduction from W2. If
W2 does not contribute to the overall performance, it can
be set as an identity matrix.

Though we use the distance matrices described in the
previous section, Bipart can be generalized to a supervised
framework by replacing W1 and W2 with any projection
matrix learned using supervised subspace learning or dis-
tance metric learning methods, as mentioned in Equations
(7) and (8).
Semi-Supervised Form: Semi-supervised Bipart (semi-

Bipart) can be used for face recognition problems with un-
known groups. In this case, W1 is learned from the training
set, and W2 from the test set. Without known group in-
formation, the test set must be learned without supervision,
using only the objective function in Equation (4), with Bs

i

being formed via k-nearest-neighbors. Many unsupervised
dimensionality reduction methods are ready to be plugged
into the semi-Bipart framework, e.g. locally linear embed-
ding (LLE) [7] and many variants of spectral clustering. Un-
like the semi-supervised methods discussed in [2] which use a
linear tuning parameter to balance the weights between su-
pervised and unsupervised parts, Bipart smoothly combines
both parts without needing a tuning parameter.

4. EXPERIMENTS

4.1 Data
We used four face recognition datasets: 11 face images

each from 15 individuals in the Yale face database, with

Figure 2: Images from our data sets. From the top row to
the bottom: YALE, UMIST, ChokePoint, and FG-NET.

various facial expressions; 564 total face images from 20 in-
dividuals in the UMIST face database, with various poses;
560 total face images from 80 subjects in the ChokePoint
surveillance video dataset [11], with variations in illumina-
tion, pose, sharpness, and alignment; 11 images each from
66 individuals in FG-NET dataset [1], where subject age is
ranges from newborn to 69. Figure 2 shows some sample
images from these datasets.

YALE, UMIST, and ChokePoint images were aligned and
cropped according to eyes, scaled to 40×40, and normalized
to have gray scale values between 0 and 255. In FG-NET,
each image contains 68 labeled points describing shape fea-
tures; Active Appearance Model (AAM) features [4] were
extracted from these points. In order to capture 98% of the
variance of the whole data, 458 model parameters were ex-
tracted according to the AAM to represent each individual.

4.2 Methods
We compared Bipart with the standard subspace learning

methods LDA (or Fisherface) and LPP (or Laplacianface)
[5]; a semi-supervised method, semi-supervised discriminant
analysis (SDA) [2]; a popular set classification method, lin-
ear affine hull based image set distance (L-AHISD) [3]; and
a state-of-the-art distance learning method, large margin
nearest-neighbor (LMNN) [10].

Default parameter settings for all methods were used, and
only the dimension of the resulting subspaces were tuned.
We set kdi = t + 1 for Bipart, kdi = 0 for semi-Bipart, and
ksi = t−1 for both, where t is the number of training samples.
β was set to 0.4 for all the experiments. The dimension d1
was automatically determined by using k-nearest-neighbors
on the training set. The final dimension d2 was chosen to be
the best performing value. After projection, nearest neigh-
bor was used to classify faces.

4.3 Experimental Design
In these experiments, one group of face images is provided

for each subject. In the training set, subject labels were
given for these groups, while in the test set, they were not.
The goal was to correctly identify the subject of the group.

This group identity information was used directly in the
supervised Bipart framework and L-AHISD; in the other
methods, voting was applied between the images in the group
to determine the identity of the group.

Unknown group experiments. As in the group iden-
tity experiments, each subject was assumed to have multiple
images. However, the image to subject groupings were not
given for the test set. We used semi-Bipart for this prob-
lem, and constructed group information in the test set using
k-nearest-neighbors. L-AHISD was not applicable in this



Multiple Faces with Unknown Groups

Dataset t Semi-Bipart LMNN L-AHISD LDA SDA LPP

YALE
2 59.78± 4.04(20) 55.33± 5.04(119) n/a 54.15± 5.44(14) 52.52± 4.06(14) 56.67± 3.72(18)
4 76.38± 4.04(30) 74.29± 3.08(42) n/a 73.81± 4.07(14) 68.48± 4.15(14) 74.48± 3.26(21)

UMIST
2 83.01± 3.81(12) 78.45± 4.42(125) n/a 66.58± 3.02(18) 68.86± 3.52(18) 66.84± 3.67(26)
4 92.97± 2.55(16) 92.10± 2.53(15) n/a 81.37± 4.04(19) 84.61± 3.82(19) 76.53± 20.53(48)

ChokePoint
2 57.77± 2.23(109) 62.38± 1.91(35) n/a 54.75± 2.31(74) 51.40± 2.36(79) 56.17± 2.31(105)
4 77.37± 2.62(53) 77.50± 2.14(58) n/a 68.63± 2.99(69) 64.00± 3.48(80) 69.04± 2.75(144)

FG-NET
2 46.57± 2.04(91) 41.62± 2.37(304) n/a 26.52± 1.48(63) 32.96± 2.12(65) 19.36± 1.95(85)
4 64.29± 1.22(186) 58.79± 1.60(413) n/a 53.90± 1.47(60) 53.03± 1.85(58) 21.04± 1.56(79)

Multiple Faces with Group Identity

Dataset t Bipart LMNN L-AHISD LDA SDA LPP

YALE
2 97.33± 4.66(14) 82.67± 6.44(119) 80.00± 12.57 86.67± 8.31(14) 80.67± 9.66(14) 87.33± 5.84(18)
4 99.33± 2.11(41) 94.00± 3.78(42) 95.33± 6.32 96.00± 4.66(14) 92.00± 8.78(14) 96.67± 5.67(21)

UMIST
2 97.72± 3.40(12) 93.94± 5.32(125) 100.00± 0.00 93.61± 4.92(18) 88.43± 7.16(18) 93.91± 5.92(26)
4 99.70± 0.96(14) 98.48± 2.60(15) 100.00± 0.00 96.79± 4.34(19) 95.41± 3.97(19) 92.79± 13.78(48)

ChokePoint
2 84.75± 3.48(54) 75.38± 4.08(35) 84.12± 3.59 67.13± 5.68(74) 61.88± 5.31(79) 71.00± 4.03(105)
4 93.88± 1.61(47) 85.00± 2.50(58) 90.50± 2.65 76.62± 5.47(69) 71.50± 4.16(80) 77.62± 4.43(144)

FG-NET
2 85.30± 3.57(248) 73.79± 3.35(304) 62.88± 4.36 52.73± 6.69(63) 56.52± 5.25(65) 39.55± 4.76(85)
4 91.97± 2.48(360) 90.00± 2.04(413) 79.85± 3.71 87.12± 3.99(60) 85.30± 4.58(58) 41.82± 5.16(79)

Table 1: Averaged accuracy and standard deviations for various methods and datasets over ten-fold cross-validation. t is the
number of training samples per subject. Numbers in the parentheses are the dimensions of the final projection space.

setting. SDA and semi-Bipart used both the training and
the test set; all other methods only learned from the training
set.

We used t = 2, 4 samples per person for training; all re-
maining samples are used for testing. For each t, test and
training sets were generated using random splits 10 times.

4.4 Results
Averaged accuracies and standard deviations are shown

in table 1. In the unknown group experiments, semi-Bipart
performed the best, followed by LMNN, which as shown
in Equation 8 has a similar objective function. However,
semi-Bipart has stronger constraints on dissimilar faces, and
exploits discriminative information in the test set. LDA,
SDA and LPP found lower-dimensional subspaces, but were
not as accurate.

In the group identity experiments, supervised Bipart and
L-AHISD achieve better performance than other methods
which only use group identity information for voting. Bi-
part, by using information in both training and test sets,
outperforms L-AHISD on most datasets.

Performance for all methods improved with more training
data (higher t in table 1). However, more training data in
our experimental design means less testing data. Since Bi-
part uses test data to augment the learned projection when
training data is scarce, the performance gap between Bipart
and other methods is expected to shrink with higher t.
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