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Abstract—Sleep is essential for a person’s health and well-
being. Recent advances of wearable devices and smartphone
sensing have led to the proliferation of at-home sleep monitor-
ing solutions for the consumer market. In this paper, we study
how to monitor basic sleep behavior and how to detect irregular
sleep nights, through unconstrained smartphone sensing, which
can serve as an important indicator for both mental and
physical health if the sleep problems persist. We first propose
a supervised learning approach to predict bedtime and sleep
duration with a light-weight context sensing schedule to mini-
mize battery consumption. The proposed solution is validated
through an extensive user study, and the prediction accuracy
of bedtime and sleep duration significantly outperformed the
state-of-art solution. In addition, we propose an unsupervised
approach to detect irregular sleep nights by profiling and
detecting contextual variations. The experiment results show
that the proposed solution is effective in detecting irregular
sleep nights. To the best of our knowledge, this is the first
work that uses unconstrained smartphone sensing to detect
sleep pattern changes with the benefits of reduced training
efforts and improved robustness against behavior diversity.

Keywords-Sleep Monitoring, Smartphone Sensing, Context
Awareness, Anomaly Detection, Mobile Health.

I. INTRODUCTION

Regardless of the age, good restorative sleep is essential to
physical health and emotional well-being. Notably, maintain-
ing a regular bedtime and sufficient sleep is a key aspect of
healthy life, yet millions of people are suffering from sleep
disorder or chronic sleep deprivation around the world [1].
These sleep problems are associated with the onset of a
number of chronic diseases and conditions, such as diabetes,
cardiovascular disease, obesity, and depression [2], [3], and
even affect memory and cognitive functions [4].

In particular, a change of sleep patterns is often an im-
portant behavior indicator for potential health problems. For
instance, sleep disorder is one of the most common effects
of depression, which is a brain illness and can affect sleep-
wake cycle to cause more irregular sleep nights. Studies
have shown that sleep disturbance is a major risk factor
of developing major depression [5]. Interestingly, evidences
also exist that erratic sleep/wake schedules, often towards
end of school semesters, are positively associated with stress
and negatively associated with academic performance for
adolescents [6], [7]. In this paper, we study smartphone

sensing for unconstrained sleep monitoring, which can serve
as a scalable solution to address these societal challenges.
We propose a supervised learning approach to predict bed-
time and sleep duration, and a novel unsupervised context-
profiling approach to detect irregular sleep nights that may
suggest change of sleep patterns.

There are many existing sleep assessment and monitoring
solutions. The polysomnography is the accepted gold stan-
dard for sleep assessment [8], but it requires professional
monitoring and expensive equipment. Recent advances of
wearable devices make them accessible to people who
are interested in sleep assessment at home. These devices
typically have embedded accelerometer (e.g. Fitbit [9]) or
ECG electrodes (e.g. Zeo [10]) and can track sleep quality
based on limb movements or brain waves. The use of these
devices are intrusive and cumbersome, as users need to wear
them during the entire bedtime and the quality of analysis
depends on how well user wears the device [11].

On the other hand, smartphones have increasingly been
used as a health device since they have many embedded
sensors and people frequently carry it with them [12]. There
are existing mobile applications available that can track
sleep quality simply using smartphones without any extra
device. Users typically need to place the phone on the bed
so the application can analyze body motion [13], or users
need to plug in the phone and explicitly start the app to
analyze ambient sound (e.g. snoring etc.) for sleep quality
analysis [14], [15]. While existing wearable devices and
smartphone sensing applications can provide deep analysis
of sleep stages and quality for several nights, they are often
not designed for long-term sleep monitoring. A recent survey
shows that many people are interested in the technology of
unobtrusive sleep tracking but are resistant to wear a device
during sleep [16]. The smartphone-based sleep tracking
applications also require explicit user cooperation (e.g. plug
in, put on bed, start/end app) and are difficult to comply
over a long period of time.

With the research objectives of long-term sleep moni-
toring and detecting irregular sleep nights (reflecting sleep
disturbance), our work focuses on unconstrained smartphone
sensing without requiring explicit user cooperation and ac-
tions. The contributions of this paper include:



1) We propose an unconstrained smartphone-sensing ap-
proach to predict bedtime and sleep duration through classi-
fication of context features. Our sensing strategy has minimal
impact on the battery, typically consuming less than 5%
smartphone energy throughout a day, and the supervised
learning algorithm is validated through a user study of 18
participants over 14 weeks who have diverse sleep patterns.
The experiment results show that the proposed algorithm
significantly outperforms a state-of-art solution in prediction
accuracy of bedtime and sleep duration.

2) Further we propose a new unsupervised context pro-
filing approach to detect irregular sleep nights to reduce
training effort and to improve robustness against diverse
sleep patterns. We observed that there is a strong correlation
between context profiles and sleep patterns, and the experi-
ment results validated that the proposed method is effective
detecting irregular sleep nights. To the best of our knowledge,
this is the first work that uses unconstrained smartphone
sensing to detect sleep pattern changes, such as caused by
elevated stress or other health problems, which is practical
and suitable for long-term sleep monitoring.

II. RELATED WORK

We summarize relevant academia research and industry
products for sleep monitoring from two aspects: 1) solu-
tions requiring dedicated devices; and 2) smartphone-only
approaches leveraging onboard sensors.

On the consumer fitness tracking market, many commer-
cial devices are available for sleep tracking. Zeo [10] is a
head-mounted sensor that can monitor brain and muscle sig-
nals to track sleep through polysomnography. While being
accurate, it is also a very intrusive approach. Basis [23] is
a wristwatch that packs many sensors to track steps, sleep,
heart rate, perspiration, and skin temperature. Fitbit [9] and
Jawbone Up [24] are another two popular wrist-worn bands
for sleep monitoring. Most of these devices use actigraphy
for sleep-wake assessment, which was found to be good at
detecting sleep episodes but not wake episodes for healthy
populations [25]. Thus some of these wearable sensors
require user cooperation to explicit tell them the bedtime
and waketime (e.g. by pressing a button) to provide accurate
sleep analysis. A common problem of these devices is that
user needs to wear the sensor to collect data, which is
inconvenient for long-term sleep tracking and uncomfortable
for those who already have trouble sleeping.

Rather than having users wear a monitoring device,
Beddit [26] is a sensor placed under the bed sheet, for
unobtrusive monitoring, with data transmitted to a nearby
smartphone through Bluetooth. Sense [17] is a dedicated
device placed at the bedside table, collecting environment
data (noise, light, temperature, humidity and particles in the
air) and communicating with another small sensor clipped
to the pillow. Academic researchers have also attempted

non-invasive sleep monitoring through instrumented envi-
ronment. Metsis et al. combine data from pressure mattress
and Kinect to provide detailed analysis of users’ sleep
patterns, including both posture and motion [19]. Lullaby
combines many off-the-shelf sensors as a dedicated system
to be placed near the bed, which provides a comprehensive
recording of a person’s sleep to help users to understand
the relation between sleep quality and environmental condi-
tions [18]. Hoque et al. propose to attach accelerometers to
the bed mattress to infer body position and movements [27].

In addition to dedicated devices, another field of sleep
related research leverages smartphone as a powerful compu-
tational and sensing tool for the purpose of sleep tracking.
Behar et al. conducted a review of sleep screening apps
for smartphones [11]. In particular, several smartphone apps
use onboard accelerometer and microphone to provide sleep
analysis by simply placing the phone on the bed, such as
Sleep As Android [13], Sleep Cycle [28], and Sleepbot [29].
Using a similar approach, Gu et al. evaluate the user’s
sleep quality by measuring the durations of different sleep
stages in a sleep process rather than recording some certain
sleep-related activities [15]. These apps all require user
cooperation to place their phone besides his/her head on
the bed. In addition, there is a risk for the phone falls out of
the bed and people may be concerned with the battery usage
the radiation problem affecting their health, making it not an
ideal solution for long-term sleep tracking [16]. iSleep [14]
addresses some of these concerns by focusing on detecting
acoustic events, rather than motion states, to predict sleep
quality so the phone does not need to be placed on the bed.
However, users are required to manually start/end the app
and put the phone near the bed (e.g. night stand).

Recently researchers have started to focus on uncon-
strained sleep monitoring through smartphone sensing, tak-
ing advantage of that many people are already leaving
their phone on during sleep and keeping the phone in
the same room [12]. Chen et al. propose a linear regress
model (BES) to infer sleep duration using smartphone
sensing [20]. Currently the BES model predicts only sleep
duration and it has been used to monitor students’ long-term
sleep trend [7]. Min et al. propose Toss ‘N’ Turn (TNT)
with a more intense sensing schedule for sleep state and
quality classification [21]. TNT achieved 35-minute and 49-
minute accuracy for bedtime and sleep duration prediction,
respectively. Interestingly TNT preserves phone’s power by
automatically switching to lower sensing intensity when the
battery is low. Abdullah et al. developed a simpler method
to detect bedtime and waketime of college students, who
are usually heavy smartphone users, by finding the longest
non-use segment (NUS) after 10pm [22].

Motivated by the objective of easy-to-use and long-term
sleep monitoring, we propose a new supervised learning
approach for smartphone sensing that outperformed existing



solutions for predicting bedtime and sleep duration, and we
further propose an unsupervised context-profiling approach
to detect irregular sleep nights that has not been addressed
in the existing literature.

III. DATA COLLECTION AND DATASET

We developed an Android app, installed on participants’
own mobile phones, to collect the sensing data and provide
a user interface for participants to log their bedtime and
wakeup time as ground truth for experiment evaluations. A
simple questionnaire was also presented to collect partici-
pants’ demographic data when the app starts at the first time.
The participants were given a tutorial of the data collector
app and they were asked to use their phone as usual.

A. Participants

We recruited 23 participants for a 14-week study. During
the first 2 weeks, 5 participants dropped out of the study
and the results we show are based on data from the other
18 participants. Among those 18 participants, the demo-
graphic data shows that 7 female joined the study, and 6
lived on campus. There were 8 undergraduate students, 8
graduate students and 2 faculty/staff participants. We had
9 participants who were 18 to 24 years old, 7 participants
between 25 to 35, and the other 2 more than 35 years old.
On the questionnaire, the participants were asked when they
usually go to bed. There were 3, 11, 2 and 2 participants
who responded that they usually go to bed between 8pm to
10pm, 10pm to midnight, after midnight, or have an irregular
sleep schedule, respectively. Each participant was rewarded
with a US$20 gift card every 4 weeks to keep them engaged.

B. Sensing Strategy

To minimize the energy impact on participants’ phone,
our collector app adopts two sensing strategies. The first
sensing strategy is coarse grained that contextual data is
collected every 5 minutes. And a fine grained sensing
strategy tries to collect sensing data every 30 seconds. The
fine grained sensing data is processed and summarized every
5 minutes. The summarized data and coarse grained sensing
data compose a context record every 5 minutes. A context
record has 4 groups of data that are temporal, spatial (WiFi
signatures), phone status, and app usage. Once the context
sensing started, all four categories of contextual data were
collected and stored. We describe details of the context
records in Section IV-A. The bedtime and wakeup time
logged by participants were also stored.

The collector app uploads the context records to our
server via WiFi connection on a daily basis. In order to
protect participants’ privacy, we used the phone’s one-
way hashed device ID to distinguish each participant. The
MAC addresses of APs were also hashed to avoid potential

inference of location. We only logged decibel sound level
values without recording raw audio content.

Overall our collector app consumed little energy - often
less than 5% on our testing devices under normal usage.
Throughout the study, we did not receive any complains
from the participants regarding the power consumption of
the app.

C. Data Characterization

The dataset we collected has a total of 974 days of logged
sleep episodes and more than 253,000 context records.
Table I shows the statistics of the data collected from each
participant. The compliance rate varied significantly, and 3
participants logged less than 30 days, while 7 participants
logged more than 2 months. We also noticed the data col-
lected from participant 8 missed illuminance values, possibly
due to a broken sensor.

IV. PREDICTING BEDTIME AND SLEEP DURATION

If a user’s bedtime and waketime, from which the sleep
duration is calculated as their difference, can be accurately
predicted, it is then possible to detect irregular sleep nights
by analyzing the bedtime and waketime patterns. Thus in
this section we focus on predicting users’ bedtime and
waketime using supervised learning algorithms. We first
describe the details of the contextual features. Then we
compare the performance of different feature combinations
and classification algorithms. Finally we present experiment
results and analysis of the large prediction errors on bedtime
and sleep duration.

A. Features for Classification

A context record is obtained by our collector app every
5 minutes and it contains four types of context data as
follows. Each context record consists of the coarse grained
and processed fine grained sensing data.

1. Temporal Context: People’s sleep tends to follow a
circadian rhythm or body clock. Hence temporal context
potentially is an important feature to learn a person’s sleep
pattern. The temporal data, which is coarse grained data, we
collected including day of week and hour in a day for the
corresponding context record.

2. Phone Status: The phone status is defined by 7 raw
data items including charging status, phone’s power level,
environmental decibel value (dB), illuminance values (Ev),
proximity value, duration of screen on, and phone move-
ment count detected by accelerometer. We collect charging
status, power level, and proximity sensing data once every
5 minutes. While both decibel value and illuminance value
are collected every 30 seconds, and the min, max, average
and std values are calculated every 5 minutes as processed
sensing data. The decibel value is calculated by analyzing a
3-second audio from microphone and the illuminance values



Table I
PARTICIPATED DAYS AND NUMBER OF SENSED CONTEXT RECORDS COLLECTED FROM 18 PARTICIPANTS

Participant ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Participated Days 19 36 32 89 32 33 30 25 56 33 88 100 26 81 85 49 78 82
Total Records 4100 9518 8117 24828 8627 8177 7047 6486 14875 9072 22226 27115 5352 22538 22233 11522 20335 21251
Sleep Records 1629 3039 3020 9164 2944 3024 2791 2460 5142 3257 7216 9648 2441 8561 8313 5069 7582 8462

are collected within 3 seconds for every 30-second sensing
period. The screen on time and movement count sensing data
are the cumulate values of each 5-minute sensing period.
These contextual data are intuitively relevant to sleep as
people usually sleep in a dark and quiet environment. We
collect phone’s power level data since some people like to
charge their phones during sleep time. The screen-on time
and the movement count are strong indicator of whether a
user is using a phone and awake.

3. Spatial Context: Intuitively a user’s location associates
strongly with sleep, since most of time we sleep at home.
Due to concerns of privacy and power consumption, we
did not use GPS to locate the phone. Instead, we used
nearby WiFi access points (AP) and their signal strength
as a signature to get a location at room level [30]. The app
scans for APs for 15 seconds during each context sensing
period and stores the scanning result as a location signature.

4. App Usage: App usage is another feature that may be
relevant to sleep. For instance, when people go to bed they
may launch the Alarm app and set the alarm. Others may
like to read some news or use social apps before sleep. Our
collector app checks the foreground app every second when
the screen is on and the app usage statistics are stored in a
context record.

B. Classification Performance of Features

1) Feature Combinations: Different context features may
have different significance for learning sleep patterns. We
conducted a thorough performance evaluation on different
combinations, which are 15 in total, of these four con-
text categories. We chose SVM with linear kernel as the
classifier to evaluate the performance of different context
combinations. A 10-fold cross-validation was performed
on all 18 participants’ data individually with 15 different
combinations. We found that both temporal and phone status
context played a significant role in the classification. The
context combinations including those two context categories
always outperformed the combinations without them. An-
other interesting finding is that the temporal context is not
the dominant feature. The prediction accuracy decreased
only a little bit without using the temporal context.

On the other hand, the spatial and app usage context
are not significant for some participants. For some partic-
ipants, the prediction performance actually decreased when
combining these context with other significant features,
maybe due to the curse of dimensionality. While for other

participants, adding these context has a positive effect on
the prediction. In summary, the temporal and phone status
feature groups are consistently important across participants.
Next we further study how individual features in these two
groups contribute to the classification accuracy for different
participants.

2) Chi-squared Test on Features: We conducted χ2 (Chi-
squared) tests on 15 individual context features for temporal
and phone status feature groups, which are day of week,
hour, movement count, max, min, average and std decibel
values, max, min, average, and std illuminance values,
charging status, power level, proximity value, and duration
of screen on. The χ2 statistic measures dependence between
stochastic variables, so a transformer based on this function
“weeds out” the features that are most likely independent of
class and therefore irrelevant for prediction.

We conducted the χ2 test on those 15 context for all par-
ticipants The result shows that almost all context’s Pvalue are
significant (pvalue ≤ 0.05). Within these context, the pvalue
of day of week is significant for some participants while not
significant for others. And the STD values of illuminance
and decibel are not significant for all participants. These
results suggest that people do follow a circadian rhythm for
sleep and the ambient environment, like light and sound, has
a strong correlation to the sleep patterns. The pvalue of day
of week, however, contributed differently across participants.
Some may sleep regularly despite weekdays or weekends
while others do have a different pattern. These observations
are similar to findings in existing literature showing people’s
sleep behaviors vary significantly, and individual predictive
models are preferable since a general model learned from
a diverse population will perform poorly when applied to
individuals [20], [21].

C. Performance of Classification Algorithms

We next evaluate the performance of three widely used
classification algorithms, including SVM, Logistic Regres-
sion and Random Forest, with out dataset. We chose all four
categories of context data as features, for these algorithms
to classify whether the user is asleep or not at the time of
each context record was collected. Based on the observations
above, we constructed individual models using participants’
own data. Figure 1 shows the average classification accuracy
of three algorithms using 10-fold cross validation.

The performance result shows that Random Forest (RF)
classifier outperformed the other two algorithms, and it
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Figure 1. Comparing the prediction accuracy of three classification
algorithms.

achieved more than 91% accuracy for 17 participants. For
participant 8, the RF classifier achieved 74% accuracy, still
better than the other two algorithms, mostly due to the lack
of illuminance data. Given its supreme performance and its
built-in feature selection capability, we chose RF classifier
for further evaluation in the rest of the paper.

D. Prediction Performance of Bedtime & Sleep Duration

For each context record, the RF classifier classifies
whether the user is asleep at the time when the context
record was obtained. We then connect consecutive context
records with the same classification results into asleep or
awake segments. If the interval between two consecutive
asleep segments is less than 30 minutes, we combined them
into a single asleep segment. The gaps between asleep seg-
ments were due to misclassification, where a small number
of context records were classified as awake. For example,
the light went on when the participant used the bathroom
at night. While technically the classifier was not wrong,
we chose to ignore such cases as we are only concerned
with long-term trends of bedtime and sleep duration for the
purpose of this study. We then use the asleep segment as
the predicted bedtime and sleep duration, and compare them
with the user logged sleep data for evaluation.

Figure 2 shows the cumulative distributions of bedtime
and sleep duration errors with leave-one-day-out cross-
validation for all participants. The average bedtime error is
±24.0 minutes and average sleep duration error is ±40.7
minutes. For a typical 8-hour sleep, 40 minutes sleep dura-
tion error is about 8% of the entire sleep. We can see that
80% of bedtime errors are within ±40 minutes and the sleep
duration errors are within ±70 minutes, respectively.

For comparison, we also implemented the longest non-
use segment (NUS) method, which uses phone usage as
a hint to infer bedtime and sleep duration as proposed
in [22] between 10pm to 10am. With our dataset, the average
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Figure 2. Overall predicted bedtime error and sleep duration error CDF.

bedtime error for the NUS method was ±26.0 minutes and
the average sleep duration error was ±86.3 minutes. While
NUS is a light-weight sleep inference method and there are
optimizations to further improve its performance, it is not
appropriate for all population, particularly as our participants
had significant varying sleep behaviors. Figure 3 shows the
comparison between average NUS predicted sleep duration
and average user logged sleep duration for 8 participant who
logged more than 50 nights sleep. An interesting finding
is that the NUS predicted duration is always less than the
logged sleep duration. This is because NUS depends on the
app usage, a sleep will be segmented if a user used the phone
or the phone received an notification during sleep. We also
observe that the variation of NUS is larger than the logged
sleeps.

E. Error Analysis and Sleep Variations

Though 80% of predicted sleeps have a small bedtime
error and sleep duration error, there are still 20% of sleeps
have a large bedtime error or duration error. The false
positive and false negative mainly happened during a certain
time before participants went to bed or after they woke up.
As we can see in Figure 2, the duration error is nearly
the double of the bedtime error for the same cumulative
probability. It is because the waketime error is in the same
scale of bedtime error, thus the sleep duration has both errors
included.

We also investigated the causes of those big errors. First
of all, it comes from mis-classifications before bedtime
and after waketime when the context was not significantly
different than that of sleep time. For example, a participant
may wake up and walk out of bedroom without taking the
phone (e.g. to bathroom for cleaning up or to kitchen for
breakfast). The context sensed by the phone prior and after
waketime are similar and thus confused the classifier. The
same situation may occur around the bedtime, when the
phone is in the bedroom while the participant being absent.
We expect the classification will improve as users become
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Figure 5. Screen-on statistic of 8 participants.

more engaged with the smartphone, with habitual checking
before sleep and after wakeup.

Secondly, our participants had significant varying sleep
behaviors. Figure 4 shows the statistics of the bedtime and
waketime for the participants logged more than 50 nights
sleep. We can see that the sleep patterns varied greatly
across participants. Figure 5 shows the statistics of screen
on time between 10PM and 10AM next morning for those
participants. Again a great variance can be observed. These
two figures indicate irregularity of sleep behaviors. Irregular
sleeps not only reduce the prediction accuracy but also
introduce big errors. For instance, participant 9 and 18 had
some very irregular sleep nights, when the bedtime was in
the early morning (3AM) and the sleep duration was more
than 11 hours. These irregular sleep nights led to irregular
context feature values, and it is thus not surprising that the
classification results were not ideal and both bedtime and
duration errors were large.

Thirdly, the prediction accuracy highly depends on the
size of training set and regularity of sleep behavior. We chose
participant 11 and 12 as examples. These two participants
have similar high average prediction accuracy which is about
94%. While participant 11 has a more volatile sleep patterns
than participant 12 and there are more big errors as well.
Since participant 11 had more irregular sleeps, those irregu-
lar sleeps bring too much noise data into the training set and
thus the big error is more than participant 12. Figure 6 shows
the correlation between variance of logged bedtime and the
prediction errors. We can observe that while the prediction
errors remained small despite increasing bedtime variance
for some cases, there are non-trivial amount of cases where
the prediction errors increased with the bedtime variance.

In summary, the diverse sleep behaviors impose a signifi-
cant research challenge for unconstrained sleep monitoring.
While the above classification algorithm is suitable for pre-
dicting bedtime and sleep duration, we need a new solution
to detect irregular sleep nights to cope with the natural sleep
variations. Next we propose an unsupervised algorithm using
statistical context profiling for this purpose.
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V. UNSUPERVISED IRREGULAR SLEEP DETECTION

One of our research goals is to detect irregular sleep
nights as a potential warning indicator of sleep pattern
changes that may be symptoms of some health problems. A
possible approach is to monitor the user’s bedtime and sleep
duration predicted by the supervised learning, from which
the irregularity can then be detected through sequential
analysis. According to the extensive analysis in Section IV,
however, supervised sleep prediction suffers two problems
when used to detect irregular sleep nights. First, despite
good prediction accuracy of bedtime and sleep duration,
large errors persist and have strong association with the
sleep variance. Namely, the more “irregular” of the sleep
(i.e. variance is large) is, the larger error is produced by
the prediction algorithms (see Figure 6). Second, supervised
learning requires users to label the ground truth for training
data, and irregular sleep nights demands more labeled data to
train the learning model. It is difficult for users to reliably
label the data over a long period of time (e.g. 3 or more
weeks). A machine learning model with insufficient training
data, however, will produce more prediction errors, making
it difficult to detect irregular nights based on inaccurate
predictions.



To address these challenges, we propose an unsupervised
approach to detect irregular sleep nights. Our observation
is that context features are strongly associated with the
sleep patterns, as discussed in Section IV-B. Thus to detect
irregular sleep nights, instead of trying to predict bedtime
and sleep duration, we directly monitor the context changes.
If the context features show irregularity, we consider sleep
at that night is also irregular.

Next we describe the unsupervised context profiling ap-
proach and the algorithm to detect irregular sleep nights
based on context variations. Experiment results that vali-
dated our approach are also presented.

A. Irregular Sleep and Context Profiling

We take a general approach to define “irregularity” as the
statistical outliers. Assuming one’s sleep/wakeup time and
sleep duration follow normal distributions, the data points
that are τ standard deviations away from the mean can be
considered as the outliers, thus irregular. The threshold τ
can be obtained empirically based on problem domains.
We need to learn from the user logged sleeps to define
regular sleeps. Since learning samples also contain outliers
(irregular sleeps) and the calculation of mean and standard
deviation (STD) is sensitive to those outliers, we need to
weed out logged outliers first. A very robust scale estimator
is the Median Absolute Deviation (MAD) proposed by Ham-
pel [31]. While MAD is inefficient at Gaussian distribution
and it computes symmetric statistic, it cannot deal with
skewness (an irregular sleep is often later than usual time and
longer than usual duration). Rousseeue and Crous proposed
alternatives to the MAD based on pairwise differences, and
we adopted the Sn estimator [32]:

Sn = c ∗medi{medj |xi − xj |}

Where c is a constant and has value 1.1926. For a given sleep
xi, we first calculate the median of this sleep to all samples
xj , which is medj |xi− xj |, then if medj |xi− xj |/Sn ≥ τ ,
we say sleep xi is irregular. The threshold τ is set to 2 based
on the problem domain in our empirical study.

Our approach is to use context variations as an indirect
indicator of the sleep regularity. From Section IV-B we can
observe that the light, sound, screen-on, movement count
context are highly correlated to the sleep classification across
all participants. So we use these context to build context
profiles. Since most people go to bed between 10PM and
2AM, and wake up between 6AM and 10AM, we segment
the time into four time slots: 10PM - 12AM, 12AM - 2AM,
6AM - 8AM, and 8AM - 10AM. We used the statistical
values of context in those four time slots to profile a
sleep. These time periods, of course, can be adjusted for
different populations. For each sleep night, the mean values
of illuminance value, decibel value, screen-on seconds and
movement count are calculated during the first and the fourth
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time slots. The movement count context is removed for the
second and third time slots since the value is very close to
zero in the late night and early morning time slots. The
resulting 14 statistic values are used to profile a sleep.
Given enough samples, a 14-dimension multivariate normal
distributed context model can be built.

B. Detection Algorithm

We use Mahalanobis distance [33] to detect context
outliers. For multivariate normal data with mean µ and
covariance matrix Σ, Mahalanobis distance dM (x) measures
how many standard deviations away a data point x is from
the mean:

d2M (x) = (x− µ)T Σ−1(x− µ)

Here, x = (x1, x2, · · · , xn)T is a 14-dimension context
profile data point, µ = (µ1, µ2, · · · , µn)T is the mean
of the distribution and Σ is the covariance matrix. For a
learning sample set S with size N , and each data point has
dimension D, then the Mahalanobis distance satisfy the Beta
distribution [34]:

N

(N − 1)2
d2M ∼ Beta(

D

2
,

(N −D − 1)

2
)

Since the mean µ and covariance matrix Σ are very sensitive
to outliers as well, we used Minimum Covariance Determi-
nant estimator [35] to get a robust estimation of µ and Σ.

To support our intuition of using context variations to
detect irregular sleep nights, we show the correlation of large
sleep duration variance (e.g. irregular) and the Mahalanobis
distance for those 8 participants who logged more than 50
nights sleep in Figure 7. The Mahalanobis distance between
context vector and the mean is calculated on a daily basis
using the robust estimation [35]. We can observe a clear
correlation between the Mahalanobis distance of context
profiles and the large duration variance (≥ 75minutes).

The unsupervised algorithm to detect irregular sleep
nights is shown in Algorithm 1. We only used two night time
slots to detect irregular bedtime, two morning time slots to



detect irregular waketime, and all four time slots to detect
irregular sleep duration.

Algorithm 1 Detect irregular sleep using context profiling
1: Dc : Data set of n days context statistic vectors
2: Di

c : Context statistic vector of day i (d-dimension)
3: Di

c : Data set of context statistic vectors without day i
4: MinCovDet : Minimum covariance determinant estima-

tion for µ and Σ
5: τ = 99% Percent point of Beta(d

2 ,
n−d−1

2 )
6: for Day i = 1 to n do
7: µ, Σ = MinCovDet(Di

c)
8: xi = Di

c

9: d2i = (xi − µ)T Σ−1(xi − µ)
10: if n

(n−1)2 d
2
i ≥ τ then

11: Assert it is an irregular sleep
12: else
13: Assert it is a regular sleep
14: end if
15: end for

For a data set with n context vector samples, and each
context has d-dimension, we leverage leave-one-day-out to
detect irregular sleeps. We need n (n ≥ 30) [36] days of
context statistical data to profile sleeps. Note that context
profiling does not require labeled data. The mean µ and
covariance matrix Σ are calculated by using the minimum
covariance determinant estimation, and the Mahalanobis
distance is calculated based on µ and Σ. Any distance d2i
that is after the 99% point of Beta(d

2 ,
n−d−1

2 ) distribution
is regarded as outlier, and we assert it as an irregular sleep.

C. Evaluation Results

In order to evaluate our approach, we first need to
determine the “ground truth” of irregular sleep nights. Take
the bedtime as an example, if the time a person went to sleep
is 2 standard deviations away from the mean bedtime (robust
estimated mean through Sn estimator [32]), we define it as
an irregular bedtime. According to the 3-sigma rule [37],
95% sleeps will be defined as regular sleeps and the rest of
5% are irregular sleeps. We used n days of user logged time
to define regular sleep, and those n days context statistics to
profile regular sleep. The robust Sn estimation [32] is used
to eliminate the effect of outliers and get a robust estimation
of the mean and standard deviation of regular sleep. Most
statisticians believe we need 30 or more samples [36] before
the sampling distribution of the mean becomes a normal
distribution. So we used at least 50 days of context data to
profile sleeps. For the purpose of this evaluation, we focused
on 8 participants who logged more than 50 nights of sleep.

Here we also apply leave-one-day-out cross-validation
to evaluate the context profiling approach. For a n days
dataset, we select (n−1) days of context statistics to profile

sleeps and get a robust estimation of regular sleep, then by
applying Algorithm 1 we test whether the left-out day is
an outlier or not, which is used to determine its regularity.
Evaluations were conducted for bedtime, waketime and sleep
duration, respectively. Table II presents the confusion matrix
of irregular sleep detection using the unsupervised context
profiling approach.

1) Irregular Bedtime Detection: We can see unsupervised
context profiling approach can effectively detect irregular
bedtime for most participants. For instance, it detected 14
irregular bedtime out of 15 for participant 4, and it detected
9 irregular sleeps out of 13 for participant 14. A horizontal
comparison shows that participant 9, 14 and 15 have a
better detection results. We can also see the recall score is
higher than the precision score for most participants, which
indicates that context profiling approach can detect more true
irregular sleeps than false positives.

2) Irregular Waketime Detection: The irregular waketime
detection only uses context profiles in time slots 6AM - 8AM
and 8AM - 10AM. Table II shows that it is harder to detect
irregular waketime than detecting irregular bedtime, mostly
due to the phone usage behavior after users have waken
up. If the context variation is not significant, for example
people left their phone in the bedroom, context profiling
may produce a small Mahalanobis distance and detect it
as regular. As we can see, participant 9, 14 and 15 also
have a better detection results than other participants. Even
participant 9 and 18 have very irregular wakeup patterns,
which can be seen in Figure 4, both the recall and precision
scores are considerably high. This shows the advantage of
detecting irregular waketime to cope with sleep variation
using the proposed context profiling approach.

3) Irregular Sleep Duration Detection: The irregular
sleep duration detection for all 8 participants seems to have
similar prediction accuracy and recall scores except it missed
5 irregular durations for participant 11. From Table II we
can see the average bedtime for participant 11 is about
1AM, which is close to the end of the second time slot,
and the average waketime is around 7:30AM which is close
to the start of the fourth time slot. This could be a problem
for the context profiling approach since it can only capture
the context variations between those 4 time slots. If the
context change is close to the edges of those time slots,
the variation is not significantly enough to detect irregular
sleep. This could be solved by shifting time slots. We can
also observe that there are less false negative than false
positive, which indicates the context profiling approach can
effectively detect irregular sleep durations.

In general, we can see there are more false positives
(false alarms) than false negatives. This is because context
variation has two directions, the value of context sensing
could be either much more than average or much less than
average. In both cases, they will be detected to be irregular



Table II
CONFUSION MATRIX OF IRREGULAR BEDTIME, WAKETIME AND DURATION DETECTION FOR 8 PARTICIPANTS

4 9 11 12 14 15 17 18
Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Detected
Regular

Detected
Irregular

Bedtime True Regualr 60 14 38 11 65 10 79 12 62 6 64 6 72 4 70 5
True Irregular 1 14 5 2 10 3 6 3 4 9 8 7 1 1 6 1

Waketime True Regular 78 11 45 5 72 16 76 15 53 16 65 11 61 14 61 17
True Irregular 0 0 3 3 0 0 7 2 5 3 5 4 3 0 2 2

Duration True Regular 67 17 43 10 67 16 76 11 59 12 66 10 63 13 63 16
True Irregular 3 2 1 2 5 0 8 5 3 7 6 3 2 1 1 2

when using Mahalanobis distance to detect outliers. Hence,
how people use their smartphone has a direct effect on the
detection results. Another reason the detection accuracy may
deteriorate is that, the context profiling approach assumes
the sensing data is normal distributed, though in reality the
distribution is more likely a skewed normal distribution. For
instance, the mean illuminance value and decibel value are
always tend to be small during night, which truncated most
of the left half of the distribution. We have tried to reshape
the data to make it more normal distributed, by getting the
fourth power root of the original value, it is still difficult to
achieve normal distributions for all participants.

In summary, the proposed unsupervised approach worked
well for most participants to detect irregular sleep nights,
which reflect sleep pattern changes that are often an indicator
of potential health problems.

VI. DISCUSSION AND FUTURE WORK

The accuracy of passive sleep monitoring depends on
users’ smartphone usage behavior. If the user does not
have a habit of checking smartphone frequently or bringing
the phone to the bedroom, the proposed system will not
work well. However, a recent study found that some people
check their phone 150 times a day,1 and Dey et al. found
smartphones are within the same room as the user 90% of
time [12]. While these statistics are encouraging, it may not
generalize to special population, such as elder people who
are slow to adopt new technologies.

In this paper we propose to detect irregular sleep nights
through context profiling. We used a statistical definition
of irregularity as outliers (τ standard deviations away from
the mean). The users’ perceived irregularity, however, may
be different than this statistical definition. For example,
sleep quality may be an easier metric for people to un-
derstand, though we believe bad sleep quality will also
correlate strongly to context variation. There are existing
work that can estimate sleep quality through smartphone
sensing, though with higher energy consumption due to
faster sampling rate [21]. We plan to explore this tradeoff
and study the correlation between sleep quality and context
profiles.

1http://www.kpcb.com/insights/2013-internet-trends

VII. CONCLUSIONS

We present a smartphone-based approach for uncon-
strained sleep assessment, with the objective to predict basic
sleep parameters (bedtime, waketime, and sleep duration)
and to detect irregular sleep nights for long-term monitoring.
Through a user study of 18 participants over 14 weeks,
the proposed supervised prediction outperformed state-of-
art methods with average bedtime and sleep duration errors
about 24 and 41 minutes, respectively. In addition, we
propose a new unsupervised context profiling approach to
detect irregular sleep nights that are experimentally validated
to achieve good precision and recall results. To the best
of our knowledge, this is the first work for unconstrained
smartphone sensing to achieve accurate prediction accuracy
with minimal energy consumption, and to detect irregular
sleep nights that requires no manual labeling.
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