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Crime tends to cluster geographically. This has led to the wide usage of hotspot analysis to identify and
visualize crime. Accurately identified crime hotspots can greatly benefit the public by creating accurate
threat visualizations, more efficiently allocating police resources, and predicting crime. Yet existing map-
ping methods usually identify hotspots without considering the underlying correlates of crime. In this
study, we introduce a spatial data mining framework to study crime hotspots through their related vari-
ables. We use Geospatial Discriminative Patterns (GDPatterns) to capture the significant difference
between two classes (hotspots and normal areas) in a geo-spatial dataset. Utilizing GDPatterns, we
develop a novel model—Hotspot Optimization Tool (HOT)—to improve the identification of crime hotspots.
Finally, based on a similarity measure, we group GDPattern clusters and visualize the distribution and
characteristics of crime related variables. We evaluate our approach using a real world dataset collected
from a northeast city in the United States.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Crime is understood to be related to the interaction of victims
and offenders, and to the strength of guardianship (Cornish &
Clarke, 1986). In practice, these concepts can be measured using
a variety of socio-economic and crime opportunity variables, such
as population density, economic investment, and arrest rate.

Geographical studies reveal that crime is often concentrated in
clusters, which in the literature are called hotspots. Hotspot map-
ping techniques for crimes draw continuous attention from
researchers and public safety agencies. This is because accurately
identified and clearly visualized crime hotspots, and understanding
their relation to underlying crime related variables, can signifi-
cantly benefit crime analysis and police practices by providing a
solid basis for threat visualization, police resource allocation, and
crime prediction.

Existing hotspot mapping methods can be essentially divided
into three main categories: point mapping, choropleth mapping,
and kernel density estimation (KDE) (Eck, Chainey, Cameron, Leit-
ner, & Wilson, 2005; Williamson, McGuire, Ross, Mollenkopf, &
Goldsmith, 2001; Boba, 2005). Usually, these methods aggregate
the density of a target crime, which results in a net loss of informa-
tion (Van Patten, McKeldin-Coner, & Cox, 2009). For example, in
choropleth mapping, incident-level data is first aggregated into
arbitrary administrative or political boundary areas. During this
step, spatial details within and across the thematic areas are lost.
Second, when hotspots are generated based on aggregated data,
there is a further decline of precision in the resulting map. Because
traditional methods mainly rely on target crime density, particular
areas with relatively less crime may be left out of hotspots, even
though crime related variables indicate they are under similar risks
as those hotspots.

A reasonable way to reduce this accuracy and precision loss in
choropleth mapping is to use more related information in the map-
ping process. Crime related variables can be aggregated and used
along with target crime data in the hotspot identification process.
Information carried by these variables can provide clues on
whether the relatively high crime rate in a certain area happens
by chance. Compared to traditional methods, the utilization of re-
lated information in hotspot mapping can reduce information loss
during analysis.

Additionally, such an approach can benefit further analysis on
the characteristics of crime related variables. Instead of just
evaluating crime by itself, recent studies also integrate crime
related data into a unified framework that assists the analysis
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and exploration of crime hotspots (Maciejewski et al., 2010). Using
related variables in hotspot mapping can additionally benefit such
visualization and analyzation processes by providing an intuitive
linkage between target crime and its related data.

In this paper, we present a framework that uses spatial data
mining concepts to map hotspots and investigate the relationship
between socio-economic and criminal variables. Recently, spatial
data mining has emerged as an active research area in studies of
spatial relationships that try to answer the questions like ‘‘why’’
and ‘‘where’’ (Ester, Kriegel, & Sander, 1997; Mu, Ding, Morabito,
& Tao, 2011). It has been proven to be very powerful in identifying
the linkage between target objects and its related factors. The com-
ponents of our method are shown in Fig. 1. In particular, we:

� Introduce a spatial data mining concept, Geospatial Discrimina-
tive Patterns (GDPatterns), to study the relationship between
target crime hotspots and their underlying related variables.
� Introduce a model, Hotspot Optimization Tool (HOT), to identify

crime hotspots through their related variables.
Fig. 1. The framework of our methods. With the help of GDPatterns, criminal hotspot m
are clustered and visualized for domain scientists.
� Use a similarity based method to cluster the crime related vari-
ables that contribute to hotspots into groups.
� Visualize the locations of those clusters in a rational way to

assist domain scientists in further analysis, using the footprints
of GDPatterns.

Utilizing the proposed framework, a case study is conducted
using a 6-year crime dataset from a city in northeast United States.
We compare our mapping tool with a widely used hotspot evaluat-
ing technique,the G�i statistics (Getis & Ord, 2010), and demon-
strate the potential in assisting crime analysis using related
variable clusters.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 introduces the data represen-
tation and formal definition of the research problems. HOT
model and the implementation of the similarity measure are
also presented in this section. Section 4 evaluates the proposed
framework in a real-world case study. We conclude the paper in
Section 5.
aps are generated using HOT. By applying a similarity measure method, GDPatterns
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2. Related work

In this section we briefly present some literatures related to
criminology, spatial data mining, and hotspot mapping techniques.
Additionally, we give a brief introduction to a choropleth mapping
application—the Hotspot Analysis (HSA) tool implemented by Esri
ArcGIS (ESRI, 2011).

Occurrence of crime has been linked to a number of different
variables. Classic criminology theories, such as Routine Activities
Theory (Cohen & Felson, 1979), conclude that three concepts con-
tribute to crime: accessible and attractive targets, a pool of moti-
vated offenders, and lack of guardianship (Brantingham &
Brantingham, 1984; Cornish & Clarke, 1986). The concept of ‘‘disor-
der’’ (Skogan, 1992) explains why adjacent areas of crime hotspots
are at higher risk. The probability of arrest or the social penalties
for committing crime may be lower in crime hotspots than in other
neighborhoods, which leads to the ‘‘contagion’’ of criminal activity
in crime hotspots (Ludwig, Duncan, & Hirschfield, 2001; Sah, 1991;
Sampson, Raudenbush, & Earls, 1997). Recent work done by Short,
Bertozzi, and Brantingham (2010) also discusses how an area is af-
fected by the activity scope of offenders. Criminology theories ex-
plain why crime is clustered in particular areas, and why certain
victims are selected. They also help in deciding which variables
are related to a certain type of crime.

Spatial data mining (Ester et al., 1997) is a knowledge discovery
technique for ‘‘extraction of implicit knowledge, spatial relations,
or other patterns not explicitly stored in spatial databases’’ (Koperski
& Han, 1995). It has been proven to be very powerful and efficient for
studying comprehensive relationships in large databases (Miller &
Han, 2009; Ester et al., 1997; Qian, He, Chiew, & He, 2012). The
GDPattern is an application of integrating spatial association rules
(Agrawal et al., 1994; Koperski & Han, 1995) with emerging patterns
(Dong & Li, 1999; Herrera, Carmona, González, & del Jesus, 2011; Yu,
Ding, Simovici, & Wu, 2012). Applications using association rules
have been developed to explore the spatial and temporal relation-
ships among objects using census data (Malerba, Esposito, Lisi, & Ap-
pice, 2002). In the work of Mennis (2006) and Mennis and Liu (2005),
association rule mining techniques have been used to explore the
non-linear relationships among socioeconomic-vegetation vari-
ables. In the work of Lin (1998) the authors present a similarity mea-
sure method for summarizing large number of emerging patterns.
Ding, Stepinski, and Salazar (2009) adopts the relative risk ratio as
the measure of pattern emergence and uses spatial data mining
techniques in investigating vegetation remote sensing datasets. In
our work GDPatterns are used as a tool to discover the statically sig-
nificant difference between target crime hotspots and normal areas
spatially, with respect to the underlying related variables.

The Spatial and Temporal Analysis of Crime (STAC) program
(Bates, 1987) is one of the earliest and widely used hotspot map-
ping applications. Based on point mapping, STAC uses ‘‘standard
deviational ellipses’’ to display crime hotspots on a map and does
not pre-define any spatial boundaries. But some studies (Eck
et al., 2005) show that STAC may be misleading because hotspots
do not naturally follow the shape of ellipses. Another popular hot-
spot representation method is choropleth mapping, in which
boundary areas (geographic boundaries like census blocks or uni-
form grids) are used as the basic mapping elements (Hirschfield,
2001). Unlike point mapping, choropleth mapping uses aggregate
data, which removes spatial details within the thematic areas. Also,
identified hotspots are restricted to the shape of these areas. The
method of Kernel Density Estimation (KDE) (Wand & Jones,
1995) aggregates point data inside a user-specified search radius
and generates a continuous surface representing the density of
points. It overcomes the limitation of geometric shapes but still
lacks statistical robustness that can be validated in the produced
map. Reviews and comparative studies for the three methods have
been done in the works of Chainey, Tompson, and Uhlig (2008), in
which authors introduce a ‘‘prediction accuracy index’’ to evaluate
the accuracy of the different methods in the content of predicting
where crime may occur.

Esri ArcGIS (ESRI, 2011) is the most widely used Geographic
Information System (GIS) and its newest component, ArcMap
10.1, includes a Hotspot Analysis (HSA) toolbox, which implements
the G�i statistics (Getis & Ord, 2010) and provides users the ability
to analyze the hotspots existed in the input spatial dataset (usually
a polygon map with interested attributes). In particular, HSA calcu-
late the G�i statistics and outputs z-scores and p-values for each
spatial area (polygon) that tell the statistically significance of the
polygon as a hotspot. To be a statistically significant hotspot, a
polygon will have a high value of the target attribute and be sur-
rounded by other polygons with high values as well. The local
sum of the attribute values for a polygon and its neighbors are
compared proportionally to the sum of attribute values of all poly-
gons. When the local sum is very different from the expected local
sum (very high z-score), and that difference is too large to be the
result of random chance (very small p-value), the polygon is con-
sidered as a hotspot.

3. Methodology

The key insight behind our methods is identifying hotspots by
searching, utilizing, and presenting patterns in geographic space.
By preprocessing the crime related data sets into a transaction-
based geospatial dataset, we develop a model, called HOT, to map
crime hotspots through the related variables. Then we introduce a
similarity method to summarize the identified GDPatterns into
clusters. Based on these clusters, a relevant report of crime hotspots
and related variables is visually presented for domain experts.

3.1. Problem formulation and data representation

To discover GDPatterns from a target crime’s related variables,
we firstly build a transaction-based geospatial database, which
we refer to as the database or simply D. A widely used method
for representing spatial distribution of entities in D is through grid
mapping (Harries, 1999; Janeja & Palanisamy, 2012). Both target
crime and related variables in the original spatial dataset can be
plotted onto grid maps with the same dimensions. The cell value
in the grid is assigned to be the number of incidents falling into
it. An illustrative example of D is shown on the top right of
Fig. 1. Additionally, instead of using the original values directly,
the way to fairly represent all the variables in one pattern is to cat-
egorize them and change the original values into categories. Stan-
dard tools (Nguyen & Nguyen, 1998) such as the Jenks Optimization
for Natural Breaks Classification (or Nature Breaks; Jenks, 1967), a
method that is based on natural groupings inherited in data, can
be used in the categorization process.

Definition 1 (Database object). A object in D is a tuple of the form:
{x,y,V1,V2, . . . ,Vn,C}, where x,y indicate the object’s spatial coordi-
nates, V1,V2, . . . ,Vn are the values of the related variables, and C is
the class label of target crime.

Using C, objects in D can be labeled into different classes. For
example, we say C is 0 if the area is not a hotspot (or normal area)
and 1 if the area is a hotspot. Then the geospatial database can be
divided into two parts: Dh (hotspots) if C = 1, or Dn (normal area) if
C = 0. Disregarding the location information (x,y) and the class la-
bel C, each object in D can be viewed as a transaction of n variable
values. For example, in Table 1, T1, T2, T3, and T4 are transactions
with three variable values.



Table 1
Examples of transactions, patterns and patterns’ supports. In the examples AR, POP
and IC stand for arrest rate, population density and average income, respectively.
Pattern X3 is not a closed pattern because X1, its immediate superset, has exactly the
same support. X1 is a closed frequent pattern if we set the minimum support
threshold q = 70%.

Transactions T1: {AR = high,POP = low, IC = low}
T2: {AR = high,POP = low, IC = high}
T3: {AR = high,POP = low, IC = medium}
T4: {AR = medium,POP = low, IC = medium}

Patterns Support

X1: {AR = high,POP = low} supðX1Þ ¼ 3
4 ¼ 75%ðT1; T2; T3Þ

X2: {AR = high, IC = high} supðX2Þ ¼ 1
4 ¼ 25%ðT2Þ

X3: {AR = high} supðX3Þ ¼ 3
4 ¼ 75%ðT1; T2; T3Þ

96 D. Wang et al. / Computers, Environment and Urban Systems 39 (2013) 93–106
3.2. Geospatial Discriminative Patterns (GDPatterns)

The GDPatterns we are looking for should meet two require-
ments: (1) to significantly represent the situation or conditions
of related variables in objects in database D; (2) to significantly dis-
tinguish hotspots Dh from normal areas Dn. GDPatterns are built
upon closed frequent patterns. Here we give a brief introduction
of relevant concepts.

Definition 2 (Pattern). Given a set of related variables, a pattern is
a set of values for a subset of those related variables.

For example, Table 1 gives an example of a database that has 3
related variables AR, POP, and IC, which can take the values of low,
medium, or high. In the examples AR, POP and IC stand for arrest
rate, population density and average income, respectively. A com-
bination of these variables and values constitutes a pattern; e.g.,
X1: {AR = high,POP = low}, or X3: {AR = high}.

Definition 3 (Support and support count (Agrawal et al., 1994)). A
pattern is said to be supported by a transaction when it is a sub set
of the transaction. The support count of a pattern X is the number
of times X appears in a database D.

supportcountDðXÞ ¼ jfT 2 DjX # Tgj ð1Þ

where T represents transactions in D.
The support of a pattern X is calculated as the support count of X

divided by the total number of transactions in the database D.

supportDðXÞ ¼
supportcountDðXÞ

jDj ð2Þ

For example, in Table 1 pattern X1 = {AR = high,POP = low} is sup-
ported by transactions T1,T2 and T3, then the support count of X1

is 3 for the database. Since there are totally 4 transactions in this
database, the support of X1 is 3/4 = 0.75.

Definition 4 (Closed pattern (Pasquier, Bastide, Taouil, & Lakhal,
1999)). A pattern is closed if none of its supersets has exactly the
same support.

For example, in Table 1 X1 is a closed pattern and X3 is not, be-
cause its immediate superset X1 has exactly the same support.

Note that if we consider only closed frequent patterns, we can
deduce the support of non-closed frequent patterns from their cor-
respondent closed patterns. To see why this is true, note that the
supports of patterns exhibit a property called downward closure:

If X � X0; then supportDðXÞP supportDðX
0Þ

Thus, if X is closed, and X0 is not, then supportD(X) = supportD(X0).
The benefit of considering only closed patterns is a reduction in

the set of considered patterns without losing information. In
Table 1 both X3 and X1 are supported by T1, T2 and T3. In other
words, both X3 and X1 carry information about the characteristics
of these transactions. But X1 carries more information ({AR = high, -
POP = low}) than X3 ({AR = high}) does and the information carried
by X3 ({AR = high}) is fully represented by X1. There is no informa-
tion loss if we only consider X1 in further analysis.

Definition 5 (Closed frequent pattern (Pasquier et al., 1999)). A
closed pattern whose support is above a user-defined threshold is
considered as a closed frequent pattern.
Definition 6 (Growth ratio). Let set {Dh,Dn} be an exhaustive par-
tition of D. The growth ratio d of a pattern X is the ratio of X0s sup-
port in one partition Dh to its support in the other partition Dn.
d ¼
supportDh

ðXÞ
supportDn

ðXÞ ð3Þ
Definition 7 (Geospatial Discriminative Pattern (GDPattern)). A
closed frequent pattern X whose growth ratio exceeds a user-
defined threshold is considered a GDPattern.

With a rational growth ratio threshold, the GDPatterns mined
from D carries information that is significantly different between
a subset and the remainder in D. For example, if the growth ratio
is greater than 20, thus a closed frequent pattern will be considered
as a GDPattern when the pattern is 20 times more frequent in hot-
spots than in normal areas. In other words, this pattern will have a
more than 95% (19/20) chance of being found in hotspots. So the
locations out of which such a pattern is mined are more than
95% (or ‘‘significantly’’) likely to be a hotspot.

Definition 8 (Footprint). The footprint of a GDPattern X is the
objects that support X in database D. It is the set of cells in the grid
map whose corresponding objects support X.

For example, in Fig. 2 a GDPattern: {Commercial Burglary-
‘‘low’’,Street Robbery-‘‘Average’’,Motor-Vehicle Larceny-‘‘Aver-
age’’} is selected from the case study (Section 4) and the hollow
squares with slash lines are footprints of this GDPattern. These
areas (the footprints) have similar characteristics of the related
variables (low in commercial burglary rate and average in street
robbery and motor-vehicle larceny rate). The utilizing of footprint
provides a way to measure the spatial distribution of the corre-
sponding patterns in studied area.

3.3. Hotspot Optimization Tool

GDPatterns are capable of digging out the meaningful informa-
tion underlying the spatial distribution of target crime hotspots.
Utilizing the informative GDPatterns, here we develop a model,
Hotspot Optimization Tool (HOT), to emphasize the identification
of hotspots by optimizing user-specified hotspot boundaries.
The practicality of HOT is based on two concepts: firstly, a hot-
spot can be considered as the source of disorder of its adjacent
blocks, which means the adjacent areas have the possibility of
being affected by crimes happening in hotspots. Also, from the
point of view of spatial correlations (Bailey & Gatrell, 1995), adja-
cent areas of a hotspot are more likely to fall into the active range
of the same criminals. Therefore these cells can be considered as
potential hotspots, especially those with a relatively high crime
density. Secondly, according to the definition, GDPatterns are
much more frequent in hotspots than in normal areas. Normal
areas located in the footprints of GDPatterns are more likely to
be hotspots because in these areas the values of related variables
are the same.



Fig. 2. A example map of GDPattern footprints. By selecting Residential Burglary (RB) data as the target crime, nine other variables are used as related variables from the
experiment dataset and GDPatterns are mined with a growth ratio larger than twenty (d P 20). The hollow squares with slash lines are footprints of one example GDPattern
(Commercial Burglary-‘‘low’’, Street Robbery-‘‘Average’’, Motor-Vehicle Larceny-‘‘Average’’) whose grawth ratio is 67.0. The red area are RB hotspots defined by a user-specific
threshold. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In summary, by initializing hotspots of a target crime with a
user-specified threshold, HOT considers a normal location as a hot-
spot if (1) it is adjacent to current hotspots; (2) its crime rate is rel-
atively high compared to the user-specified hotspot threshold; and
(3) it is inside the footprints of GDPatterns mined out of current
hotspots. The detailed process of HOT is showed in Algorithm 1.

Algorithm 1. The Hotspot Optimization Tool.
This algorithm takes as input a geospatial dataset D, a hotspot
threshold h, a hotspot candidate threshold h0, a support threshold
q of closed frequent pattern, a growth ratio threshold d, and re-
turns a new set of hotspots Dh, a set of GDPatterns G, and their foot-
prints w. It does the following:

� Identify areas with a relatively high crime density (Dh0 , areas
with high target crime density that are close to the density in
hotspots, line 2).
� Mine GDPatterns based on current hotspot boundaries and

draw the footprints of GDPatterns (lines 6 and 7).
� Generate candidate cells (lines 8–12): cells whose correspond-

ing objects belong to Dh0 and adjacent to some cell whose corre-
sponding objects belong to Dh.
� Test the hypothesis for candidate cells (line 14): a candidate cell

is inside the footprints of GDPatterns (w).
� If the hypothesis is true, the boundaries of the hotspot are mod-

ified by changing the current cell into a hotspot cell (moving its
corresponding object from Dh0 to Dh) (line 15).
� Iterate until all hypothesis tests are false (lines 3 and 19).

When hotspot boundaries are changed, a new set of GDPatterns
will be generated based on the modified hotspots, followed by the
change of footprints. If in the current loop the set of GDPatterns is
the same as the former loop, it means there are no new footprints
and there will be no ‘‘true’’ from the hypothesis test (lines 4–10 in
Algorithm 1). The HOT will stop and a new optimized hotspot map
is generated.

3.4. Crime related variables demonstration

Hotspots of target crime extracted using GDPatterns carry a
wealth of information. But the GDPattern mining process usually
results in an explosive number of possible patterns (Han et al.,
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2000). It is desirable to organize these GDPatterns in a meaningful
way in order to make the information usable to domain analysts.
Here we present a pattern summarization method that can cluster
GDPatterns into small groups which have similar structures.

Given two patterns X and Y that are mined out of m variables,
the function to calculate similarity between X and Y is

s0ðX;YÞ ¼
Pm

i¼1sðXi;YiÞ
m

ð4Þ

where s0(X,Y) is the similarity between pattern X and Y; s(Xi,Yi) is
the similarity between the ith variables of X and Y; m is the number
of variables in each pattern. For example, s(Xi,Yi) = 1 if Xi and Yi are
in the same category and 0 if they are not. We calculate the similar-
ities between every variable and take the mean of the m similarities
as the overall similarity between the patterns.

The categories of the crime related variables can be presented
using ordinal numbers. For example, the categories of population
density can be presented using ordinal numbers: 1 (‘‘low’’), 2
(‘‘medium’’) and 3 (‘‘high’’). The similarity between two ordinal
values of the ith variable s(Xi,Yi) can be measured by the ratio be-
tween the amount of information needed to state the commonality
between Xi and Yi, and the information needed to fully describe
both Xi and Yi. In practice when we calculate the similarity be-
tween patterns X and Y, the ith variable does not always exist in
both patterns (Fig. 3). There are three cases according to the pres-
ence of Xi and Yi.

Case 1: Both Xi and Yi are in the pattern:
sðXi;YiÞ ¼
2� log PðXi _ Z1 _ Z2 � � � _ Zk _ YiÞ

log PðXiÞ þ log PðYiÞ
ð5Þ
where P() is the probability calculated using the known distribution
of the values of ith variable in D and Z1,Z2, . . . ,Zk is the ordinal inter-
vals delimited by Xi and Yi. For example, in Fig. 3 the ordinal interval
between the first variable XAand YA is Z1 = 2.

Case 2: Either Xi or Yi is absent (here we use the case that Xi is
absent):
sð�;YiÞ ¼
Xn

k¼1

PXðZkÞsðZk;YiÞ ð6Þ
where n is the amount of different values that the ith variable has,
PX(Zk) is the probability of the ith variable having value Zk in all
transactions that support pattern X. PX(Zk) = 0 if Zk does not exist
in the footprint of X at all and

Pn
k¼1PXðZkÞ ¼ 1. The similarity is a

weighted average between Yi and all ordinal values of the ith vari-
able presented in the footprint of pattern X. Example is shown in
Fig. 3 case 2.

Case 3: Neither Xi or Yi is present:
sð�;�Þ ¼
Xn

l¼1

Xn

k¼1

PXðZlÞPY sðZkÞsðZl; ZkÞ ð7Þ
Fig. 3. An illustrative example showing the similarit
In this case the probability of all ordinal values (Z1,Z2, . . . ,Zn) of
the ith variable in patterns X and Y are checked and a weighted
average pairwise comparisons is calculated (case 3 in Fig. 3).

Using the similarity measurements, we can build a N � N dis-
tance matrix of GDPatterns using distance ¼ 1

similarity, where N is

the number of GDPatterns. Standard clustering tools such as Hier-
archical Agglomerative Clustering (HAC), which treat each GDPat-
tern as a singleton cluster at the outset and then successively
merge (or agglomerate) pairs of clusters according to their distance
until all clusters have been merged into a single cluster that con-
tains all GDPatterns, can be used to group the closest GDPatterns
into clusters.

These clusters serve as compositions of crime related variables
and carry rich information not only about relationships between
variables, but also about their spatial distributions. Locations
exhibiting certain socio-economic and crime-related characteris-
tics tShat are significantly related with target crime hotspots can
be drawn using the clusters’ footprints. In Section 4 we present a
case study to show how these GDPattern clusters can assist do-
main experts in criminal studies.

4. Case study

Utilizing the proposed framework, a case study is conducted
with real world data from a northeastern city in the United States.
We firstly describe the data preprocessing in Section 4.1. Secondly,
with the purpose of comparison study, crime hotspot maps are
drawn in Section 4.2 using HOT, HSA, and user-specified thresh-
olds, respectively. Kappa Index (Cohen et al., 1960; Rossiter,
2004) and cell statistics are used to compare the results and the
pros and cons of HOT are discussed. Finally, we cluster the GDPat-
terns using the similarity method (Section 3.4) and discuss the
potentials of utilizing GDPattern clusters in demonstrating the
characteristics of crime related variables in Section 4.3.

4.1. Data preprocessing

The data in the case study includes reported crimes and associ-
ated variables in a northeastern city in the United States from 2004
to 2009. The size of study area is 130.1 km2 and the approximate
population is 600,000. As one of the most frequently reported
and resource-demanding crimes in the studied city (according to
the city’s police department report), residential burglary (RB) is
selected as the target crime (Fig. 4). In addition to RB, total of
eight social/criminal features (Table 2) are selected in this study
as related variables with the help of a domain expert. Among
those are:

� Commercial burglary (CB), street robbery (SR), and motor vehicle
larceny (MV). These indicate the level of activity of related
crimes, and also reflect the strength of guardianship in the area.
y measure approach between patterns X and Y.



Table 2
Crime related variables for the case study.

Variables Number of incidents (2005–2009)

Residential burglary (RB) 18,321
Street robbery (SR) 12,020
Commercial burglary (CB) 4438
Motor-vehicle larceny (MV) 29,685
Arrest (AR) 254,309
Foreclosed houses (FC) 11,671
Population (POP) –
Number of houses units (HUs) –
Distance to colleges (DCs) –
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� Arrests (AR). This helps indicate the size of the pool of offenders.
� Foreclosed homes (FC). A vacant house has a higher risk of being

broken into than an inhabited one, and is also a sign of lack of
guardianship.
� Population (POP) and housing density (HU). A hotspot of RB may

simply be a location of high housing density because such areas
have a potential higher RB rate than areas with fewer houses.
� Distance to colleges (DC). The studied city is heavily populated

by college students, which makes many properties easy targets
for burglars during semester breaks. DC is calculated as the dis-
tance to the geographical center of a university or college.
Fig. 4. Residential burglary rates in the studied city. Top is the grid density map of RB. On the bottom it is a graph showing the frequency of cell values.
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The original criminal dataset comes as vector maps (points and
polygons). We firstly convert all the variable data into grid maps
(Fig. 4). The grid cell size selected is 100 m � 100 m, which results
in a number of 12,984 cells in the study area. There are two con-
cepts to consider when choosing the cell size. Firstly, the cell size
(10,000 m2) is approximately half the size of average city block size
(19,873 m2) in the studied city. According to domain experts, this
will be a good representative of reality and helpful in police prac-
tice. Secondly, at this size, the number of cells covering the study
area is the same order of magnitude as the number of RB incidents
(Table 2), which minimizes the loss of spatial information during
aggregation. On the other hand, HSA needs to be conducted using
polygon maps instead of rasters. The raster of RB is converted into
a fishnet map with the same dimension as the mask. Each polygon
in the fishnet map has an attribute of ‘‘RB Counts’’ indicating the
amount of RB incidents in the area. In order to facilitate the discus-
sion, we call the polygons in the fishnet map cells as well.

Since the related variables come from very different sources, the
range of their values varies. As with most criminal activities, the
counts of cells with same values in each grid map follow a
power-law distribution (Cook, Ormerod, & Cooper, 2004) (Fig. 4).
Using Nature Breaks (Jenks, 1967), every variable is divided into
six categories: 0 – ‘‘empty’’, 1 – ‘‘lowest’’, 2 – ‘‘low’’, 3 – ‘‘average’’,
4 – ‘‘high’’, and 5 – ‘‘highest’’. Using the Nature Break method the
categories’ breaks are identified with best grouping of similar val-
ues, and the differences between categories are maximized.

4.2. Hotspot mapping

An initial threshold of RB hotspots is needed to set the initial
classes before utilizing HOT. From the study of (Short et al.,
2010), a house is at relatively higher risk if a burglary happened
nearby within the past 4 months. Therefore if three or more bur-
glaries happened in the block in one year, the area is likely to be
a burglary hotspot. Because the time span of our data is 6 years,
we set an area (cell) to be a hotspot if there are eighteen or more
burglary incidents (h P 18). We use the threshold of 9 RB incidents
(18 > h0 P 9), to define the ‘‘potential hot’’ areas ðDh0 Þ. The growth
ratio for GDPatterns is set at more than twenty (d > 20), which in-
sures an at least 95% confidence level (1:20) that these GDPatterns
will reveal the difference between hotspots and normal areas. To
test the tolerance of HOT, four different support thresholds
(q = 0.001,0.005,0.01,0.02) are used in the experiments.

For comparison, hotspot maps generated by hard thresholds
and the HSA method are presented. Three maps using the hard
thresholds are generated. Two of them are just using the thresh-
olds of h P 18 and h P 9. The third one is generated using an initial
threshold of h P 18 and then locating cells with RB rate h P 9 that
are also adjacent to the h P 18 cells.

HSA takes the fishnet map (Section 4.1) as input and calculates a
G�i (Formula (8)) statistic for each polygon in the map. The G�i statis-
tic is considered as the z-score of the polygon. Then a p-value, the
probability distribution of the z-scores, is calculated for each poly-
gon. In summary, a polygon with a high z-score and a p-value less or
equal to 0.05 is considered as having a high enough attribute value
to be statistically significant, and thus is considered as a hotspot.
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where xj is the value of the attribute (amount of incidents) for spa-
tial polygon j, wi,j is the spatial weight between polygon i and j (In
the case study we use inverse distances as the spatial weights
(Deane, Beck, & Tolnay, 1998; Ratcliffe & Taniguchi, 2008; Tita &
Greenbaum, 2009) and Euclidean Distance as the distance method.),
n is the total number of polygons.

We name the maps generated using hard thresholds h P 18 and
h P 9 HT18 and HT9, respectively. The map generated using
h P 18 cells and their adjacent cells with h P 9 is called HT18_9.
The HOT produced maps using the support thresholds q = 0.001,
q = 0.005, q = 0.01, q = 0.02 are called HOT001, HOT005, HOT01,
and HOT02, respectively. The map generated by HSA is named
the HSA map. All these maps are shown in Fig. 5.

The standard Kappa Index k (Formula (9)) (Cohen et al., 1960;
Rossiter, 2004) is used to compare the difference between hotspot
maps (Table 3). The value of k is between �1 and 1, and two maps
are considered more similar when the k between them is larger
(closer to 1).

k ¼ p0 � pc

1� pc
ð9Þ

where p0 is the proportion of cells that classified into the same class
(agreed) by both maps. pc is the proportion of units for which the
agreement is expected by chance.

From Fig. 5 and Table 3 we can tell that even using different
support thresholds, the final HOT hotspot maps are very close to
each other (the Kappa indices between them are all larger than
0.94). Although different support thresholds will result in different
set of closed frequent patterns, by setting a relatively high growth
ratio value, only the most significant patterns are selected as
GDPatterns that contribute to hotspot mapping.

The HOT maps and the HT18_9 map are similar to each other
(average Kappa Index 0.86) because they all contain the h P 18
cells. On the other hand, there are totally 344 (different hotspot
cells between HT18 and HT18_9, Table 4) cells that having RB rate
h P 9 and adjacent to the h P 18 cells and around 69.4% of them
are considered as hotspots by HOT (calculated by dividing the
average value of different hotspot cells between the HOT maps
and the HT18 map by 344, Table 4). The difference between them
(HOT maps and the HT18_9 map) can be considered as the infor-
mation gained using HOT.

A land cover map of the studied city is drawn (Fig. 6) with the
purpose of evaluating the precision of our hotspot maps. In Table 4
we calculated the cell statistics for each map. The percentages of
RB hotspot cells that are actually located in residential areas can
be seen as the precisions of the maps (Column 3, Table 4).

All the hotspot maps we generated are based on grid choropleth
mapping. There is an intrinsic defect when using grid choropleth
mapping for hotspot identification. By converting points represent-
ing crime incidents into cells with crime counts, spatial details
within and across the cells boundaries can be lost. In the case
study, this limitation is reflected by the fact that cells in non-resi-
dential areas (Fig. 6) are classified as hotspots of residential bur-
glary (RB) in all the hotspot maps. For example, after the
aggregation process a certain cell may contain 20% non-residential
areas, like roads or parks, and 80% of residential areas. If during the
hotspot analysis process the cell is classified as a residential bur-
glary (RB) hotspot, then the precision of this hotspot is 80%.

The hotspot maps using the user-specified thresholds (HT18,
HT9 and HT18_9) can be considered as benchmarks for the case
study. In other words, using the current grid map (cell size
100 m � 100 m), the precision for describing residential areas in
the studied city is around 85% (percentage of hotspot cells locating
in residential area in the hard threshold hotspot maps; Table 4).
HSA does not achieve this precision. Because during the hotspot
analysis (the G�i statistic calculation) process, all the cells are only



Fig. 5. RB hotspot maps of the studied city. HT18 and HT9 are generated by the thresholds of h P 18 and h P 9, respectively. HSA is the hotspot map generated by the Hotspot
Analysis tool in Esri ArcGIS. HOT001, HOT005, HOT01, HOT02 are the HOT generated hotspot maps with the support thresholds equal to 0.001, 0.005, 0.01, and 0.02,
respectively. In the map of HT18_9, cells with RB rate h P 18 and cells with RB rate h P 9 that are also adjacent to the h P 18 cells are considered as hotspots.

Table 3
Comparison results of the hotspot maps. The number in front of the brackets is the amount of cells that being classified as hotspots in both maps. The number inside the brackets
is the Kappa Index between the two maps.

HT18 HT9 HSA HOT001 HOT005 HOT01 HOT02 HT18_9

HT18 301(1.00)
HT9 301(0.38) 1245(1.00)
HSA 262(0.39) 668(0.74) 1094(1.0)
HOT001 301(0.69) 561(0.61) 456(0.61) 561(1.0)
HOT005 301(0.73) 523(0.58) 428(0.58) 509(0.95) 523(1.0)
HOT01 301(0.69) 567(0.62) 457(0.61) 546(0.98) 511(0.95) 567(1.0)
HOT02 301(0.74) 508(0.57) 416(0.57) 504(0.95) 487(0.96) 507(0.94) 508(1.0)
HT18_9 301(0.63) 645(0.67) 523(0.66) 496(0.87) 475(0.85) 501(0.88) 466(0.84) 645(1.0)
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considered as areas with or without RB rates. There is not enough
information for HSA to tell if a cell contains 80%, or only 20% resi-
dential areas. This results in a further precision lost (82%). The HOT
model outperforms HSA under current setting of parameters be-
cause not only the target crime rate, but also the related variables
have been taking into account in HOT. By using the informative
GDPatterns, only the areas with similar background (or similar
characteristics of related variables) as the hard threshold hotspots
are considered. The use of GDPatterns ensures that the precision of
the HOT hotspot maps (86% in average, Table 4) will consist with
the original inputs.

To give an intuitive view of HOT’s performance, two of the hot-
spot maps, HT18 and HOT001 (Fig. 5) are projected with satellite
images of the studied city and a figure of sample site is extracted
(Fig. 7). Using an initial threshold (h P 18) the red cells are classi-
fied into hotspots and cells in same blocks (in the color of blue)



Table 4
Cell statistic of the hotspot maps. The number in front of the brackets is the amount of
cells located in the corresponding area. The number inside the brackets shows the
percentage.

Total hotspot
cells

Cells in residential
areas

Cells in non-residential
areas

HT18 301 257(85.4%) 44(14.6%)
HT9 1245 1056(84.8%) 189(15.2%)
HSA 1094 901(82.4%) 192(17.6%)
HOT001 561 484(86.3%) 77(13.7%)
HOT005 523 451(86.2%) 72(13.8%)
HOT01 567 488(86.1%) 79(13.9%)
HOT02 508 435(85.6%) 73(14.4%)
HT18_9 645 548(85.0%) 97(15.0%)

102 D. Wang et al. / Computers, Environment and Urban Systems 39 (2013) 93–106
have been left out. Understandably, houses in the same block are at
similar risk of being broken into. Our optimization method suc-
cessfully captures these cells. Other than a choropleth mapping
tool, the HOT performs a dasymetric mapping by modifying the
hotspot boundaries rationally. Also, locations covered by natural
land, parking lots, roads, and highways are identified and are clas-
sified out of hotspots using our method (Fig. 7).

4.3. Demonstrating crime related variables

One thousand five hundred GDPatterns in the experiment satis-
fying a support threshold of 0.001 are selected for further analysis.
These GDPatterns (H-GDPatterns) are sorted by growth ratios from
Fig. 6. A land cover map showing the r
high to low. All 1500 patterns have a growth ratio greater than 50
(d > 50). For comparison, a set of GDPatterns (N-GDPatterns) based
on normal areas are also mined using HOT. Specifically, we set cells
with h P 18 as Dn, cells with 18 > h0 P 9 into Dh0 and other cells
into Dh (h < 9). In order to facilitate the comparative analysis,
1500 top N-GDPatterns are selected after running HOT. The growth
ratios of these N-GDPatterns are all larger than 30 (d > 30).

Using the similarity method discussed in Section 3.4, the dis-
tance between each pair of GDPatterns is calculated. We use the
cluster heat map tool (Wilkinson & Friendly, 2009) to visualize
the clusters in sorted distance matrices (Fig. 8). In sorted distance
matrices, the value of aij represents the distance between GDPat-
tern i and GDPattern j, where GDPattern j is the ji � jjth closest
to GDPattern i by distance. The heat maps use different colors to
represent the different values in the sorted distance matrices.

After locating all the clusters, the footprints of these clusters are
drawn (Fig. 9), which demonstrate the spatial distribution of
GDPatterns. Moreover, we use pie-chart to explore the structure
of GDPatterns in the same clusters (Fig. 10), in which the values
of variables are shown using different colors.

A lot of information can be revealed from these figures. For
example, when we look at the H-GDPattern clusters in the studied
city,

� High residential burglary (RB) rates are associated with high
population density only in areas with few foreclosures (FC),
commercial burglaries (CB), motor-vehicle larcenies (MV),
esidential areas in the studied city.



Fig. 7. An example of re-projected hotspots with satellite images. The blue cells are hotspots defined using a threshold of h P 18 (HT18 in Fig. 5). Both the blue and red cells
belong to the hotspots identified using HOT with a support threshold of 0.001 (HOT001 in Fig. 5). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 8. Heat maps for distance matrices of GDPatterns. On the left side a heap map based on distance matrix of H-GDPatterns is drawn by using the color ramp from blue to
red representing distances between H-GDPatterns from small to great. GDPattern clusters that identified using HAC (Section 3.4) are marked with white frames. On the right
is the heat map for the distance matrix of N-GDPatterns with color ramp from black to white representing distances from small to great and GDPattern clusters are marked
with blue frames. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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street robberies (SR), and very low arrest rates (AR) (Cluster 1).
These areas also have high residential density (HU) and are
close to universities or colleges (DC). Such locations are shown
in the footprint map of H-GDPattern Cluster 1 in Fig. 9.
� High residential burglary (RB) rates are associated with very

low foreclosure rate (FC) in most instances (Cluster 1–7). The
only locations with many residential burglaries (RB) and a
moderate number of foreclosures (FC) are shown in Fig. 9,
H-GDPattern Cluster 8. These areas are usually far from univer-
sities or colleges, have average population and house density,
and low to moderate arrest (AR), commercial burglary (CB),
motor-vehicle larceny (MV) and street robbery (SR) rates (Clus-
ter 8).
� Areas with high residential burglary rates and not close to any

colleges or universities (low in DC) can be mainly considered
in two categories (Clusters 4 and 7 in Fig. 10). One of them is



Fig. 9. Footprint maps of GDPatterns’ clusters. Areas inside blue circle are where most colleges located in the studied city and the green circle indicate the centre park of the
city. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Pie-charts of GDPatterns’ clusters. The values of each related variable are shown in different colors. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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characterized by high residential density (HU), as well as low
motor-vehicle larcenies (MV) and street robberies (SR) rates
(Cluster 4). The other has low residential density and average
MV and SR rates (Cluster 4). The locations of the two categories
are shown in H-GDPattern Cluster 4 and H-GDPattern Cluster 7
of Fig. 9, respectively.

The information revealed by our approach has been verified by
domain scientists. For example:

� Offenders are known to focus on neighborhoods with large pro-
portions of college students living in off-campus residences (the
blue circles in Fig. 9 show areas where most colleges located),
(Fig. 10, H-GDPattern Cluster 1 in which the value of DC is high).
� Where college students are less significantly represented,

offenders take a different approach, and the FC rates become a
more important indicator of RB offenders (Fig. 10, H-GDPattern
Cluster 8 in which the value of FC is relatively high). This also
explains why high RB is associated with low FC in most areas
of the city.
� The footprint map of N-GDPattern Cluster 7 (green circle in

Fig. 9) covers mostly non-residential areas like parks, because
these areas have similar conditions and no RB incidents.

The case study and the comparison experiments have shown
the potential of using crime related variables in hotspot mapping.
Our method helps maintain the mapping precision during the hot-
spots representation process and also provides a comprehensive
way for further analysis.
5. Conclusion

In this paper, we present a spatial data mining framework to
study the spatial distribution of crimes through their related
variables. To the best of our knowledge, it is the first attempt to
use related variables in crime hot spot mapping. Spatial data min-
ing is often said to ‘‘let the data speak for themselves’’. But the data
cannot tell stories unless appropriate questions are formulated and
asked, and appropriate methods are needed to solicit the answers
from the data. In the framework we address an iterative and induc-
tive learning process to study the spatial properties of crime.
Experiment results show that our HOT model outperforms HSA
in precisely identifying crime hotspots. Additionally, by using a
similarity measure method, we demonstrate the characteristics
of target crime’s related variables using GDPattern clusters and
footprint maps, which help explaining the varying of crime over
space and deliver the knowledge in a quantitative, as well as com-
prehensive and systematic manner.
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