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Abstract. Police agencies have been collecting increasing amount of 

information to better understand patterns in criminal activity. Recently there is a 

new trend on using the data collected to predict where and when crime will 

occur. Crime prediction is greatly beneficial because if it is done accurately, 

police practitioner would be able to allocate resources to the geographic areas 

most at risk for criminal activity and ultimately make communities safer. In this 

paper, we discuss a new four-order tensor representation for crime data. The 

tensor encodes the longitude, latitude, time, and other relevant incidents. Using 

the tensor data structure, we propose the Empirical Discriminative Tensor 

Analysis (EDTA) algorithm to obtain sufficient discriminative information 

while minimizing empirical risk simultaneously. We examine the algorithm on 

the crime data collected in one Northeastern city. EDTA demonstrates 

promising results compared to other existing methods in real world scenarios.   

Keywords: Discriminative tensor analysis, tensor least square, crime 

forecasting. 

1   Introduction 

Using machine learning and data mining technologies to reliably and accurately 

predict where and when crime will occur is greatly beneficial. If it is done accurately, 

practitioners would be able to allocate resources to the geographic areas most at risk 

for criminal activity and ultimately make communities safer. 

Many aspects will influence the crime prediction task:  

1. The spatial area. For example, a residential area is more likely to have 

residential burglaries than an industrial area.  

2. The temporal dimension. For example, university vocation period or holidays 

may be more vulnerable for certain crimes than other time periods. 

                                                           
 



3. The influence from other crime relevant events or other crime types. For 

example, increasing arrested offenders may call for better security 

management in this area to reduce the future criminal events. 

 It is desirable to combine these factors to better predicate a crime. A simple 

solution is to quantize all the information in these three factors and use one single 

vector to represent the data. The disadvantages of this representation are obvious: 1) 

the dimensionality of the features is always much higher than the number of data 

which can easily be haunted by the small sample size problem [1] and 2) the geometry 

structure among these three aspects cannot be well preserved. 

In this paper, we present a fourth-tensor representation to describe a crime. A 

forth-order tensor encodes: longitude, latitude, time and other relevant events. The 

tensor representation can rarely occur the small sample size problem because each 

order of this tensor have lower dimension and have much less chance to be greater 

than the sample size. In addition, the geometry structure is well preserved in tensor 

form.  

 There are existing algorithms which accept tensor as input directly instead of 

vectorizing the data. Sun et al. proposes the Dynamic Tensor Analysis (DTA) and 

Streaming Tensor Analysis (STA) methods to cope with the increasing data number 

problem. In addition, Sun also generalizes the basic tensor analysis problem to higher 

order which minimizes the reconstruction error between the input tensor and the 

desired output core tensor. Similar ideas for second- and third-order tensors are 

proposed in [2, 3, and 4]; Yan et al, generalize the Linear Discriminant Analysis 

(LDA) to tensor generalization form to accept tensor data directly. Tao et al, propose 

a framework for tensor convex optimization [14]. 

Our previous work [5] proposed a three-way DLA (TWDLA) method to reveal the 

discriminative information from third-order tensor features. (1) It accepts three-way 

data as input directly so the structure information can be well preserved. (2) It models 

the local geometry over every modality of the input third-order tensors, so the spatial 

relations of input tensors within a class can be preserved. (3) The margin between 

classes is maximized over each modality of the tensor to achieve the best 

discriminative performance. (4) It avoids the under sampling problem. 

However, TWDLA and other discriminative methods [2, 3, and 7] omit the 

empirical reconstruction error while extracting the discriminative information to 

reconstruct the data. The low reconstruction error reflects the reconstruction with low 

chance to have a mistake. The desired core tensor is the indicator tensor which 

incorporates the ground truth information and is expected to be generated from an 

optimal algorithm. The reconstruction procedure is a standard least square problem 

which minimizes the Frobenius norm between the projected core tensor and the core 

tensor. This optimization procedure is an explicit way to minimize the empirical risk.  

In this paper, we propose a new method denoted as Empirical Discriminative 

Tensor Analysis (EDTA) which calculates the discriminative projection matrix and 

considers the empirical reconstruction error simultaneously. The discriminative 

component is a higher order generalization for TWDLA. The empirical reconstruction 

error minimization component is obtained by minimize the reconstruction error. 

EDTA simultaneously optimizes these two components and makes the final 

projection encapsulate the discriminative information and also minimize the empirical 



reconstruction risk. A similar way by combining these aspects were proposed to find 

the sparse optimal solution on vector approaches [8]. 

The rest of the paper is organized as follows. Section 2 introduces crime problem 

and data representation. We give a brief introduction of tensor algebra in Section 3. 

Our proposed Empirical Discriminative Tensor Analysis is introduced in Section 4. 

Our experimental results and conclusions are presented in Sections 5 and 6 

respectively.  

2   Problem Formulation and Data representation 

In this paper, we aim to predict residential burglaries. Each residential burglary is 

encoded by spatial and temporal information, including longitude, latitude, and time. 

We also collect other relevant geo-coded events selected by domain scientists that are 

believed to be associated with crime tendency, including construction permits, 

foreclosure, mayor hotline inputs, motor vehicle larceny, social events, and offender 

data. Crime data is rasterized into small grid cells because it is infeasible to make 

precise longitude and latitude coordinate predication. The number of residential 

burglaries for a specific grid cell is the summation of all the crimes happened inside 

this grid cell. We aggregate the data by month and perform monthly prediction 

because daily crime data is too few and cannot provide sufficient features from the 

crime data collected in this Northeastern city. Therefore, the ultimate objective of this 

crime forecasting task is to predict whether a grid cell will have high residential 

burglaries for a given month.   

 As illustrated in Figure 1, we design a data structure of fourth-order tensor to 

capture features of each residential burglary with respect to three aspects, spatial 

aspect, temporal aspect, and other relevant events.  

 

 
Figure 1. An example of residential burglary in a fourth-order tensor. The figure depicts 

fourth-order tensor which is represented by a row of elements. Each element in this fourth-

order tensor is a third-order tensor of relevant events, such as residential burglary, social events, 

offender data, etc. Each relevant event in a third-order tensor is presented by longitude, latitude, 

and time.   

 

 



 

 
Figure 2. The residential burglary third-order tensor example.  Each map refers to a 

residential burglary map in different time. The combination of these maps by time forms a three 

order tensor. 

Figure 1 explains general structure of fourth-order tensor. In a fourth-order tensor, 

different relevant features in third-order tensors are organized together without losing 

the geo-spatial structure. Figure 2 further explains the internal structure of third-order 

tensor using residential burglary as an example. The third-order tensor contains the 

crimes information of the whole city area among all the collected time periods. The 

crime in one grid cell at a specific month can always be influenced by the neighboring 

area and the relevant events in recent months. Therefore, the representation of one 

crime in one grid cell is a small tensor extracted from the big tensor. The small tensor 

has smaller spatial and temporal dimension size, because only neighboring area and 

recent data could influence the crimes of this grid cell. 

 According to the sociological study [10, 11, and 12], the number of crimes 

happened in one area always related to t previous month information and its 

surrounding area. Waldo Tobler [13] also pointed out that, the first law of geography 

is "Everything is related to everything else, but near things are more related than 

distant things." , A naive model to predict the crime is just copy the previous month 

data or average the neighbor area data. We denoted the surrounding area data of the t 

previous month with different relevant events as the fourth-order tensor features to 

predict a crime incident. 

3   Tensor Algebra 

In this section, we give a brief introduction of tensor algebra definitions which are 

related to this paper. Suppose   is an   order tensor and              . The 

size of  th mode of    is   . Then we can have the following definition. 

Definition 1 (Mode-d Matrix unfolding). The mode-d matrix unfolding of   is the 

set of vectors in      obtained by keeping the index    fixed and varying the other 

indices. Therefore, the mode-d matrix unfolding of an  th-order tensor is a matrix 

          ̅ , where  ̅  ∏      . We denote the mode-d matrix unfolding 

operation as        . 
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Normally, Mode-d Matrix unfolding is applied to convert a tensor to matrix along 

d mode.  For example, we may convert a fourth-order crime tensor along the time 

mode, and then each row vector of the converted matrix encodes all the value at a 

specific time. 

Definition 2 (Tensor Contraction). The contraction of a tensor is obtained by 

summing over all values of the repeated indices for the equating two indices. In 

general, for tensors                           
   and 

                             
   , the contraction on   and   is: 

⟦              ⟧ 

 ∑  ∑            

  

    

  

    

            

Noted that, only orders consisted in       , the same indices shared by two 

tensors, can be used for contraction. 

 If the contraction operation is conducted on all indices excluding d on   and   

in            , the procedure is denoted as: 

⟦    ( ̅)( ̅)⟧ 
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Definition 3 (Mode-d product). The mode-d product of      of tensor 

              is an             
            tensor and matrix  

         . The procedure is denoted as: 

     ∑ (                              
)

   

 

Mode-d product changes the dimension of Mode-d in   by multiplying it with a 

matrix.  

To simplify the notation in this paper, we denote 

                ∏    

 

   

 

 

Definition 4 (Frobenius Norm). The Frobenius norm of a tensor               

is given by 

‖ ‖    √⟦              ⟧ 
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Frobenius norm, sometimes is also called the Euclidean norm when applied on 

vector or matrix.  



4   Empirical Discriminative Tensor Analysis 

Suppose there are N samples which come from N grid cell. Each sample is an M 

order tensor,               . We want to learn a set of projection matrices 

         
 
,         ,      

  and    
  is the intrinsic dimensions for the 

 th order, . Intrinsic dimensions are the needed dimensions to represent the event and 

incorporate the sufficient discriminative information for classification. Then the 

projected core tensor      ∏     
 
    , where       

    
      

 
  is the 

projected core tensor which not only contains sufficient discriminative information 

but also minimizes the empirical risk. The desired core tensor    

   
    

      
 
incorporates ground truth label information which is the indicator 

tensor.    is expected to have as much discriminative information as possible. The 

difference between tensors    and    stands for the empirical reconstruction error. 

4.1   Discriminative tensor analysis 

 

The projected core tensor is desirable to have enough discriminative information for 

classification. This also means same class tensors which correspond to the samples in 

the same class are expected to be as close as possible and the different class tensors 

should be further from each other. We use Frobenius Norm in Definition 4 of the 

subtraction between two tensors to represent the distance of the two tensors. For any 

sample   , the projected core tensor    is expected to have small distance between 

tensors in the same class and have large distance between tensors in different classes. 

Then our expectation of the core tensor can be described using the following objective 

function: 

   (∑‖      ‖   
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(1) 

where    is the tradeoff between two parts.    is the  th element of   ’s     

nearest neighbors in the identical class and    is the  th element of   ’s     

nearest neighbors in the different class. The nearest neighbors of    forms a local 

patch with index matrix    [                         
]  Eq.(1) states that for any 

projected core tensor   , the distance between its     nearest neighbors in the 

identical class is minimized while the distance between its     nearest neighbors in 

the different class is maximized. 

Eq. (1) is equal to: 
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where                         encapsulates the geometry structure and 

discriminative information of the local patch of input tensor   . Define the 

coefficient vector     [       ⏞    
  

           ⏞        
  

] , then 
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      is the  th element of index matrix   . According to the tensor contraction 

definition in Definition 2,  Eq. (2) is equivalent to: 
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where,   
  ∑ ∑   (           )

       
   

       
        (      )    

 (      ) . 

And    is the projection matrix of order  . 

Eq. (3) gives the optimal solution of a local tensor patch because the objective 

function defined in Eq. (1) only consider the core tensor    and its nearest neighbors. 

The ultimate goal is to make all the core tensors have the same hallmark as Eq. (3). 

Therefore, we consider other core tensors as well by summing over all local 

optimizations together. The whole alignment is given according to Eq. (3): 

     (  
     ) 

(4) 

where    ∑   
  

    and it stores the discriminative information and geometry 

structure. 

4.2   Empirical error minimization 

Indicator matrix [9] indicates the class label of samples by a matrix. Using the 

indicator matrix can easily transform the empirical reconstruction error minimization 

problem to least square problem. If directly using class label as the indicator matrix, 

the problem would be further converted to a standard regression problem which is a 

special case of least square problem. In this paper, we use a ground truth indicator 

tensor which has the same size as the core tensor. Then, the empirical reconstruction 

error corresponds to the distance between the core tensor and the indicator tensor. 

The indicator tensor    is defined by retrieving the principle components of each 

order. Because the desired core tensors in the same class are expected to be as close as 

possible, we use the average value of the tensors in the same class to stand for them. 

Indicator tensor    has the same size with   . 
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There is no close form solution for Eq. (5), [6] shows Eq.(5) is equivalent to: 
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where   ∑ ∑             
 (  )

 
   

 
    and the constant item is ignored in 

optimization without loss of generality. 

4.3   Final optimization 

Our proposed empirical discriminative tensor analysis (EDTA) method tries to 

optimize both the discriminative objective function and the empirical error. Therefore, 

when combining the discriminative and empirical estimation objection function from 

Eq. (4) and Eq. (7), we can get 

     (  
     )     (  

    ) 

                                               (  
          ) 

                                               (  
   

   ) 

(8) 

where   
         , and we expect   

      which means the projection is 

orthogonal.  

Solutions of Eq. (8) are given by using standard eigen-decomposition: 

  
       .      (9) 

The column vectors ordered according to the increasing order of eigenvalues are 

the solutions of Eq. (9). 

It is necessary to point out that ⟦              ( ̅)( ̅)⟧ in Eq. (3) and          

in Eq. (6) are relied on all the projection matrices   ,    . All the projection 

matrices should be initialized before use. 

For any projection matrix   , the optimization function is convex, such as Eq. (8).  

The alternating projection provides the final solution for the problem defined in Eq. 

(8). 

The alternating projection procedure is illustrated in Table 1. 



 

5   Experiments 

We evaluate the EDTA algorithm on Crime Forecasting in the Northeast city (Figure 

3). The crimes happened in 2006 are the pre-knowledge. We select data in 2006 as 

training samples to test the crime incidents in 2007. We used 20 by 20 grid cells to 

represent the whole city area. For one grid cell, we expect to predict whether this area 

will take place any crimes. The grid cell with more than 1 crime is denoted as hot spot 

and the grid cell with 0 or 1 crime is denoted as cold spot. Thus the crime forecating 

problem is a binary classification problem in this project. 

 We compare the EDTA method with other representative methods. three-way 

DLA (TWDLA) [5] extracts the discriminative information and accepts third-order 

tensors as input. We generalize it to accept fourth-order tensors in order to make a fair 

comparison. We denoted the variation of this algorithm as Four-Way DLA 

(FWDLA). Offline Tensor Analysis (OTA) is proposed in [6] which minimizes the 

distance between the projected core tensors with the desired core tensors 

We set the tradeoff value   to 0.1 which gives less weight for the second term of 

Eq. (1), because tensors in different classes in our crime data always have large 

distance, and then we eliminate this influence.   in Eq. (8) is automatically decided 

by the algorithm to make the trace of   as the same as the trace of   . The 

parameter settings of other algorithms are the same as those in their original papers. 

Input: Training tensor               , the desired core tensor     

   
    

      
 
, and the maximum number of training iteration T. 

Output: The projection matrix          
 

,          ,      
 , 

constrained by    
     , and the output desired core tensor 

      
    

      
 
 

Initialization: Set          
 
,          to 1. 

Step1. FOR t = 1 TO T{ 

Step2.      FOR k = 1 TO M{ 

                    Calculate    according to Eq. (8) 

            }// For loop in Step 2. 

        Check convergence: the train stage of EDTA converges if 

Step3.             ∑ ‖  
     ‖ 

       

      }//For loop in Step 1. 

Step4.      ∏     
 
    

 

 

Table 1 Alternating Projection Optimization Procedure for EDTA 

 



Figure 4. shows the convergence status for our proposed EDTA. Figure 4(a) is the 

objective function value of Eq. (1) , Figure 4 (b) is the objective function value of Eq. 

(5) and Figure 4 (c) shows the objective function value of Eq. (8). We expect to 

minimize the function in Eq. (1) and maximize the function in Eq. (5) simultaneously. 

From Figure 4, we observe that in each optimization procedure, the projection 

matrices learned from objective function Eq. (8) optimize Eq. (1) and Eq. (5) as well. 

The derivative of the function value shown in these figures is the convergence rate.  

Figure 5. shows the comparison results for 2007 Residential Burglary prediction. 

FWDLA only considers the discriminative information while OTA only consider 

reconstruction error. From this figure, we observe that the EDTA could achieve a 

better result on 12 months’ prediction by considering both aspects which is consistent 

with our assumption. 

 

 
Figure 3. The ground truth of Residential Burglary crime in Boston area. The darker area 

means higher number of crimes. 

 
Figure 4. Function value versus the Iteration of EDTA. It shows the convergence status. (a) 

is the function value of Eq. (1). (b) is the function value of Eq. (5). (c) is the final function 

value of Eq. (8). 
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Figure 5. Methods comparison on residential burglary prediction for 12 months in 

2007. 
 

 

6   Conclusion 

Crime forecasting problem has great impact on sociology and has not been well 

studied. We studied this problem with machine learning technologies. In this paper, 

we propose a fourth-order tensor representation to describe a crime which can better 

represent the crime by preserving the geometry structure, reducing the small sample 

risk and reduce the conflicts risk. We further propose an Empirical Discriminative 

Tensor Analysis (EDTA) method to accept tensor data as input directly. EDTA can 

reveal the discriminative information and minimize the empirical reconstruction risk 

simultaneously. The discriminative information is obtained by minimize the 

Frobenius norm of tensors in same class while separate the tensors in different class. 

Empirical risk minimization is obtained by a standard least square form to minimize 

the Frobenius norm between transformed tensors and the desired indicator tensors. 

The experimental results conducted on Boston Residential Burglary data show that 

EDTA outperforms the vector based method and the methods which learn the 

discriminative information and minimize the empirical risk respectively. 
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