
ESTATE: Strategy for Exploring Labeled Spatial
Datasets Using Association Analysis

Tomasz F. Stepinski1 Josue Salazar1 Wei Ding2 and Denis White3

1 Lunar and Planetary Institute, Houston, TX 77058, USA
tom@lpi.usra.edu salazar@lpi.usra.edu

2 Department of Computer Science, University of Massachusetts Boston, Boston, MA
02125, USA

ding@cs.umb.edu
3 US Environmental Protection Agency, Corvallis, OR 97333, USA

white.denis@epa.gov

Abstract. We propose an association analysis-based strategy for ex-
ploration of multi-attribute spatial datasets possessing naturally aris-
ing classification. Proposed strategy, ESTATE (Exploring Spatial daTa
Association patTErns), inverts such classification by interpreting differ-
ent classes found in the dataset in terms of sets of discriminative patterns
of its attributes. It consists of several core steps including discriminative
data mining, similarity between transactional patterns, and visualiza-
tion. An algorithm for calculating similarity measure between patterns
is the major original contribution that facilitates summarization of dis-
covered information and makes the entire framework practical for real
life applications. Detailed description of the ESTATE framework is fol-
lowed by its application to the domain of ecology using a dataset that
fuses the information on geographical distribution of biodiversity of bird
species across the contiguous United States with distributions of 32 en-
vironmental variables across the same area.

Key words: spatial databases, association patterns, clustering, similar-
ity measure, biodiversity

1 Introduction

Advances in gathering spatial data and progress in Geographical Information
Science (GIS) allow domain experts to monitor complex spatial systems in
a quantitative fashion leading to collections of large, multi-attribute datasets.
The complexity of such datasets hides domain knowledge that may be revealed
through systematic exploration of the overall structure of the dataset. Often,
datasets of interest either possess naturally present classification, or the clas-
sification is apparent from the character of the dataset and can be performed
without resorting to machine learning. The purpose of this paper is to introduce
a strategy for thorough exploration of such datasets. The goal is to discover
all combinations of attributes that distinguish between the class of interest and



2 Tomasz Stepinski et al.

the other classes in the dataset. The proposed strategy (ESTATE) is a tool for
finding explanation and/or interpretations behind divisions that are observed in
the dataset. Note that the aim of ESTATE is the reverse of the aim of classifi-
cation/prediction tools; whereas a classifier starts from attributes of individual
objects and outputs classes and their spatial extents, the ESTATE starts from
the classes and their spatial extents and outputs the concise description of at-
tribute patterns that best define the individuality of each class. The need for such
classification-in-reverse tool arises in many domains, including cases that may
influence economic and political decisions and have significant societal repercus-
sions. For example, a fusion of election results with socio-economic indicators
form an administrative region-based spatial dataset that can be explored us-
ing ESTATE to reveal a spatio-socio-economic makeup of electoral support for
different office seekers [23]. The framework can be also utilized for analyzing a
diversity of underlying drivers of change (temporal, spatial, and modal) in the
spatial system. An expository example of spatial change analysis – pertaining
to geographical distribution of biodiversity of bird species across the contiguous
United States – is presented in this paper.

The ESTATE interprets the divisions within the dataset by exploring the
structure of the dataset. The strategy is underpinned by the framework of as-
sociation analysis [1, 12, 34] that assures that complex interactions between all
attributes are accounted for in a model-free fashion. Specifically, we rely on the
contrast data mining [9, 2], a technique for identification of discriminative pat-
terns – associative itemsets of attributes that are found frequently in the part of
the dataset affiliated with the focus class but not in the remainder of the dataset.
A collection of all discriminative patterns provides an exhaustive set of attribute
dependencies found only in the focus class. These dependencies are interpreted
as knowledge revealing what sets the focus class apart from the other classes.
The set of dependencies for all classes is used to explain the divisions observed
in the dataset.

The ESTATE framework consists of a number of independent modules; some
of them are based on existing techniques while others represent original con-
tributions. We present two original contributions to the field of data mining:
1) a novel similarity measure between itemsets that makes possible clustering
of transactional patterns thus enabling effective summarization of thousands of
discovered nuggets of knowledge, and 2) a strategy for disambiguation of class
labels in datasets where classification is not naturally present and needs to be
deduced from the character of the dataset.

2 Related Work

There is a vast literature devoted to classification/prediction techniques. In the
context of spatial (especially, geospatial) datasets many broadly used predic-
tors are based on the principle of regression, including multiple regression [25],
logistic regression [30, 7, 14], Geographically Weighted Regression (GWR) [4,
11], and kernel logistic regression [29]. These techniques are ill-suited for our
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stated purpose. A machine learning-based classifier could be constructed for
the dataset where all objects have prior labels (usually, there is no need to do
it). Denoting a classifier function as F : F (attributes) → class, its inverse
F−1 : F−1(class) → attributes would give a set of all of the objects (their
attribute vectors) mapped to a given class. However, the outcome of F−1 would
be of no help to our purpose because it does not provide any synthesis leading to
the understanding the common characteristics of the objects belonging to a given
class. The exception is the classification and regression tree (CART) classifier,
whose hierarchical form of F allows interpretation of F−1. Indeed, the use of
regression trees was proposed [28] to map spatial divisions of class variable. Our
association analysis-based approach provides a more natural, data-centric alter-
native approach to the regression trees. The possibility of using transactional
patterns for exploration of spatial datasets received little attention. Application
of association analysis to geospatial data was discussed in [10, 22], and another
application, to the land cover change was discussed in [19]. These studies did not
utilized discriminative pattern mining. In addition, they lack any pattern syn-
thesis techniques making the results difficult to interpret by domain scientists.

One of the major challenges of association analysis is the explosive num-
ber of identified patterns which leads to a need for pattern summarization. The
two major approaches to pattern summarization are lossless and lossy represen-
tations. Lossless compression techniques include closed itemsets [20] and non-
derivable itemsets [6]. In general, reduction in a number of patterns due to
a lossless compression is insufficient to significantly improve interpretability of
the results. More radical summarization is achieved via lossy compression tech-
niques including maximal frequent patterns [3], top-k frequent patterns [13],
top-k redundancy-aware patterns [26], profile patterns [32], δ-cover compressed
patterns [31], and regression-based summarization [16].These techniques have
been developed for categorical datasets where a notion of similarity between the
items does not exist. The datasets we wish to explore with ESTATE are ordinal.
We exploit the existence of an ordering information in the attributes of items to
define a novel similarity between the itemsets. Our preliminary work on appli-
cation of association analysis to exploration of spatial datasets is documented in
[8, 24].

3 ESTATE Framework

The ESTATE framework is applied to a dataset composed of spatial objects
characterized by their geographical coordinates, attributes, and class labels. The
spatial dataset can be in the form of a raster (objects are individual pixels),
point data (objects are individual points), or shapefile (objects are polygons).
Information in each object is structured as follows o = {x, y; f1, f2, ..., fm; c},
where x and y are object’s spatial coordinates, fi, i = 1, . . . ,m, are values of m
attributes as measured at (x, y), and c is the class label. From the point of view of
association analysis, each object (after disregarding its spatial coordinates and its
class label) is a transaction containing a set of exactly m items {f1, f2, ..., fm},
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which are assumed to have ordinal values. The entire spatial dataset can be
viewed as a set of N fixed-length transactions, where N is the size of the dataset.

An itemset (hereafter also referred to as a pattern) is a set of items contained
in a transaction. For example, assuming m = 10, P = {2, , , , 3, , , , , } is a
pattern indicating that f1 = 2, f5 = 3 while the values of all other attributes are
not a part of this pattern. A transaction supports an itemset if the itemset is a
subset of this transaction; the number of all transactions supporting a pattern
is refereed to as a support of this pattern. For example, any transaction with
f1 = 2, f5 = 3 “supports” pattern P regardless of the values of attributes in
slots denoted by an underscore symbol in the representation of P given above.
The support of pattern P is the number of transactions with f1 = 2, f5 = 3.
Because transactions have spatial locations, there is also a spatial manifestation
of support which we call a footprint of a pattern. For example a footprint of P
is a set of spatial objects characterized by f1 = 2, f5 = 3.

The ESTATE framework consists of the following modules: (1) Mining for
associative patterns that discriminate between two classes in the dataset (Sec-
tion 3.1). (2) Disambiguating class labels so the divisions of objects into different
classes coincide with footprints of discriminative patterns (Section 3.2). (3) Clus-
tering all discriminative patterns into a small number of clusters representing
diverse motifs of attributes associated with a contrast between the two classes
(Section 3.3). (4) Visualizing the results in both attribute and spatial domains
(see the case study in Section 4).

3.1 Mining for discriminative patterns

Without loss of generality we consider the case of the dataset with only two
classes: c = 1 and c = 0. A discriminating pattern X is an itemset that has much
larger support within a set of transactions Op stemming from c = 1 objects than
within a set of transactions On stemming from c = 0 objects. For a pattern X to
be accepted as a discriminating pattern, its growth rate, sup(X,Op)

sup(X,On) , must exceed
a predefined threshold δ, where sup(X,O) is the support of X in a dataset O.

We mine for closed patterns that are relatively frequent in O0
p. A pattern is

frequent if its support (in O0
p) is larger than a predefined threshold. Mining for

frequent patterns reduces computational cost. Further significant reduction in
computational cost is achieved by mining only for frequent closed patterns [21].
A closed pattern is a maximal set of items shared by a set of transactions. A
closed pattern can be viewed as lossless compression of all non-closed patterns
that can be derived from it. Mining only for closed patterns makes physical and
computational sense inasmuch as closed patterns give the most detailed motifs
of attributes associated with difference between the two classes.

3.2 Disambiguating class labels

In many (but not all) practical application, the class labels are implicit rather
than explicit. For example, biodiversity index is continuously distributed across
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the United States without a naturally occurring boundary between “high bio-
diversity” (class c = 1) and “not-high biodiversity” (class c = 0) objects. This
introduces a question of what is the best way to partition the dataset into the two
classes? One way is to divide the objects using distribution-deduced threshold on
the class variable, another is to use the union of footprints of mined discrimina-
tive patterns. These two methods will result in different partitions of the dataset
introducing potential ambiguity to class labels. We propose to disambiguate the
labeling by iterating between the two definitions until the two partitions are as
close to each other as possible.

We first calculate the initial O0
p–O0

n partition using a threshold on the value
of the class variable. Using this initial partition, our algorithm mines for dis-
criminating patterns. We calculate a footprint of each pattern and the union of
all footprints. The union of the footprints intersects, but is not identical to the
footprint of O0

p. Second, we calculate the next iteration of the partition O1
p–O1

n

and the new set of discriminating patterns. The objects that were initially in
O0

n are added to O1
p if they are in the union of footprints of the patterns cal-

culated in first step, their values of class variable are “high enough”, and they
are neighbors of O0

p. Because of this last requirement, the second step is in itself
an iterative procedure. The requirement that incorporated objects have “high
enough” values of class variable is fulfilled by defining a buffer zone. The buffer
zone is easily defined in a dataset of ordinal values; it consists of objects having
a value one less than the minimum value allowed in O0

p. Finally, we repeat the
second step calculating Oi

p and its corresponding set of discriminating patterns
from the results of i−1 iteration until the iteration process converges. Note that
convergence is assured by the design of the process. The result is the optimal
Op–On partition and the optimal set of discriminating patterns.

3.3 Pattern Similarity Measure

Despite considering only frequent closed discriminative patterns, the ESTATE
finds thousands of patterns. A single pattern provides a specific combination
of attribute values found in a specific subset of the c = 1 class of objects but
nonexistent or rare among c = 0 class objects. The more specific (longer) the
pattern the smaller is its footprint; patterns having larger spatial presence tend
to be less specific (shorter). Because of this tradeoff there is not much we can
learn about the global structure of the dataset from a single pattern; such pattern
provides either little information on regional scale or a lot of information on local
scale. In order to effectively explore the entire dataset we need to consider all
mined patterns each covering only relatively small spatial patch, but together
covering the entire domain of the c = 1 class. To enable such exploration we
cluster the patterns into larger aggregates of similar patterns by taking advantage
of ordering information contained in ordinal attributes of spatial objects. The
clustering is made possible by the introduction of a similarity measure between
the patterns. We propose to measure a similarity between two patterns as a
similarity between their footprints. Hereafter we will continue to refer to the
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Fig. 1. Graphics illustrating the concept of similarity between two patterns. White
items are part of the pattern, gray items are not the part of the pattern.

“pattern similarity measure” with the understanding that the term “pattern” is
used as a shortcut for the set of objects in its footprint.

Fig. 1 illustrates the proposed concept of pattern similarity. In this simple
example each object has four attributes denoted by A, B, C, and D, respectively.
Each attribute has only one of two possible values: 1 or 2. PatternX = {1, 2, , }
is supported by 5 objects and pattern Y = {2, , 1, } is supported by 3 objects.
The similarity between patterns X and Y is the similarity between the two sets
of 4-dimensional vectors constructed from the values of items in transactions
belonging to respective footprints. Similarity of each dimension (attribute) is
calculated separately as a similarity between two sets of scalar entities. The
total similarity is the weighted sum of the similarities of all attributes.

The similarity between patterns X and Y is S(X,Y ) =
∑m

i=1 wiSi(Xi, Yi),
where Xi, Yi indicate the ith attribute, wi indicates the ith weight (we use
wi = 1 in our calculations), and m is the number of attributes. The similarity
between ith attribute in the two patterns Si(Xi, Yi) is calculated using group av-
erage, a technique similar to the UPGMA (Unweighted Pair Group Method with
Arithmetic mean) [18] method of calculating linkage in agglomerative clustering.
The UPGMA method reduces to Si(Xi, Yi) = s(xi, yi) for attributes which are
present in both patterns (like an attribute A in an example shown in Fig. 1);
here xi and yi are the values of attributes Xi and Yi (xA = 1 and yA = 2 in
the example on Fig. 1) and s(xi, yi) is the similarity between those values (see
below). If the ith attribute is present in the pattern Y but absent in the pattern
X (like an attribute C in an example shown in Fig. 1) the UPGMA method
reduces to

S(−, Yi) =
n∑

k=1

PX(xk)s(zk, yi) (1)

where PX(xk) is the probability of ith attribute having the value xk in all objects
belonging to the footprint of X and n is the number of different values the ith
attribute can have. The UPGMA reduces to an analogous formula if the ith
attribute is present in the pattern X but it’s absent in the pattern Y (like an
attribute B in an example shown in Fig. 1). Finally, if the ith attribute is absent
in both patterns (like an attribute D in an example shown in Fig. 1) the UPGMA
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gives

S(−i,−i) =
n∑

l=1

n∑
k=1

PX(xl)PY (yk)s(xl, yk) (2)

We propose to calculate the similarity between the two values of ith attribute
using a measure inspired by an earlier concept of measuring similarities between
ordinal variables using information theory [17]. The similarity between two or-
dinal values of same attribute s(xi, yi) is measured by the ratio between the
amount of information needed to state the commonality between xi and yi, and
the information needed to fully describe both xi and yi.

s(xi, yi) =
2× log P (xi ∨ z1 ∨ z2 . . . ∨ zk ∨ yi)

log P (xi) + log P (yi)
(3)

where z1, z2, . . . , zk are ordinal values such that z1 = xi + 1 and zk = yi − 1.
Probabilities, P (), are calculated using the known distribution of the values of
ith attribute in Op.

Using a measure of “distance” (dist(X,Y ) = 1
S(X,Y ) − 1) between each pair

of patterns in the set of discriminative patterns we construct a distance matrix.
In order to gain insight into the structure of the set of discriminative patterns
we visualize the distance matrix using clustering heat map. The heat map is the
distance matrix with its columns and rows rearranged to place rows and columns
representing similar patterns near each other. We determine an appropriate order
of rows and columns in the heat map by performing a hierarchical clustering
(using an average linkage) of the set of discriminative patterns and sorting the
rows and columns by the resultant dendrogram. The values of distances in the
heat map are coded by a color gradient enabling the analyst to visually identify
interesting clusters of patterns.

4 Case study: biodiversity of bird species

We apply the ESTATE framework to the case study pertaining to the discov-
ery of associations between environmental factors and the spatial distribution
of biodiversity across the contiguous United States. Roughly, biodiversity is a
number of different species (of plants and/or animals) within a spatial region.
A pressing problem in biodiversity studies is to find the optimal strategy for
protecting the species given limited resources. In order to design such a strategy
it is necessary to understand associations between environmental factors and the
spatial distribution of biodiversity. In this context we apply ESTATE to discover
existence of different environments (patterns or motifs of environmental factors)
which associate with the high levels of biodiversity.

The database is composed of spatial accounting units resulting from tessella-
tion of the US territory into equal area hexagons with center-to-center spacing of
approximately 27 km. For each unit the measure of biodiversity (class variable)
and the values of environmental variables (attributes) are given. The biodiversity
measure is provided [33] by the number of species of birds exceeding a specific
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Fig. 2. Biodiversity of bird species across the contiguous United States. Two categories
with the highest values of biodiversity (purple and red) are chosen as the initial high
biodiversity region. Missing data regions are shown in white.

threshold of probability of occurrence in a given unit. Fig. 2 shows the distri-
bution of biodiversity measure across the contiguous US. The environmental
attributes [27] include terrain, climatic, landscape metric, land cover, and en-
vironmental stress variables that are hypothesized to influence biodiversity; we
consider m=32 such attributes. The class variable and the attributes are dis-
cretized into up to seven ordinal categories (lowest, low, medium-low, medium,
medium-high, high, highest) using the “natural breakes” method [15].

Because of the technical demands of the ESTATE label disambiguation mod-
ule we have transformed the hexagon-based dataset into the square-based dataset.
Each square unit (pixel) has a size of 22 × 22 km and there are N=21039 data-
carrying pixels in the transformed dataset. The dataset does not have explicit
labels. Because we are interested in contrasting the region characterized by high
biodiversity with the region characterized by not-high biodiversity we have par-
titioned the dataset into Op corresponding to c = 1 class and consisting initially
of the objects having high and highest categories of biodiversity and On corre-
sponding to c = 0 class and consisting initially of the objects having lowest to
medium-high categories of biodiversity. The label disambiguation module mod-
ifies the initial partition during the consecutive rounds of discriminative data
mining.

We identify frequent closed patterns discriminating between Op and On using
an efficient depth-first search method [5]. We mine for patterns having growth
rate ≥50 and are fulfilled by at least 2% of transactions (pixels) in Op. We also
keep only the patterns that consist of eight or more attributes; shorter patterns
are not specific enough to be of interest to us. We have found 1503 such patterns.
The patterns have lengths between 8 and 20 attributes; the pattern length is
broadly distributed with the maximum occurring at 12 attributes. Pattern size
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Fig. 3. Clustering heat map illustrating pairwise similarities between pairs of patterns
in the set of 1503 discriminating patterns. The two bars below the heat map illustrate
size of the pattern size and its length, respectively.

(support) varies from 31 to 91 pixels; the distribution of pattern size is skewed
toward the high values and the maximum occurs at 40 pixels.

Fig. 3 shows a heat map constructed from a distance (dissimilarity) matrix
calculated for all pairs of patterns in the set of 1503 patterns that discriminate
between Op and On. The heat map is symmetric because distance between any
two patterns is calculated twice. Deep purple and red colors indicate similar pat-
terns whereas blue and green colors indicate dissimilar patterns. The heat map
clearly shows that the entire set of discriminative patterns naturally breakes into
four clusters as indicated by purple and red color blocks on the map. Indeed,
there are five top level clusters, but the fourth cluster, counting from the lower
left corner, has only 4 patterns and is not visible in the heat map at the scale
of Fig. 3. The patterns in each cluster identify similar combinations (motifs) of
environmental attributes that are associated with the region of high biodiver-
sity. The visual analysis of the heat map indicates that there are four (five if
we count the small 4-pattern cluster) distinct motifs of environmental attributes
associated with high levels of biodiversity. Potentially, these motifs indicate ex-
istence of multiple environmental regimes that differ from each other but are all
conducive to high levels of biodiversity.

The clusters can be characterized and compared from two different perspec-
tives. First, we can synthesis the information contained in all patterns belonging
to each cluster; this will yield combinations of attributes that set apart the region
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Fig. 4. Bar-code representation of the five regimes (clusters) of high biodiversity. See
description in the main text.

associated with a given cluster from the not-high biodiversity region. Second, we
can synthesize the information about prevailing attributes in the region associ-
ated with a given cluster; this will reveal a set of predominant environmental
conditions associated with a given high biodiversity region (represented by a
cluster). Because clusters are agglomerates of patterns and regions are agglom-
erates of transactions, they can be synthesized by their respective compositions.
The biodiversity dataset has m = 32 attributes, thus each cluster (region) can
be synthesized by 32 histograms, each corresponding to a composition of a par-
ticular attribute within a cluster (region). Our challenge is to present this large
volume of information in a manner that is compact enough to facilitate imme-
diate comparison between different clusters.

In this paper we restrict ourself to synthesizing and presenting the predomi-
nate environmental conditions associated with each of the five clusters identified
in the heat map. Recall that the attributes are categorized into 7, 4, or 2 ordinal
categories, thus a histogram representing a distribution of the values taken by an
attribute in a given cluster consists of up to seven percentage-showing numbers.
Altogether, 173 numbers, ranging in values from 0 (absence of a given attribute
from cluster composition) to 1 (only a single value of a given attribute is present
in a cluster) represents a summary of a cluster. We propose a bar-code rep-
resentation of such summary. Such representation facilitates quick qualitative
comparison between different clusters. Fig. 4 shows the bar-coded description
for the five clusters corresponding to different biodiversity regimes. A cluster
bar-code contains 32 fragments each describing a composition of a single at-
tribute within a cluster. In Fig. 4 these fragments are grouped into five thematic
categories: terrain (6 attributes), climate (4 attributes), landscape elements (5
attributes), land cover (14 attributes), and stress (3 attributes). Each fragment
has up to seven vertical bars representing ordered categories of the attribute its
represent. If a given category is absent within a cluster the bar is gray; black
bars with increasing thickness denote categories with increasingly large presence
in a cluster.

The five regimes of high biodiversity differs on the first four terrain attributes
and all climate attributes. The landscape metrics attributes are similar except for
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Fig. 5. Spatial footprints of five pattern clusters. White – not high biodiversity region;
gray – high biodiversity region; purple (cluster #1), light green (cluster #2), yellow
(clister #3), blue (cluster #4), and red (cluster #5) – footprints of the five clusters.

regime #4. Many land cover attributes are similar indicating that a number of
land cover types, such as, for example, tundra, barren land or urban are absent
in all high biodiversity regimes. More in depth investigation of the bar codes
reveals that the regime #1 is dominated by the crop/pasture cover, the regime
#2 by the wood/crop cover, the regime #3 by the evergreen forest, and the
regimes # 4 and #5 are not dominated by any particular land cover. Finally,
environmental stress attributes are similar except for the federal land that is
more abundant within the regions defined by the regimes #3 and #4.

Spatial manifestation of the five clusters identified in the heat map are shown
in Fig. 5 where transactions (pixels) fulfilled by patterns belonging to different
clusters are indicated by different colors. Interestingly, different environmental
regimes (clusters) are located at distinct geographical locations. This geograph-
ical separation of the clusters is the result and not a build-in feature of our
method. In principle, footprints of different discriminative patterns may over-
lap, and footprints of the entire clusters may overlap as well. It is a property
of the biodiversity dataset that clusters of similar discriminative patterns have
non-overlapping footprints.

Note that in our calculations the label disambiguation module did not achieve
complete reconciliation between the region of high biodiversity and the union of
support of all discriminating patterns. The gray pixels on Fig. 4 indicate trans-
actions that are in the Op but are not in the union of support of all the patterns.
The ESTATE guarantees convergence of the disambiguation module but does
not guarantee the complete reconciliation of the two regions. However, perfect
correspondence is not required and, in fact, less than perfect correspondence pro-
vides some additional information. The gray areas on Fig. 4 represents atypical
regions characterized by infrequent combinations of environmental attributes.
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5 Discussion

A machine learning task of predicting labels of class variable using explanatory
variables became an integral component of spatial analysis and is broadly utilized
in many domains including geography, economy, and ecology. However, many
interesting spatial datasets possesses natural labels, or their labels can be easily
classified without resorting to machine-learning methods. We have developed the
ESTATE framework in order to understand such naturally occurring divisions in
terms of dataset attributes. In a broad sense, the purpose of ESTATE is reverse
to the purpose of a classification.

Many real life problems analyzable by ESTATE may be formulated in terms
of “spatial change” datasets (class labels change from one location to another).
Other real life problems, analyzable by ESTATE, may be formulated as “tem-
poral change” datasets (class labels indicate presence or absence of change in
measurements taken at different times), or “modal change” datasets (class la-
bels indicate agreement or disagreement between modeled and actual spatial
system). An expository example given in Section 4 belongs to the spatial change
dataset type. The biodiversity dataset has “natural” classes inasmuch as it can
be divided into high and no-high biodiversity parts just on the basis of the dis-
tribution of biodiversity measure. Note that classes other than ”high” can be as
easily defined; for example, for a complete evaluation of the biodiversity dataset
we would also define a “low” class. Other datasets (see, for example, [23]) have
prior classes and require no additional pre-processing.

It is noted that ESTATE (like most other data discovery techniques) dis-
covers associations and not causal relations. In the context of the biodiversity
dataset it means that ESTATE has found five different environments that asso-
ciate with high biodiversity but it does not proof actual causality between those
environments and high levels of biodiversity. It is up to the domain experts to
review the results and draw the conclusions. The causality is strongly suggested
if the experts believe that the 32 attributes used in the calculation exhaust the
set of viable controlling factors of biodiversity.

A crucial component of the ESTATE is the pattern similarity measure that
enables clustering of similar patterns into agglomerates. We stress that our
method does not use patterns to cluster objects, instead patterns themselves
(more precisely their footprints) are the subject of clustering. This methodol-
ogy can be applied outside of the ESTATE framework for summarization of any
transactional patterns as long as their items consist of ordinal variables. Fu-
ture research would address how to extend our similarity measure to categorical
variables.
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