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Abstract—Craters are important geographical features caused 

by the impacts of other celestial bodies. Craters have been widely 

studied because they contain crucial information about the age and 

geologic formations of a remote planet. This paper discusses an 

automated crater-detection framework using knowledge discovery 

and data mining (KDD process) including sampling, feature 

selection and creation, and supervised learning methods. The 

framework is evaluated on a real world case study on Mars crater 

detection. Compared with the existing method, the detection rate 

of F- measure is improved from 0.613 to 0.772 on a studied Martial 

site of area 451,562,500 m2. 

 

Session—Data Mining 

 
Index Terms—Patten Classification, Data Sampling, Data 

Preprocessing, Crater Detection Algorithm, Mars 

 

1. INTRODUCTION  

Impact craters, a.k.a. craters, are formed by high velocity 

collisions of solid celestial bodies onto the planet’s surface. Up 

to this point, scaling impact craters from remotely sensed 

images has been the only way to deduce the chronologic 

information of a remote planet. Furthermore, surfaces of planets 

which process more active ground motions contain less visible 

craters. Thus the ability of counting craters enables the effective 

study of the geology of a remote planet, and Mars has been at 

the center of Solar system exploration. Craters on Mars contain 

information about the past and present geological processes of 

this red planet. Mars craters larger than 5 km in diameter, about 

42,283 craters in total, have already been manually counted and 

catalogued [1] from planetary images. However, the huge shear 

number of small sub-kilometer craters makes it infeasible for 

manual detection. This paper focuses on automatic detection of 

sub-kilometer craters. 

The unique challenges of crater detection from remote images 

are as follows. Because of the eroding, burying, overlaying, and 

transforming problems during a crater life cycle, detecting 

circular-shape craters is more difficult than simply detecting 

perfect circles from images. Instead of using edge detection for 

circular crater rims, we observe that a crater can be recognized 

as a pair of highlight and dark crescent regions. First, image 

processing techniques, described in our early work in [2], are 

applied to remote sensing images, including removing irrelevant 

background, identifying crescent shapes, constructing crater 

candidates by combining highlight and dark regions. Second, 

we design and implement an automated crater-detection 

framework using knowledge discovery and data mining (KDD) 

process [3]. Training data is constructed using datum sampling 

method including SpreadSub sampling, Resample, and 

Cluster-based sampling. Mathematical morphology-based 

features are created for crater candidates. Then we use a greedy 

algorithm to search for the best features and the best classifiers. 

For the purpose of comparative study, we evaluate the 

performance of our framework at the same site centered on the 

Nanedi Valles on Mars used in [2]. The detection rate of F1 

measure has been improved significantly from 0.613 to 0.772, 

where 0.613 is the reported detection rate in [2]. 

 

 

1.1 Related Work 

Different methods on auto-detection of craters have been 

proposed in the following literature. Vinogradova et. al. 

developed a validation process applied to a 

feature-identification algorithm which is a typical template 

matching method [4]. Texture analysis is applied to crater 

detection in [5], which segments the images through the 

principal component analysis (PCA) of statistical texture 

measures. Honda et. al. developed a crater detection algorithm 

based on generalized Hough Transform to look for circular 

crater rims [6]. By computing the mapping between parameter 

space and image space, the algorithm can find the target objects 

within a certain class of shapes. The work most related to our 

framework is the crater-detection method proposed by Urbach 

and Stepinski in [2]. Similarly in [2], we identify a crater by two 

components: a bright region and a shadow region. Based on the 

preliminary work done in [2], we perform efficient KDD 

process [3] on feature creation and feature selection, training set 

sampling, and utilizing multiple classification methods to 

improve the detection accuracy.  
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1.2 Data Description 

The training set and testing set are constructed from a high 

resolution (12.5 m/pixel) panchromatic image h0905_0000 

centering on Nanedi Valles on Mars [7]. The image is taken by a 

High Resolution Stereo Camera (HRSC) onboard the European 

Space Agency (ESA) spacecraft Mars Express. The training and 

test sites each contains1700 × 1700 pixels, which covers an area 

of 451,562,500 m
2
, respectively. These two sites are connected 

and located between longitudes of 47°.82E and 48°.11E, and 

the latitudes of -9°.52N and -10°.03N on Mars. We apply the 

image processing method discussed in [2] to extract crater 

candidates from the images. According to this method, highlight 

shapes and dark shapes are identified separately from images. 

Then bright shapes and dark shapes are combined. Those 

combinations of highlight and dark regions are promising 

locations for possible craters, which is then called a crater 

candidate. Note that not all crater candidates are correspondent 

to true craters. Efficient knowledge discovery algorithms have 

to be applied for crater detection.  

 

1.3 Paper Organization 

The paper is organized as follows. Section 2 discusses the 

approaches on dataset sampling, data preprocessing and 

classification. Section 3 presents the results of the experiments. 

Section 4 gives a discussion about the results. Section 5 

concludes the paper. 

 

2. THE FRAMEWORK OF CRATER DETECTION  

To discuss our framework of crater detection, we focus on 

three major components of the procedure:  training set 

sampling, feature creation and selection, and classification. Fig. 

1 shows the main procedure of the framework. Candidates of 

craters are used as the input data in this procedure. Three 

sampling methods are applied on the training set: Resample [8], 

SpreadSub sampling [9] and Cluster-based sampling [10], a set 

of applied training sets are then built separately using the three 

sampling methods with different parameter settings. Those data 

sets are used as the training sets to build classification models 

and classification results from those training sets are compared 

and analyzed to identify the most efficient sampling method. 

Before the step of classification, two more procedures should be 

done on both training and test sets: feature creation and 

selection, in which feature selection uses the following three 

methods: T-test, area under the curve (AUC) and a greedy 

algorithm. T-test and AUC are traditional statistical methods, 

while the greedy algorithm is a new feature selection method. 

Multiple sampling methods act across on multiple feature 

selection methods and different classification methods of SVM, 

Boosting with decision tress, and an ensemble voting 

classification method.  

2.1 Training Set Creation 

Our framework is based on supervised learning; constructing 

a training set is the first step. A domain expert manually labels 

true craters on the image, which is used as the ground truth for 

our case study. In our framework, crater candidates are 

automatically indentified from the image. Crater candidates are 

labeled using the ground truth with the calculation done by the 

tool ArcGIS [11]. A method is developed to match the candidate 

shapes identified in an image automatically by our algorithm to 

the ground truth marked manually by the domain expert, with 

the purpose of labeling candidate shapes as true craters or 

non-craters. We deem the match criteria to be that the candidate 

shape in question must cover greater than 50% of a ground truth, 

and the ground truth must cover greater than 50% of the 

corresponding candidate shape. If the area-threshold 50% is 

met, then the candidate shape is considered to be a true crater. 

 

2.2 Training Set Sampling  

Since improved machine detection on craters is largely 

dependent upon improved training set creation, the original 

training set is sampled using several different methods. This 

sampling helps to avoid model overfitting to the training set, and 

it produces a more universally representative sample to be used 

on the testing set. 

An explanation of the various sampling methods is as 

follows: 

Method 1) Resample: Resample is a statistical processes 

which randomly picks instances from the original data sets. By 

observing the data set, the imbalance between crater candidates 

and non-crater candidates is obviously presented. In the training 

set, there are 479 true craters and 934 non-craters. Non-crater 

candidates have almost twice the number as the crater 

candidates.  

 

Fig. 1: Flow Chart of Main Procedure. 

 



 

Method 2) SpreadSub sampling method: Compared with 

Resample, SpreadSub sampling is more related to stratified 

sampling. This method pre-specifies the maximum difference 

between the most common class and the rarest class. By 

applying SpreadSub sample method, the proportion of the two 

classes can be brought under control. In our method, a different 

distribution spread is adjusted as the most important parameter 

to get the optimal result on classification. 

Method 3) Cluster-based sampling method: This method uses 

clustering techniques in data mining to divide training datasets 

into clusters of “similar” objects. The similarity of two objects 

can be calculated as the distance between them. For instance, if 

each object is represented by a vector of N attributes, the 

distance between two objects can be a Euclidean distance. The 

purpose of clustering is to select the best representatives of each 

cluster for new training datasets. Intuitively, if the training 

datasets are well-clustered, i.e. the diversity of datasets is 

distributed properly in groups, and the best candidates from 

clusters are chosen, then better represented training datasets will 

be generated.  

We use the simple KMeans clustering technique. The 

Cluster-based sampling algorithm is explained in Table 1. First 

the algorithm splits the original training set into crater set and 

non-crater set. Then it applies the Cluster-based sampling 

method on each of them. To make the new training sets be 

representative, the algorithm picks a number of n instances from 

each cluster. These instances compose the new training sets. For 

each new training set, F-measure is calculated. The training sets 

get the best F-measure value, which is then used to build the 

model and classify the test set.  

F-measure is the external evaluation of the classification. In 

our training set, for example, there are 479 true craters and 934 

non-craters. Thus if the classifier labels all candidates as false 

craters, the accuracy of the classification is 66.10%. However, 

successful detection of true craters is considered more 

significant than detection of non-craters. F-measure is an 

appropriate evaluation metric for crater detection. F-measure is 

defined as 2

2

TP

TP FP FN



  
, where True Positive (TP) is those 

true craters which are also classified as craters by the classifier; 

False Positive (FP) is those non-crater candidates misclassified 

as craters by the classifier; False Negative (FN) is those true 

craters that are misclassified as non-craters by the classifier.  

 

2.3 Feature Creation and Selection 

In [2], 15 attributes are used to describe features. Table 3 

discusses the meaning of all attributes. To further improve the 

training set we attempt to create 4 new attributes which would 

exhibit a strong correlation with the class attribute. 

Additionally, we seek to select a subset of existing old and new 

attributes which would exhibit a strong correlation with the 

class distribution. 

 

2.3.1 Feature Creation 

In order to help improve our classification accuracy, we use 

the Zonal Geometry function in ArcMap [11] to generate new 

attributes for the training and test sets.  This function calculates 

several geometric measurements for polygons, including area, 

perimeter, thickness, centroid coordinates, major and minor 

axes, and orientation. After generating these new attributes, they 

are tabulated and matched to the index of the features and Class 

fields from the training set and test set candidate files.  Multiple 

combinations of the new attributes are created by dividing one 

attribute by another to produce a ratio, which is not specific to 

the size of the crater. Finally, all new attributes are evaluated by 

generating Receiver Operating Characteristic (ROC).  The 

attributes with the highest Area Under the Curve (AUC) are 

selected and added to the training sets and candidate sets. 

 
TABLE 1  

PSUEDO CODE FOR CLUSTER-BASED SAMPLING ALGORITHM 

Input:      TS: original training set 

                n: number of training examples to be generated 

Variable:     CS: crater set 

                    NS: non-crater set 

                    c: clusters of objects 

                    r: representatives instances 

                   dCS, dNS: temporary dataset for craters and non-crater, 

respectively 

                   Np: new dataset with p objects 

                   fp:  F-measure value 

                  k: numbers of clusters 

                  p: numbers of objects picked from each clusters. 

 Output:    N: new training set 

Method: 

1) (CS, NS) = Split (TS) 

2) FOR CS or NS do: 

        c = SimpleKMeans (CS or NS, k) 

        FOR each cluster in c do: 

              rp = select a number of  n instances in each cluster 

            dCS or NS =dCS or NS rp 

       END FOR 

   END FOR 

3) Np = dCS dNS 

4) FOR each Np: 

         fp = Calculate F-measure (Np) 

   END FOR 

5) N = Np where fp is the highest. 

6)Output N 

END 

 

 

2.3.2 Feature Selection 

Among the 19 features used, some of them are not 

representative enough to differentiate the craters from the 

non-craters. Thus features are selected with 3 different methods 

in order to get the best F-measure on classification.  

Method 1) Area Under the Curve. All attributes are evaluated 

by generating Receiver Operating Characteristic (ROC) curves.  

The area under the ROC curve of a feature, denoted as AUC 

(area under the curve), is a good indicator of the discriminating 

power of the feature.  The features with the high area under 

curve (AUC) are selected. ROC curve areas are calculated for 

the combined list of original and newly-generated features, and 

then ranked from highest to lowest AUC. Features with larger 

values in AUC should provide better classification results; this 

has been confirmed by empirical results in [12]. Setting a series 

of minimum AUC thresholds, a different set of features are 

selected. For each test, the features with AUC below the 



 

specified threshold are deleted and the modified training set is 

run on the test set.   

Method 2) T-test. Independent sample T-tests are conducted 

to determine whether there is a significant difference in mean 

attribute values between the classes. Mean attribute values with 

the greatest difference are considered to be most useful in 

distinguishing between the two classes. Attributes that are not 

significant at a user-defined confidence levels are eliminated.   

Base on AUC and T-test values, all attributes are sorted by the 

AUC and T-test from best to worst. Best 1 till n attributes will 

construct corresponding data sets which contains 1 to n 

attributes only. After applying i-attribute training set on 

different classifiers, we compare the F-measure of them and 

then get the best training set which contains all the attributes we 

want to select.  We name this method Stepping Increasing 

method. 
TABLE 2  

PSUEDO CODE FOR GREEDY FEATURE SELECTION ALGORITHM 

Input:        {A}: whole attribute set 

                  n: total number of attribute 

Variable:   a: attribute 

                  TS: temporary data set, initially is  which contains no 

attribute. 

                  f: F-measure 

                  DSi: i-attribute data set, which contains i attributes. 

Output:      FDS: final data set 

                 ff: final F-measure 

Method: 

1) FOR i in [1, n]: 

        FOR each attribute { }ja A  which has not been selected yet: 

                DSj=add aj to DSi 

                 fj = calculate F-measure (DSj) 

            END FOR 

        IF DSj has the best fj: 

                 DSi = DSj 

                 fi = fj 

                     Classifier parameters setting 

         IF  fi+1< fi: 

                 FDS = DSi 

                 ff = fi 

                 BREAK 

   END FOR 

2) Output FDS, ff 

END 

 

Method 3) Greedy algorithm. A greedy approach is used for 

feature selection. When facing multiple choices, a greedy 

algorithm always follows the method which will bring the best 

result calculated within the current situation. In our greedy 

method, different features are treated as the different choices. 

Among all the features which have not been chosen so far, the 

one which brings with the best F-measure value is added to 

describe the candidate crater shapes using 10-fold cross 

validation on the training set. By applying this method, no more 

calculation needs to be done for measuring the quality of 

features. One feature will be chosen if and only if it shows the 

implication that implies the best result. The pseudo-code of the 

algorithm is shown in Table 2. During feature selection, since 

there are 19 attributes in the training set, one training set is split 

into 19 one-attribute attribute training set. Then, these 19 

training sets are used to classify the test sets and compare the 

F-measure of them. Keep the attribute which gets the best 

F-measure in the training set, and add one more attributes 

among the left 18 to the training set. Thus we get 17 2-attribute 

training sets. Use these 2-attribute training sets do the 

classifying and keep the new attribute which get the best 

F-measure with the first one. Based on this 2-attribute training 

set, and expand the attribute list until we cannot improve 

F-measure anymore.  

 In general, the only difference between the greedy algorithm 

with T-test/AUC and pure greedy algorithm is the criteria of 

feature selection. The first one considers the statistic value of 

each attribute when the later one only takes the classification 

results (with these attributes) into consideration. 

 

2.3 Classification on Crater Detection 

This section discusses the supervised learning algorithms 

which are tested and selected for crater detection. Various 

training sets are used as model input for supervised 

classification of both training and testing sites. During the 

sampling steps, around 150 training sets are created with 3 

sampling methods and the best 3 training sets are applied where 

each of them represents the best training set of its sampling 

method. Around 500 experiments have been done to find the 

best F-measure of Greedy algorithm. For AUC and T-test 

feature selection method, each of them experiments 760 times 

for seeking the best F-measure. About another 500 experiments 

are done to seek the best classifier and paprameter. All 

experiments including classification, parameterization, model 

induction, and performance metrics are implemented using Java 

inside the 64 bit Microsoft Windows environment with an 8 GB 

RAM workstation. Python 2.6 serves as the primary tool for a 

test driver on running those experiments. Previous experiments 

and domain research direct our focus surrounding four major 

classification algorithms: SMO, LibSVM, 

AdaBoostM1/MultiBoostAB with J48 and Vote. 

To get the best parameter setting of each particular classifier, 

a greedy search method is applied. Usually there are a couple of 

parameters for one classifier. To tune one parameter, the other 

parameters are kept unchanged. The tuned parameters will not 

be changed again once its local optimal value is identified. 

 

2.3.1 Support Vector Machine: SMO & LibSVM 

Support Vector Machine (SVM) [13] is a supervised 

classification method, constructing high-dimension hyperplane 

to divide data into two classes. Kernel mapping functions are 

applied to project and transform data into different dimensional 

spaces which are easier to separate data into classes. Kernel 

mapping functions are powerful to use to resolve the grouping 

problem with complicated boundaries. Different types of 

Kernel, however, have different dominance on different types of 

data, which directly decide the performance of the 

corresponding SVM algorithm. There are 4 Kernel Functions 

implemented by Weka 3.6 [9]: Linear: u’*v, Polynomial: 

(gamma*u’*v + coef0)^degree, Radial basis function (RBF): 

exp(-gamma*|u-v|^2) and Sigmoid (feed-forward neural 

network): tanh(gamma*u’*v + coef0). In our paper, tests are 

conducted for all these 4 Kernel functions using SMO [9] and 



 

LibSVM [14].  

 

2.3.2 Boosting Algorithm: AdaBoostM1/MultiBoostAB with 

j48 

J48, an implementation of the C4.5 decision tree, applies a 

greedy method to induce the classification model. A decision 

tree is a simple and quick classification technique. .  

AdaBoost [15] is short for the adaptive boosting machine 

learning algorithm. By repeating certain iterations, AdaBoost 

will construct the weight distribution data base for the weak 

classifier. By absorbing the weight knowledge from AdaBoost 

method, classifiers like decision trees will dramatically improve 

classification result. AdaBoostM1 is AdaBoosting with the M1 

[16] method, which is designed to handle multi-class data sets. 

The method requires the basic classifier to be comparatively 

strong with an error rate of less than 50%.  

MultiBoostAB [9] has been proved to significantly reduce 

errors when assisting the classification. This decision committee 

learning method combines AdaBoost with wagging (Wagging 

trains the entire training set but assign a stochastic weight to 

each instance.) [17] and the output of which is usually 

performed by majority voting. MultiboostAB shows the 

strengths of both AdaBoost and wagging. This combination 

allows MultiBoostAB to develop those two decision 

committees and keep both classified members. It offers great 

advantages and more efficiently works with decision trees. 

 

2.3.3 Ensemble Method: Voting 

Voting [9] is a meta-algorithm which decides the class label 

by combining the results of different classifiers. The 

combination rules are crucial. In our framework, we apply 

average of probabilities, majority voting, and maximum 

probability combination rules. 
 

3. EXPERIMENTAL RESULTS 

In this section we discuss the evaluation results of applying 

our framework to a real work case study on Mars crater 

detection. Evaluations are performed to gauge the comparative 

performance within and between, the sampling methods, feature 

creation and selection, classification and parameterization. 
 

3.1 Sampling Methods 

Method 1) Resample: The Resample routine is run in a series 

of experiments which used various adjustments in the 

aforementioned parameters to generate 32 different training 

sets. Fig. 2 shows the performance of the Resample method 

using different parameter settings. Based on these performance 

results, several “best” parameter combinations are also 

adjusted, and then tested.  The best performance is achieved 

when sample size is 80% of the original training set.  

Method 2) SpreadSub sampling: Fig. 3 shows the 

performance of methods with different values on parameters 

DistributionSpread and MaxCount, which have a major effect 

on the result. The best subsample is found when the filter 

parameters are set as AdjustWeights=False, 

DistributionSpread=1.5, MaxCount=0 and RandomSeed=5.  

Method 3) Cluster-based sampling: There are two testing 

routines done. In the first routine, the P (numbers of objects) is 

adjusted while the K (numbers of clusters) is fixed. In second 

routine, the number of clusters is adjusted while P is fixed. P is 

tested in a range from 65% to 95%. To summarize, the best 

F-measure obtained by the Cluster-based sampling, specifically 

the K-Means sampling, is when 0.763 cluster numbers of craters 

is equal to 9, and when clusters number of non-craters are equals 

to 12, and 80% of the objects in the original training datasets are 

selected. The result is illustrated in Fig. 4. 

 

 
Fig. 2: Resample Method  

 

 

 
Fig. 3: SpreadSub Sampling Method (a) the parameterizing of 

distributionSpread. (b) MaxCount selection. 

 



 

 
Fig. 4: Cluster-based Sample Parameter Setting. (a) shows the F-measure 

changing with different objects number. (b) F-measure with different cluster 

number.  

 

3.2 Feature Creation and Selection 

The newly created features are Ellipticity, PeriMinor, 

RecipOrient and MajorThick. The equations to create these new 

attributes are Major Axis/ Minor Axis, Perimeter/Minor Axis, 

1/(Orientation+1) and Major Axis/Thickness separately. 

Thickness is defined as the radius of the largest circle that can be 

drawn within the polygon.  This should be close to the diameter 

when a crater is nearly circular.  For an elliptical polygon, the 

major axis is the longest diameter, and the minor axis is the 

shortest diameter.  Orientation is the direction of the major axis 

in degrees counterclockwise from 0, up to a maximum of 180.  

ROC curve areas of the newly created attributes are the criteria 

used to justify the newly created attributes which are 0.678, 

0.707, 0.620 and 0.594. Table 3 shows the description of all 

attributes. 

Orientation is one of the attributes that initially fell below the 

0.5 threshold, but the AUC is improved by calculating the 

reciprocal. The value is increased by 1 because some craters 

have an orientation of 0, which results in a null calculation when 

the value is inverted. PeriMinor has the highest AUC of the new 

attributes, ranking 6
th

 overall when compared to the original 

attributes, followed by Ellipticity and RecipOrient. MajorThick 

is 10
th

 in the list of all 19 attributes evaluated in the AUC feature 

selection algorithm. 

Using the T-test attribute selection method, Hu5, Hu7, Hu6 

and BrightLength shows weak evidence of a difference in mean 

values between the crater and non-crater groups. Table 4 shows 

the T-test values for all attributes. For greedy algorithm feature 

selection based on T-test value, the best result comes from the 

test set which does not contain Hu7.  

Greedy algorithm is different from the AUC and T-test where 

it cannot give any particular standard to evaluate attributes. 

However, in greedy algorithm, F-measure is the sufficient 

criterion of feature selection. Using 10-fold cross validation, all 

three sampling method is applied to select the best one attribute 

and SMO with SpreadSub sampling method gives the best 

1-attribute test set. The other best attributes selected are 

DarkElongation (F-measure is 0.579), Hu1 (F-measure is 

0.620) and Hu3 (F-measure is 0.533) with Resample, 

SpreadSub sampling and Cluster-based sampling method 

separately. The best attribute with its sample method is thus kept 

using to search the best 2 to N attribute until the optimal  

 
TABLE 3 

ATTRIBUTES DESCRIPTION 

Attribute Names Description 

BrightLength 

(BrtLen.) 
size of the bright region  

Distance 2 2( ) ( )a b a bx x y y   , where (xb,yb) is the center of the 

bright region, and (xs, ys) is the center of the shadow region.  

AreaRatio size of the bright region

size of the shadow region

, if the first value < 1, then   

size of the shadow region

size of the bright region

 

BrightElongation 

(BrtElg.) 

elongation of the bright region (seems to be the first of Hu’s 

7 moments invariants with some adjustment) 

DarkElongation 

(DarkElg.) 

elongation of the shadow region (seems to be the first of 

Hu’s 7 moments invariants with some adjustment) 

BothElongation 

(BothElg.) 

elongation of the combined region (seems to be the first of 

Hu’s 7 moments invariants with some adjustment), which 

is the crater candidate constructed by pairing bright and 

shadow regions 

Dissimilarity 

(Dissmlrt.) 

Euclidean distance between bright and shadow regions 

using Hu’s 7 moments as the attribute vector 

Circularity 

(Circlrt.) 

Compare the size of the bright and shadow regions with a 

perfect circle. This value is a ratio = (the area of the bright 

and shadow regions)/(the size of a perfect circle in a 

compatible size) 

Hu1 Hu’s Moment 1 

Hu2 Hu’s Moment 2 

Hu3 Hu’s Moment 3 

Hu4 Hu’s Moment 4 

Hu5 Hu’s Moment 5 

Hu6 Hu’s Moment 6 

Hu7 Hu’s Moment 7 

Ellipticity  Major Axis/ Minor Axis 

PeriMinor  Perimeter/Minor Axis 

RecipOrient 

(RcpOrt.) 

1/(Orientation+1) 

MajorThick 

(MjorTh.) 

Major Axis/Thickness 

 
TABLE 4 

ATTRIBUTES RANKED BY THREE FEATURE SELECTION METHODS 

Ranked Attribute 

AUCs 

T-test for Equality of 

Means 

Attribute Step Adding 

Attributes Area Attributes Equal 

Variances 

Assumed 

Attributes F-measu

re with 

attribute 

1 to  

current 

Hu1 0.813 Hu1 2.86E-81 Hu1 0.620 

DarkElg. 0.760 DarkElg. 1.71E-59 Dissmlrt. 0.616 

Hu4 0.759 Hu2 5.47E-41 Hu3 0.625 

Hu3 0.752 Hu3 1.50E-36 Hu4 0.621 

Hu2 0.740 PeriMinor 4.28E-34 Hu5 0.625 

PeriMinor 0.702 Ellipticity 9.71E-24 Hu6 0.626 

Ellipticity 0.674 Circlrt. 1.98E-13 Hu7 0.626 

RcpOrt. 0.623 Hu4 1.30E-12 Hu2 0.629 

Circlrt. 0.620 BothElg. 1.07E-09 DarkElg. 0.703 

MjorTh. 0.596 AreaRatio 3.15E-06 BothElg. 0.738 

Hu5 0.584 Distance 5.59E-06 BrtElg. 0.752 

Hu6 0.575 MjorTh. 2.07E-05 AreaRatio 0.753 

AreaRatio 0.556 BrtElg. 0.005 BrtLen. 0.754 

BrtElg. 0.549 Dissmlrt. 0.015 Distance 0.763 

Dissmlrt. 0.539 RcpOrt. 0.020 RcpOrt. 0.754 

BrtLen. 0.538 BrtLen. 0.046 Ellipticity 0.755 

Hu7 0.492 Hu6 0.068 MjorTh. 0.755 

BothElg. 0.410 Hu5 0.208 PeriMinor 0.738 

Distance 0.389 Hu7 0.907 Circlrt. 0.739 

 



 

F-measure is found.  As shown in Table 4, the method can 

provide the best F-measure 0.763 when applying 14 attributes, 

Hu1, Dissimilarity, Hu3, Hu4, Hu5, Hu6, Hu7, Hu2, 

DarkElongation, BothElongation, BrightElongation, 

AreaRatio, BrightLength and Distance. 

 

 

3.3 Classification and Parameterization 

Both SMO and libSVM classifiers are used to test the 

Stepping Increasing AUC/T-test method with different 

sampling methods. According to the F-measure, SMO gives a 

better result for the most time. To avoid the impact from 

different numbers of attributes on the performance of kernels, 

all the Kernels are used to work on different n-attribute set. The 

best results are all given by the SMO Normalized Polynomial 

kernel. The comparison of different sampling method is given as 

the Table 5. Table 5 also contains the result of the greedy 

algorithm with the SMO and libSVM classifiers.  
 

TABLE 5 

BEST F-MEASURE OF DIFFERENT SAMPLING METHODS AND CLASSIFIERS 

   Best 

F-measure 

# of 

attribute 

used 

SpreadSub AUC SMO 0.7498 18 

libSVM 0.6688 18 

T-test SMO 0.7476 18 

libSVM 0.6650 16 

Greedy SMO 0.7630 14 

libSVM 0.7359 14 

Cluster-based AUC SMO 0.7434 18 

libSVM 0.6430 18 

T-test SMO 0.7416 18 

libSVM 0.6288 10 

Resample AUC SMO 0.7430 19 

libSVM 0.6424 18 

T-test SMO 0.7473 18 

libSVM 0.6395 10 

 

From Table 5, it is obvious that the greedy algorithm gives the 

highest F-measure using SMO. Comparing SMO and libSVM, 

SMO is generally better than libSVM. The difference of 

F-measure between these two classifiers is about 0.1. In greedy 

algorithm however, it is less than 0.03. It shows that greedy 

feature selection algorithm is more consistent with different 

classifiers. Since the second highest F-measure is given by 

SpreadSub sampling method (highlighted in bold red in 

Table 5), the same training and test sets are also used to 

compare different classifiers.  

After carefully adjusted the classifier parameters of SMO, the 

best F-measure among AUC and T-test data set is 0.7649. Using 

the same sampling method but with the first 18 AUC attributes 

on MultiBoostAB with j48, the F-measure is 0.7720, which is 

also the highest F-measure has ever gotten. The highest 

F-measure for the greedy algorithm is 0.763. If applying 

MultiBoostAB with j48 on best greedy algorithm data set, the 

F-measure is 0.764, which is also very close to the F-measure 

gotten from the SMO. It confirms that the different classifier 

does not impact the classification result on greedy algorithm 

data set.  In the experiment of voting classifier, MultiBoostAB, 

SMO Normalized Polynomial Kernel, LibSVM with linear, 

RBF, Sigmoid Kernels respectively are applied. The F-measure 

is 0.750 (sampling method: SpreadSub Sample, feature selction 

method: Stepping Increasing of AUC, 18 attributes).  

 

4. DISCUSSION 

Table 4 shows three feature selection methods. In all these 

three method, the best feature selected is Hu1. Hu moments are 

a set of image weighted average values which described 

rotation, scaling, and translation invariant. Hu1, like the 

moment of inertia among the centroid in physics, implies how 

much the distribution of the images gather in the horizontal and 

vertical axes. On the other hand, it implies if the image is easy to 

rotate or not. In our case, a crater is considered as a pair of  

bright and dark regions, thus the ability of rotation is important 

to decide if a candidate is a true crater or not. This means that 

the dark distribution of a true crater has a certain pattern. So it is 

not surprising that all three feature selection methods select Hu1 

as the best feature.  Also in Table 4, the ranks of some features 

in greedy feature selection algorithms are different from those in 

traditional static feature selection methods (AUC/T-test). 

DarkElongation, for example, in both AUC and T-test is at the 

second order in the table. In the greedy feature selection 

algorithm, DarkElongation is ranked in the middle part. It is 

because that, that DarkElongation describes the similar 

character of a crater with Hu1 moment. Consequently, though it 

can differentiate craters and non-craters well, it cannot enhance 

the performance of the classifiers further when Hu1 is already 

applied in the data sets. 

 

 
Fig. 5: Error Rate  

 

In Fig. 5, error rate is compared among four sampling 

methods. The error rate is calculated by the following equation: 

4×(FN+FP)/(TP+TN+FP+FN). It is quite interesting that 

SpreadSub sampling method gives the highest error rate in 

training set but lowest error rate in test set. Resample gives the 

totally reverse result. It shows that the model built according to 

the Resample training set is overfitted to a particular training 

set. If there is any noise in the training set, it will lead to an error 



 

classified for the test set. According to Fig. 5, this problem does 

exist. 

5. CONCLUSION 

In the paper, we discuss a framework to improve the accuracy 

of Mars crater detection using KDD process. One 1700 × 1700 

pixel tile is manually labeled and used as a training set while the 

same size of an adjacent image tile is used as a test tile. We 

made improvements on the data sets’ sampling, feature creation 

and selection, and classification. The F-measure, as the main 

evaluation, is enhanced from 0.613 to 0.772. This result is 

obtained from the SpreadSub Sampling training set, with 

Stepping Increasing AUC feature selection method and the 

classifier is MultiBoostAB with j48. Fig. 6 shows the classified 

test set which got the highest F-measure. 

 

 
Fig. 6: Classification Result on the test set. Yellow features are TP, red features 

are FP, and blue features are FN. 

The newly created feature selection method, greedy Stepping 

Increasing feature selection algorithm, shows its high accuracy 

and consistency.  
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