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Abstract

A special challenge for spatial data mining is that
information is not distributed uniformly in spatial data
sets. Consequently, the discovery of regional knowledge
is of fundamental importance. Unfortunately, regional
patterns frequently fail to be discovered due to insuf-
ficient global confidence and/or support in traditional
association rule mining. Regional association rules,
by definition, only hold in a subspace but not in the
global space. One novel challenge is how to evaluate
the impact of regional association rules. This paper
centers on regional association rule scoping. We intro-
duce a reward-based region discovery framework that
employs clustering to find places where regional asso-
ciation rules are valid. We evaluate our approach in a
real-world case study to discover arsenic risk zones in
the Texas water supply. The experimental results are
validated by domain experts and compared with pub-
lished results on arsenic contamination.

1 Introduction

The goal of spatial data mining is to automate the
extraction of interesting, useful but implicit spatial pat-
terns [10, 12, 16]. One special challenge in spatial data
mining is that information is usually not uniformly
distributed in spatial data sets. It has been pointed
out in literature that “whole map statistics are sel-
dom useful”, that “most relationships in spatial data
sets are geographically regional, rather than global”,
and that “there is no average place on the Earth’s sur-
face”[8, 13]. Therefore, it is not surprising that domain
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experts are most interested in discovering hidden pat-
terns at a regional scale rather than at a global scale.

Unfortunately, when using traditional association
rule mining, regional patterns frequently fail to be dis-
covered due to insufficient global confidence and/or
support. A common approach to alleviate the problem
is using a small support threshold, but this approach
usually suffers from a combinatorial explosion in the
number of rules generated. Selecting a proper confi-
dence threshold is even more subtle. Let’s consider an
association rule that suggests a well up to 251.5-feet
deep is associated with dangerous arsenic levels:

depth(X, 0− 251.5) → arsenic level(X, dangerous)

Assuming that the minimum confidence threshold is
70%, the pattern is not strong enough to be identified
globally in Zone A and Zone B (see Table 1) because
its confidence, 1000

2000 = 50%, is less than the minimum
confidence threshold. But in Zone A the rule holds be-
cause its confidence, 400

500 = 80%, is above the threshold.
Notice that this rule does not hold in Zone B, due to
its low confidence ( 600

1500 = 40%). This reversal of the
direction of an association in the global dataset is also
known as Simpson’s Paradox in statistics [6].

Regional association rules, by definition, only hold
in a subspace but not in the global space; therefore,
regional association rules may only be discovered in a
particular subspace of the global space. This fact leads
to novel challenges for regional association mining: how
to determine regions from which regional association
rules will be derived and how to evaluate the impact of
regional association rules. The first problem has been
addressed in our previous work in [5]. The goal of this
paper is to address the second issue by utilizing the du-
ality between regional patterns and regions where the
patterns are supported: regions are used to discover re-
gional association rules, and then regional association
rules are used to determine regions in which the asso-
ciation rules are valid. Such regions provide a quanti-
tative measure of how significant a regional association
rule is in the global space.

This paper proposes an approach that computes the
scope of regional association rules by employing a clus-
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Well Depth Dangerous Safe Total
(0, 251.5] 1000 1000 2000
(251.5, ∞) 1200 800 2000
Total 2200 1800 4000

Well Depth Dangerous Safe Total
ZoneA (0, 251.5] 400 100 500

(251.5, ∞) 1050 450 1500
ZoneB (0, 251.5] 600 900 1500

(251.5, ∞) 150 350 500
Total 2200 1800 4000

Table 1. Contingency tables between well
depth and arsenic concentration.

tering algorithm in such a way as to maximize an ex-
ternally given fitness function. The fitness function is
especially constructed to encode the preferences of a
domain expert. Each cluster is assigned a “reward”
value. A cluster receives higher reward if a regional
association rule exhibits stronger confidence and sup-
port. We empirically evaluate the effectiveness of our
method using a real-world dataset describing the ar-
senic ground water pollution in Texas, a problem for
which the identification of causality of arsenic contam-
ination is of great interest to domain scientists. Our
experimental results not only confirm and validate re-
search results in geosciences, and also lead to the dis-
covery of novel findings that need to be further stud-
ied by domain experts. Figure 1 illustrates the basic
procedure of our approach. An association rule a, the
wells with nitrate concentration lower than 0.085mg/l
have dangerous arsenic concentration level, is discov-
ered from an arsenic hot spot area in South Texas with
100% confidence. The scope of the association rule a
is a much larger area which mostly overlaps with the
Texas Gulf Coast. Statistical analysis shows that the
rule a cannot be discovered at Texas state level due to
its insufficient confidence (less than 50%).

Related Work. To our best knowledge, no previ-
ous work has been done in spatial data mining to de-
termine the scope of association rules. The areas most
relevant to our work are spatial association rule mining
[10], co-location mining [17], and localized association
rule mining [2].

Spatial association rule mining [10] extends associ-
ation rule mining to spatial data sets. It denotes asso-
ciation relationships among a set of predicates, where
there exists at least one spatial predicate. Co-location
mining [17] identifies a subset of boolean spatial fea-
tures whose instances are frequently located together in
close proximity. Both approaches focus on finding fre-
quent, global patterns that characterize the complete

Figure 1. An example Regional Association
Rule Scoping.

dataset, whereas our approach centers on finding in-
teresting places where associations of a subset of non-
spatial features hold. Localized association rule mining
[2] is a similar approach as ours: it discovers associa-
tion rules that hold in local segments of the basket data
that are determined using clustering, but their discov-
ery is limited to non-spatial basket datasets.

Contributions. We define and address a previ-
ously unstudied problem of regional association rule
scoping. We propose a unique reward-based region
discovery framework that employs clustering to find in-
teresting subspaces for regional association rules. We
evaluate our method in a real-world case study that
identifies interesting associations and places in Texas
with respect to arsenic risk patterns.

2 An Integrated Approach for Regional
Association Rule Scoping

2.1 Measuring the Interestingness of a Set
of Regions

Our region discovery method employs a reward-
based evaluation scheme that evaluates the quality of
the generated regions. Let D be a spatial dataset, and
S = {s1, s2, . . . , sl} be a set of spatial attributes, such
as longitude or latitude; A = {a1, a2, . . . , am} be a set
of non-spatial attributes (continuous attributes are re-
quired to be transformed into nominal attributes); let

I = S ∪A

= {s1, s2, . . . , sl, a1, a2, . . . , am}



be the set of all the items in D. Given a set of regions
R = {r1, . . . , rn}, the fitness of R is defined as the
sum of the rewards obtained from each region ri (i =
1 . . . n).

q(R) =
n∑

i=1

(i(ri)× |ri|β) (1)

where i(ri) is the interestingness measure of region ri

with respect to a given association rule. |ri|β (β > 1)
in q(R) increases the value of the fitness nonlinearly
with respect to the region size |ri|. The amount of
premium put on the size of the region is controlled by
the user-determined value of parameter β. The evalu-
ation scheme encourages the merging of regions if their
overall interestingness does not decrease.

We use a clustering algorithm to seek for a set of
clusters (regions) such that the sum of rewards over
all of its constituent regions is maximized. A region is
identified as a cluster that receives a high reward. It
is a contiguous subspace that contains a set of spatial
objects. For each pair of objects belonging to the same
region, there always exists a path within this region
that connects them. We search for regions r1, . . . , rn

such that:

1. ri ∩ rj = ∅, i 6= j. The regions are disjoint.

2. R = {r1, . . . , rn} maximizes q(R).

3. r1∪. . .∪rn ⊆ D. The generated regions are not re-
quired to be exhaustive with respect to the global
dataset D.

4. r1, . . . , rn are ranked based on the reward values.
Regions that receive no reward are discarded as
outliers.

2.2 Association Rule Scoping

The goal of association rule scoping is to compute
a set of regions where a given association rule is valid.
Let a be an association rule, r be a region, conf(a, r)
denotes the confidence of a in region r, and sup(a, r)
denotes the support of a in r.

Definition 1. The scope of an association rule a
is the regions where the association rule a satis-
fies the min sup and min conf thresholds, where
min sup and min conf are the corresponding sup-
port and confidence thresholds.

In fact, the scope of a regional association rule repre-
sents the spatial impact of this regional pattern.

We define the interestingness, i(r), of region r with
respect to a given association rule a as follows:

i(r) =



0, if sup(a, r) < min sup× δ1 or
conf(a, r) < min conf × δ2,

( sup(a,r)
min sup )η1( conf(a,r)−min conf×δ2

1−min conf×δ2
)η2 , otherwise.

(2)

A region’s reward is proportional to its interesting-
ness, which is determined based on the confidence and
support of association rule a in region r. In Equation
2, the threshold min sup × δ1 and min conf × δ2 are
introduced to weed out regions in which the associa-
tion a barely holds. The minimum support and con-
fidence thresholds prevent the clustering solution from
containing large clusters of low interestingness. Val-
ues of parameters η1 and η2 (η1, η2 > 0) determine the
weight to the increment of the support and confidence
respectively.

The measure of interestingness is designed to effi-
ciently identify the scope of a given regional association
rule. Firstly, in contrast to traditional association rule
mining, the proposed measure of interestingness uses
“soft” instead of “hard” thresholds to avoid a crisp ef-
fect [4]. For example, with δ1 = δ2 = 0.9, it rewards re-
gions as long as their confidence or support thresholds
are within 90% of the hard thresholds min conf and
min sup. Assume min sup = 10%, min conf = 80%,
and an association rule whose support is 9% and confi-
dence is 100% in a region r′. Instead of assigning zero
reward to the region r′, we argue to reward the region
because the confidence of the rule is significantly above
min conf threshold and its support is just a little bit
lower (1%) than the min sup threshold. Secondly,
our approach uses a quantitative evaluation method
that assigns higher degree of interestingness and con-
sequently higher reward to regions whose support and
confidence are high with respect to an association rule
of interest. Thirdly, once an association rule a is dis-
covered from a particular region r, we already know
that the region r from which a is originated, receives
a positive reward due to the fact that a satisfies the
support and confidence threshold in r.

2.3 Other Applications of Regional Asso-
ciation Rule Scoping

Association rule scoping has many applications that
lie outside of the regional association mining methodol-
ogy we just introduced. First it is important to empha-
sis that our approach can be applied to any spatial as-
sociation rules, including global association rules. For
example, a domain expert can check whether an ar-
senic association, which is valid in Texas, also holds



in Bangladesh, a country that has serious arsenic con-
tamination in drinking water. Second, a domain expert
may be interested to explore how the scope of an asso-
ciation rule changes, if an association rule is modified,
for example, a condition in its antecedent is dropped.
Furthermore, in addition to finding the scope where
an association holds, it might be interesting to search
for the scope where it does not hold. For example, if
we find that high levels of iron associates with high
arsenic concentration in one region, but with low ar-
senic concentration in another region, this case should
be further analyzed. Last but not least, the regions
obtained from the association rule scoping can serve as
a source again for creating new interesting association
rules. For example, if we are interested in the places
where high levels of iron associate with high levels of
fluoride, high iron(X) → high fluoride(X). We can
then determine the scope of this association rule and
use the new obtained regions to mine new interesting
association rules.

2.4 Clustering Algorithm

In our regional association rule scoping framework,
different interestingness functions correspondent to
various domain interests can easily be plugged into a
clustering algorithm. We have used the clustering al-
gorithm SCMRG (Supervised Clustering using Multi-
Resolution Grids) on hot spot discovery in our previous
work [7]. In this paper, we revise the algorithm using
the fitness defined in Equation 1 and 2 for regional
association rule scoping. SCMRG is a hierarchical,
grid-based method that utilizes a divisive, top down
search. The spatial space of the dataset is partitioned
into grid cells. Each grid cell at a higher level is parti-
tioned further into smaller cells at the lower level, and
this process continues if the sum of the rewards of the
lower level cells is not decreased. A cell is partitioned
further only if it improves its fitness at a lower level
of resolution. A queue data structure is used to store
all the cells that need to be processed. The algorithm
traverses through the hierarchical structure and exam-
ines those cells in the queue from the higher level. Fi-
nally, the algorithm collects all the cells that have been
labeled as clusters from different levels, and neighbor
clusters are merged if fitness can be improved.

3 A Real-World Case Study: Arsenic
Risk Zones in Texas

We evaluate our regional association rule scoping
method using an arsenic water pollution dataset. Ap-
proximately 6% of the Texas wells are in violation with

Figure 2. Interesting regions are identified by
SCMRG

the new EPA (Environment Protection Agency) arsenic
maximum contaminant limit (MCL) for drinking wa-
ter [15]. This raises concerns about how to prepare
the Texas communities to cope with the threat of ar-
senic contamination in their water supply. The arsenic
dataset consists of 24 attributes of 12055 water wells
collected from the Texas Ground Water Database [18].
Of the 24 attributes, 4 spatial attributes (S) are lati-
tude and longitude, river basin, and state zone; 19 non-
spatial attributes (A) are well depth, concentration of
fluoride, nitrate, and other chemical metal elements se-
lected by domain experts [9, 11, 14]; finally 1 arsenic
class attribute indicates safe or dangerous wells. A well
is dangerous if its arsenic concentration level is above
the MCL of 10µg/l.

3.1 Experimental Evaluation

We have implemented the clustering algorithm
SCMRG using two different functions of interestingness
for hot spots/cool spots discovery (for details see [7])
and for regional association rule scoping (using Equa-
tion 2). Hot spots/cool spots are regions in which the
density of the class of interest is much higher/lower
than its average density in the whole dataset. The
SCMRG algorithm uses spatial attributes longitude,
latitude, and arsenic class attribute to search for hot
spots/cool spots of arsenic. Figure 2 shows the result
of such a run, where safe wells are in green (or light
grey), dangerous wells in red (or dark grey). It illus-
trates four most highly rewarded regions – Region 1
and 3 are regions of hot spots (high density of dan-
gerous wells), and Region 2 and 4 are regions of cool
spots (high density of safe wells). Region 1, southern
half of the High Plains, and Region 3, the south Gulf



Figure 3. Region - Regional association rule
- Scope. Legend: regions are highlighted by
bold border line; scopes are in color blue (or
light grey). β = 1.01, η1 = 1, η2 = 1.1, δ1 = δ2 =
0.9,min sup = 10%, min conf = 80%

Coast, overlap with the arsenic risk zone discussed by
geoscientists in [15, 1, 14].

In the next step, regional association rules are gen-
erated from each region. We extend the Apriori algo-
rithm [3] to generate association rules that are related
with arsenic class attribute: the algorithm not only
prunes infrequent candidate itemsets, but also discards
itemsets that do not contain the arsenic class labels.
The algorithm uses the whole set of attributes exclud-
ing longitude and latitude, with min sup = 10% and
min conf = 80%. The following four regional associ-
ation rules with confidence 100% are discovered from
Region 1, 2, 3, and 4 respectively. Association rules 1
and 3 are confirmed in arsenic literature [9, 11].

(1) nitrate(X, 28.31−∞) ∧ arsenic level(dangerous)
→ depth(X, 0− 251.5)

(2) depth(X, 0− 251.5) ∧ fluoride(X, 0− 0.085)
→ arsenic level(safe)

(3) nitrate(X, 0− 0.085) → arsenic level(dangerous)

(4) depth(X, 251.5−∞) ∧ nitrate(X, 0.265− 16.1)
→ arsenic level(safe)

Figure 4. The scope of a particular rule
changes based on the different values of
min sup and min conf . β = 1.01, η1 = 1, η2 =
1.1, δ1 = δ2 = 0.9,min sup = 10%,min conf =
80%

Finally we seek for scope of those interesting regional
association rules. Figure 3 depicts the scope of the
above 4 association rules. The scope of an association
rule can contain several regions. The scope of associ-
ation rule 1 (top row, left column) overlaps with the
Texas High Plains. In this area, shallow depth wells
(< 251.5 feet) indicate the aquifer is thin, thus nitrate
comes from surface contamination (> 28.31 MG/L),
and arsenic contamination is of geological origin and
is then enhanced by the lack of dilution because the
aquifer is thin. The scope of association rule 3 (bottom
row, left column) is applicable to the whole Texas Gulf
Coast because the geology is similar. The scope of as-
sociation rule 2 and 4 represent the areas where arsenic
contamination is low. They are interesting places that
domain scientists will future explore. The experimen-
tal results also confirm our discussion in Section 2.2:
the region, where an association rule is originated, is a
subset of the scope where the association rule holds.

It is also important to point out that the scope of
an association rule indicates how global, regional, or
local a pattern is. For example, the scope of the as-
sociation rule 4 in Figure 3 covers a large percentage
of the global space (> 75%). We find that the associ-
ation rule 4 is also valid (holds with 85% confidence)
in the global dataset. Hence it is indeed a global as-
sociation rule. However, none of the other association
rules are discovered globally. We can also fine tune the
measurement interestingness in association rule scop-
ing by varying its support and confidence thresholds
for a given association rule. Figure 4 shows such a



scope tuning for the association rule 3. Typically, lower
value of min sup results in larger scope, higher value
of min conf results in smaller scope.

Our SCMRG algorithm is computationally efficient.
On average, it takes 3.031 seconds for hot spots/cool
spots discovery, and 4.68 seconds for regional associ-
ation rule scoping. The computer uses Intel(R) Pen-
tium(R) M, CPU 1.2GHz, 632 MB of RAM.

4 Discussion and Future Work

One critical requirement for spatial data mining is
to analyze data at different levels of granularity. We
define and address a novel problem of regional associ-
ation rule scoping. Scope is the fundamental property
of regional association rules. Moreover, rule scoping
provides unique capabilities to domain experts to ex-
plore the impact of changing an association rule versus
the regions it applies and then identify the root cause
of it. We have evaluated the proposed framework in a
real-world case study that centers on identifying spa-
tial risk zones of arsenic in Texas water supply. Our
approach was able to re-discover hypotheses that al-
ready have been established in the scientific literature
on arsenic contamination, and also discovered several
novel hypotheses concerning the causes of arsenic con-
tamination that deserve further exploration.

An interactive tool of rule scoping that allows for
changing existing rules and for testing new rules is un-
der development so that the changes in rule scope can
be visually presented to a domain expert, as illustrated
in Figure 4. Such capabilities undoubtedly are very
useful for exploratory hypothesis testing for a domain
expert. It will not only increase the understanding of
spatial data sets itself, but also identify the scope for
further studies such as characterization, pattern recog-
nition, and modeling of the particular regions.
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