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Abstract  
We study an interesting and challenging 
problem, online streaming feature selection, in 
which the size of the feature set is unknown, and 
not all features are available for learning while 
leaving the number of observations constant. In 
this problem, the candidate features arrive one at 
a time, and the learner's task is to select a “best 
so far” set of features from streaming features. 
Standard feature selection methods cannot 
perform well in this scenario. Thus, we present a 
novel framework based on feature relevance. 
Under this framework, a promising alternative 
method, Online Streaming Feature Selection 
(OSFS), is presented to online select strongly 
relevant and non-redundant features. In addition 
to OSFS, a faster Fast-OSFS algorithm is 
proposed to further improve the selection 
efficiency. Experimental results show that our 
algorithms achieve more compactness and better 
accuracy than existing streaming feature 
selection algorithms on various datasets. 

1.  Introduction 

Feature selection for predictive modeling has received 
considerable attention during the last three decades both 
in statistics and in machine learning. A great variety of 
feature selection algorithms have been developed and 
proven to be effective in improving predictive accuracy 
for classification (Kohavi & John 1997; Guyon & 
Elisseeffm 2003; Loscalzo et al 2009; Aliferis et al 2010). 
Standard feature selection methods assume that all 
candidate features are available and presented to a learner 
before feature selection takes place. 
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In this paper, another interesting scenario is taken into 
account where the candidate feature set size is unknown, 
or even infinite instead of all candidate features being 
known in advance. In this problem, the candidate features 
are generated dynamically and arrive one at a time while 
the number of observations is left constant. This scenario 
is called streaming feature selection which has practical 
use in many settings. For example, texture-based image 
segmentation assigns a label to each pixel in a training 
image according to its texture type, and an image might 
easily contain tens of thousands of labeled pixels, hence 
the computational cost is expensive in generating those 
features. It is not practical to wait until all features have 
been generated before learning begins, thus it could be far 
more preferable to generate candidate features one at a 
time (Perkins & Theiler 2003). Therefore, streaming 
feature selection seeks to select a minimal yet good set of 
features from the features generated so far. 

Although many standard feature selection algorithms are 
effective in selecting a subset of predictive features for 
various classification problems, they are not necessarily 
reliable to deal with steaming features. In this paper, we 
present a novel framework for selection of features from a 
feature stream. Our work is inspired by feature relevance 
and feature redundancy. The unique contributions that 
distinguish our work from existing approaches are 
threefold: (1) our work goes a step further on feature 
relevance and explicitly expresses feature redundancy 
between a feature and a target class; (2) a novel 
framework based on feature relevance is proposed to 
manage streaming feature selection; and (3) two new 
online streaming feature selection algorithms are designed 
with comparative studies. 

2.  Related Work  

For many years, feature selection, as an effective means 
to deal with large dimensionality, has been generally 
viewed as a problem of searching for an optimal subset of 
features. In principle, feature selection methods can be 
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broadly classified into three categories: filter, wrapper, 
and embedded methods. The filter method is independent 
of any classifiers, and applies evaluation measures such as 
distance, information, dependency and consistency to 
select features and then later build a classifier using the 
selected features (Dash & Liu 2003).  The wrapper 
method performs heuristic search in the space of all 
possible feature subsets, using a classifier of choice to 
assess each subset (Kohavi & John 1997). Meanwhile, the 
embedded method attempts to simultaneously maximize 
classification performance and minimize the number of 
features used (Tibshirani 1996).  

All work discussed above assumes that all candidate 
features are available from the beginning and pays little 
attention to candidate feature sets of unknown, or even 
infinite size, that is, the problem of streaming feature 
selection.  

Two major lines of recent research efforts have tried to 
address this problem. Perkins and Theiler (2003) 
proposed a grafting algorithm based on a stagewise 
gradient descent approach for streaming feature selection. 
However, grafting requires all candidate features in 
advance to determine the value of the tuning parameter λ 
using cross-validation before learning. Thus, grafting is a 
quasi-streaming feature selection method. Zhou et al. 
(2005; 2006) presented two algorithms based on 
streamwise regression, Information-investing and Alpha-
investing for streaming feature selection. Since 
Information-investing gave extremely similar results as 
Alpha-investing and Alpha-investing was emphasized in 
their work, we adopt Alpha-investing in this paper. 
Alpha-investing uses a p-value to determine whether a 
new feature should be added to the learning model or not, 
and a linear regression is used to evaluate the modified 
model. This method needs some prior knowledge about 
the structure of the feature space to heuristically control 
the choice of candidate feature selection. However, 
Alpha-investing might not provide good performance on 
the original streaming features. In the real world, it is 
difficult to obtain sufficient prior information about the 
structure of the candidate features with a feature stream. 
Thus, more efforts are needed in order to manage real-
world feature streams without any transformations of the 
original features in advance.  

Therefore, our work takes a paradigm shift from the 
above research efforts and proposes a novel framework 
which is clearly different from previous work on 
streaming feature selection. Under this framework, a 
novel Online Streaming Feature Selection algorithm 
(OSFS ) is presented in this paper. In addition to OSFS, a 
faster Fast-OSFS algorithm is proposed to further 
improve the selection efficiency.  

3.  A Framework for  Streaming  Feature 
Selection 

In this section, we first review notions of feature 
relevance. Then we redefine feature redundancy and 
propose a novel framework for streaming feature 
selection based on feature relevance. 

3.1  Notations and Definitions 

Koller et al. proposed a classification of input features X 
with respect to their relevance to  a target T in terms of 
conditional independence (Koller & Sahami 1996; Kohavi 
& John 1997). They classified features into three disjoint 
categories, namely, strongly relevant, weakly relevant and 
irrelevant features. In the following definitions, let V be a 
full set of features, Xi denote the ith input feature, and X\i 
represent all input features excluding Xi. 

Definition 1 (Conditional independence) In a feature set 
V, two features X and Y are conditionally independent 
given the set of features Z, if and only if 

P(X|Y,Z)=P(X|Z), denoted as Ind(X,Y|Z).  

Accordingly, for notational convenience we denote 
conditional dependence as Dep(X,Y|Z). 

Definition 2 (Strong relevance) A feature Xi is strongly 
relevant to a target T if 

               )X,X|T(P)X|T(P ii\i\ ≠  
Definition 3 (Weak relevance) A feature Xi is weakly 
relevant to a target T if  Xi is not strongly relevant and 

               )X,S|T(P)S|T(P:XS ii\ ≠⊆∃  
Definition 4 (Irrelevance) A feature Xi is irrelevant to a 
target T if it is neither strongly nor weakly relevant, that 
is, if 

              )X,S|T(P)S|T(P:XS ii\ =⊆∀  
Yu et al. further studied the feature relevance and pointed 
out that the weakly relevant feature set could be classified 
into redundant features and non-redundant features. They 
gave a definition of feature redundancy based on a 
Markov blanket criterion (Yu & Liu 2004; Tuv et al 
2009). 

Definition 5 (Markov blanket) Given a feature Xi, 
assuming Mi∈V, ii MX ∉ , Mi is said to be a Markov 
blanket for Xi, if and only if 

)|},{(),|},{( iiiiiii MTXMVPMXTXMVP −−=−−  
Definition 6 (Redundant feature-1) Let V be the current 
set of features. A feature is redundant and hence should 
be removed from V, if and only if it is weakly relevant 
and has a Markov blanket Mi within V. 

According to Definitions 1 and 5, Definition 6 can be 
rewritten using conditional independence and we attain 
Definition 7 which expresses the relation of redundancy 
between a target feature T and a feature X more explicitly.  
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Definition 7 (Redundant feature-2) Given a candidate 
Markov blanket of a target feature T, denoted as CMB(T), 
and a feature X∈CMB(T), X is said to be redundant to T, 
if and only if 

)S|T(P)S,X|T(P:)T(CMBS =⊆∃        (1) 

Proof: => According to Definition 5 and the term X∈
CMB(T),  X is relevant to T. Because X is redundant to T, 
there must exist a subset S within CMB(T) which 
subsumes all of the information that X has about T. That 
is to say, X and T are conditionally independent given the 
subset S. Then we get formula (1). 

<= According to formula (1) and the term X∈CMB(T), 
the subset S carries all information that X has about T. 
Thus, X is redundant to T.□ 

3.2  A Framework for Streaming Feature Selection 

Based on the definitions above, an entire feature set is 
divided into four basic disjoint parts: (1) irrelevant 
features, (2) redundant features (part of weakly relevant 
features), (3) weakly relevant but non-redundant features, 
and (4) strongly relevant features. An optimal subset 
contains non-redundant and strongly relevant features. 

Since the global information of all candidate features is 
unknown and the features are generated continuously, it is 
difficult to find all strongly relevant and non-redundant 
features from streaming features. Our task is to design an 
efficient and effective way to find an optimal subset from 
streaming features. Searching for an optimal subset based 
on the definitions of feature relevance and redundancy is 
combinatorial in nature. Our novel framework is designed 
as follows based on online feature relevance and 
redundancy analysis. 

 
 1. Initialization  
     Best candidate feature set BCF={}, the target feature T 
 2. Online relevance analysis 

(1) Generate a new feature X 
(2) Determine whether X is irrelevant to T or not. 

        a. If X is irrelevant to T, then disregarded; 
        b. Otherwise, X is added to BCF 
 3. Online Redundancy analysis 
    Online identify redundant features from the current 

subset BCF and remove them by Definition 7.  
4. Alternate steps 2 and 3 until the stopping criteria are 

satisfied. 
5. Output the subset BCF.         

Figure 1 A framework for streaming feature selection 

 

The framework described in Figure 1 is composed of two 
steps: first, online relevance analysis determines a new 
feature with respect to its relevance to the target T and 
removes irrelevant ones; and second, online redundancy 

analysis eliminates redundant features from the features 
selected so far. The two steps are alternated till some 
stopping criteria are satisfied. 

4.  Algorithms and Their Analysis 

Under the above framework for stream feature selection, 
two novel algorithms are presented, OSFS and Fast-
OSFS, and an algorithm analysis is given in this section. 

4.1  An Online Streaming Feature Selection Algorithm 

The pseudo-code of our online streaming feature selection 
(OSFS for short) algorithm is shown in Figure 2. 

 

Figure 2  The OSFS algorithm 

OSFS finds an optimal subset using a two-phase scheme: 
online relevance analysis (steps 4 - 12) and online 
redundancy analysis (steps 13 - 21). In the relevance 
analysis phase, OSFS discovers strongly and weakly 
relevant features and adds them into BCF. When a new 
feature arrives, OSFS assesses whether it is irrelevant to 
the class label C; if so, it is discarded, otherwise it is 
added to BCF.  

If a new feature enters BCF, the redundancy analysis 
phase is performed. In this phase, OSFS dynamically 
eliminates redundant features in the subset of the features 
selected so far. If there exists a subset within BCF to 
make Y and C conditionally independent, Y is removed 
from BCF. OSFS alternates the two phases till some 
stopping criteria are satisfied. 

4.2  An Analysis of the OSFS Algorithm 

With the OSFS algorithm above, under the assumption 
that all statistical independence tests are reliable, let us 
have an analysis about its performance in theory.  

Firstly, we can analyze its performance on a small data set 
with hundreds of thousands of features. 

When the data set is so small in size so as to make most of 
the conditional independence tests unreliable, OSFS 
might fail. There are two lines in the pseudo-code for 
conditional independence tests. One is at line 8, and the 
other is at line 16. OSFS doesn’t fail at line 8, since the 
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conditioning set is an empty set. But OSFS might fail at 
line 16, when the conditioning set S exponentially grows. 
However, in the relevance analysis phase, only strongly 
and weakly relevant features are admitted into BCF. In 
the redundancy analysis phase OSFS dynamically 
evaluates each feature within BCF and removes redundant 
features from BCF when a feature enters into BCF. With 
many irrelevant and redundant features, BCF keeps as 
minimal as possible so that conditioning on all subsets of 
BCF is feasible. Thus, OSFS can deal with a dataset with 
a small sample-to-variable ratio. 

Secondly, we can analyze whether or not the OSFS 
algorithm can discover all strongly relevant and some 
non-redundant features.  

According to Definition 4, if a feature X is irrelevant to C, 
X must be discarded in the relevance analysis phase. 
Thus, from Definitions 2 and 3, all strongly and some 
weakly relevant features will enter BCF at line 10. 
According to Definition 7, if X is a strongly relevant 
feature, there doesn’t exist a subset S within BCF to 
satisfy the term Ind(X,C|S). X cannot be removed in any 
phase. Thus, OSFS can find all strongly relevant features.  

For a redundant feature, one situation is that the size of 
streaming feature set is unknown, but finite. According to 
Definition 3, some weakly relevant features, including 
redundant features and non-redundant features, will enter 
BCF in the relevance analysis phase. Therefore, OSFS 
needs to remove redundant features from those weakly 
relevant features. In the redundancy analysis phase, based 
on Definition 7, OSFS searches a subset S for each 
feature within BCF to make it redundant to C. For 
example, if the term Dep(X,C|S) is satisfied at line 8 
where S is an empty set, X will be added into BCF as a 
relevant feature at line 10. Now assuming that X is 
redundant to C, as the time goes on, the subset S within 
BCF must be found in the redundancy analysis phase, and 
satisfy Ind(X,C|S) according to Definition 7. Then X is 
removed from BCF at line 18. The other situation is that if 
the size of the streaming feature set is infinite, OSFS 
could fail to remove X at line 13 at time t. Because a 
feature is generated randomly, OSFS doesn’t know when 
S can be found within BCF. Thus, we don’t know when 
OSFS can remove X at line 18. But in theory, since OSFS 
can find all strongly relevant features, if X is a redundant 
feature within BCF, there must exist an S to satisfy 
Ind(X,C|S). Therefore, OSFS can discover all strongly 
relevant features and some non-redundant features. 

Finally, the complexity of OSFS depends on the number 
of independent tests. At time t, assuming V features are 
arriving, then the worst-case complexity is 
O(|V||BCF|k|BCF|) where k is the maximum allowable size 
that a conditioning set may grow. 
Assuming ||||, VSFVSF <<⊆ where SF contains all of 
strongly relevant features, then the average time 
complexity is O(|SF||BCF|k|BCF|) at time t. 

4.3  The Fast-OSFS Algorithm 

According to the above analysis, the most time-
consuming part of OSFS is the redundancy analysis 
phase. When a new feature enters BCF, the redundancy 
analysis phase will re-examine each feature of BCF with 
respect to its relevance to C. Therefore, in order to further 
improve the selection efficiency, Fast-OSFS is designed 
in Figure 3. 

 

Figure 3 The Fast-OSFS algorithm 

The key difference between Fast-OSFS and OSFS is that 
Fast-OSFS divides the redundancy analysis phase into 
two phases, inner-redundancy analysis and outer-
redundancy analysis. Fast-OSFS only alternates the 
relevance analysis and the inner-redundancy analysis 
phase. In the inner-redundancy analysis phase Fast-OSFS 
only re-examines the feature just added into BCF, 
whereas the outer-redundancy analysis phase re-examines 
each feature of BCF only when the process of generating 
a feature is stopped. The worst-case complexity is O(|V| 
k|BCF|+|BCF|k|BCF|) and the average is O(|SF|k|BCF| 
+|BCF|k|BCF|) at time t. Thus, Fast-OSFS is more efficient. 

5.  Experimental Results 

In order to have a comprehensive comparison of existing 
streaming feature selection methods on various data sets 
with our algorithms, we apply these algorithms in 
traditional feature selection settings, that is, those of fixed 
features, but the features arrive one at a time in a random 
order to simulate the situation of streaming features. 

Our data sets include 8 UCI benchmark databases and 10 
challenge databases. We used three classifiers, k-nn, J48 
and Randomforest (Spider 2010), and selected the best 
accuracy as the result. The experiments were conducted 
on a computer with Windows XP, 2.6GHz CPU and 2GB 
memory. Grafting and Alpha-investing were performed 
using their original implementations. The tuning 
parameter λ for Grafting was selected using cross-
validation and the parameters of Alpha-investing used 
default settings, W0=0.5 and αΔ=0.5. The conditional 
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independence tests in our implementation are G2 tests and 
the parameter alpha is the statistical significance level. 

5.1  Results on UCI Benchmark Data Sets 

8 data sets in the traditional form are selected from the 
UCI Machine Learning Repository. These data sets, 
including their problem type and numbers of features and 
instances, are shown in Table 1. Either the original test 
data or 10-fold cross validation is used in these datasets. 

Table 1. Summary of UCI benchmark data sets 

DATASET DOMAIN FEATURES INSTANCES 

SPECT MEDICINE 22 267

SPECTF MEDICINE 44 267

WDBC MEDICINE 30 569

IONOSPHERE RADAR DATA 34 351

SPAMBASE SPAM E-MAIL 57 4601

INFANT 
MORTALITY 

MEDICINE 86 5337 

BANKRUPTY FINANCIAL 147 7063

SYLVA ECOLOGY 216 14374
 

Two measurements for solving the feature selection 
problem are compactness (the proportion of selected 
features) and predictive accuracy (%). A maximally 
compact method which cannot achieve a good predictive 
accuracy doesn’t solve our feature selection problem. 
Therefore, Figure 4 reports the compactness and 
predictive accuracy by 4 algorithms where the value of 
alpha is up to 0.01. The best possible mark for each graph 
is at the upper left corner, which selects the fewest 
features with the best accuracy. According to Figure 4, we 
analyze the experimental results as follows.  

(1) Our algorithms vs the Alpha-investing algorithm. On 
7 out of the 8 data sets, our algorithms achieve more 
compact and higher accurate results than Alpha-investing 
where Alpha-investing selects almost 80 percent of the 
features on the spambase data and all features on the 
wdbc data. On the bankrupty dataset, although a little 
lower in accuracy than Alpha-investing, our algorithms 
achieve more compact results. 

(2) Our algorithms vs the Grafting algorithm. Our 
algorithms outperform Grafting on 6 out of the 8 data sets 
on both compactness and accuracy. On the bankrupty and 
ionosphere data sets our algorithms are competitive with 
Grafting. 

(3) Grafting vs Alpha-investing. Grafting is more compact 
than Alpha-investing on all data sets, and its accuracy is 
higher on 50% of the datasets. 

 

Figure 4 The compactness and predictive accuracy of 4 
algorithms (alpha=0.01) 

 

Figure 5 The compactness and predictive accuracy of 4 
algorithms (alpha=0.05) 
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We can conclude that our algorithms have achieved more 
compactness and higher accuracy than the two state-of-
the-art algorithms. 

From Figure 5, with alpha up to 0.05, our algorithms also 
outperform Alpha-investing on 7 out of the 8 datasets on 
both compactness and accuracy. On the wdbc data, 
Alpha-investing has the best accuracy than the other 
algorithms, but it selected all features. 

Compared with Grafting, our algorithms outperform on 4 
out of the 8 datasets on both compactness and accuracy. 
On the Ionosphere dataset, Grafting achieves more 
compactness and higher accuracy than the others. On the 
remaining three datasets, our algorithms are competitive 
with Grafting. 

Finally, we give an analysis of the performance of our 
two algorithms with different values of alpha, as shown in 
Figures 6 and 7. When alpha is up to 0.05, our two 
algorithms tend to select more features, but the 
performance of the two algorithms is different. OSFS 
degrades a little while Fast-OSFS improves a little. In 
summary, when alpha is equal to 0.01 and when alpha is 
up to 0.05, two algorithms have similar performance in 
our experiments. 

5.2  Results on Challenge Data Sets 

On UCI data, we used datasets with no more than 300 
features to simulate the situation of streaming features. In 
this section, we further assess our algorithms on 10 public 
challenge data sets with tens of thousands of features, as 
shown in Table 2.  

Table 2. Summary of challenge datasets 

DATASET DOMAIN FEATURES INSTANCES 

LYMPHOMA GENE  7399 227

OVARIAN-  

CANCER 

PROTEOMICS 2190 216 

BREAST-  

CANCER 

GENE  17816 286 

HIVA DRUG  1617 4229

NOVA TEXT 16969 1929

MANELON SYNTHETIC  500 2000

ARCENE CLINICAL 10000 100

DEXTER TEXT 20000 300

DOROHTHEA DRUG  100000 800

SIDO0 GENOMICS 4932 12768
 

Ovarian_cancer and Breast-cancer are bio-medical 
datasets (Conrads et al 2004; Wang et al 2005). Hiva, 
Nova and Sido0 are from the WCCI 2006 and WCCI 
2008 Performance Prediction Challenges, respectively. 
The other datasets are from the NIPS 2003 feature 
selection challenge. Ovarian_cancer, Breast-cancer, 
Lymphoma and Sido0 used 10-fold cross validations; and 
the NIPS 2003 challenge data sets used their original 
training and validation sets. 

 

Figure 6 OSFS performance with different alpha values  

 

Figure 7  Fast-OSFS performance of with different alpha values  

With alpha equal to 0.01, Figure 7 gives the compactness 
and predictive accuracy (%) of the 4 algorithms on 10 
challenge datasets. Our algorithms achieve more 
compactness and higher accuracy than Alpha-investing on 
8 out of the 10 datasets. On the hiva dataset, our 
algorithms select fewer features and the results are 
competitive with Alpha-investing. On the ovarian-cancer 
dataset, Alpha-investing selects more features to achieve 
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the best accuracy. But on the Dexter dataset, Alpha-
investing failed to select any features. 

 

 
Figure 8 The compactness and prediction accuracy (%) of four 
algorithms (alpha=0.01) 

Compared with Grafting, our algorithms have better 
compactness and higher accuracy on 7 out of the 10 
datasets. On the nova dataset, OSFS and Fast-OSFS 
achieve much higher accuracy, up to 0.926 and 0.966, 
respectively, than Grafting with an accuracy up to 0.846, 
though they selected a few more features than Grafting. 
On the ovarian-cancer and dexter data, OSFS selects 
many fewer features than Grafting, but its accuracy is still 
competitive with Grafting. Moreover, Grafting fails to 
select any features on the dorohthea and breast-cancer 
data because of the problem of out of memory. 

On most of those challenge data sets, our algorithms have 
outperformed Grafting and Alpha-investing. 

5.3  Running Time Analysis 

Since the Grafting and Alpha-investing code used in the 
experiments was implemented in Matlab and our 
algorithms were written in the C language, a direct time 

comparison between them and our algorithms was not 
performed.  

Although we had a theoretical analysis of time complexity 
for OSFS and Fast-OSFS, a summary of the running time 
results of the execution of OSFS and Fast-OSFS is also 
given in Figure 8. The time reported is the normalized 
time which is the running time of OSFS for a data set 
divided by the corresponding running time of Fast-OSFS. 
Thus, a greater normalized running time than one implies 
that OSFS is slower than Fast-OSFS on the same learning 
task. 

On the UCI data sets, the speed of Fast-OSFS is at least 
twice faster than that of OSFS. Since the running time of 
Fast-OSFS and OSFS is less than one second on most of 
these data sets, we only report the running time longer 
than ten seconds on five data sets in Figure 8 (left: 
alpha=0.01; right: alpha=0.05). 

   
Figure 9 Normalized time results 

On the challenge data sets, the selected features of Fast-
OSFS are competitive with OSFS, and Fast-OSFS gets a 
higher accuracy on most of the datasets and is much faster 
on all datasets. 

5.4   Discussion 

In this section, we further analyze our algorithms. Firstly, 
although Grafting is compared with our algorithms, it is a 
quasi-streaming feature selection algorithm. So we don’t 
further discuss it. As for Alpha-investing, our algorithms 
outperform Alpha-investing on most of the 18 datasets. 
Therefore, our framework can manage streaming feature 
selection better than Alpha-investing on the original 
streaming features. 

Secondly, with prior knowledge of the structure of the 
candidate features, Alpha-investing can achieve good 
performance. If we have the prior knowledge, our 
framework can also deal with the task well. For example, 
with domain knowledge, we can place potentially more 
informative features earlier in the streaming features, 
making it easier for our algorithms to find strongly 
relevant and useful features. If strongly relevant features 
can be found earlier, the corresponding redundant features 
can be earlier eliminated in the online redundancy 
analysis step of our framework. Fast-OSFS could 
especially benefit from prior domain knowledge. 
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Thirdly, on all datasets, regarding the compactness, Fast-
OSFS is competitive with OSFS. As to the predictive 
accuracy, from our experimental results, OSFS 
outperforms Fast-OSFS on the datasets with a very small 
sample-to-variable ratio while Fast-OSFS is superior to 
OSFS on the datasets with a large sample. The 
explanation is that OSFS performs a redundant analysis 
for all features within BCF so that it keeps BCF as 
minimal as possible. This is very beneficial to dealing 
with datasets with a very small sample-to-variable ratio. 
But with large samples, OSFS increases the total number 
of tests performed on redundant features or strongly 
relevant features. This reduces the test of statistical power. 
As for Fast-OSFS, it only performs a redundant analysis 
for the feature just added into BCF in the process of 
feature generation. Thus, with large samples, Fast-OSFS 
significantly reduces the total number of tests, and has 
stronger statistical power than OSFS. But this leads to 
more redundant features into BCF, and so some tests are 
unreliable in the outer-redundant analysis phase when the 
sample-to-variable ratio is small. 

Finally, to control false positives, our algorithms use two 
strategies: multiple comparisons and the parameter k. The 
parameter k is the maximum allowable size that a 
conditioning set may grow, and is a key parameter to 
control false positive features. At each iteration, the 
selected features are added into the set BCF. In the online 
redundancy analysis phase, OSFS uses multiple statistical 
comparisons to filter redundant features. It needs to find 
all subsets from BCF to perform multiple tests, and the 
size of the maximum subset is k. Under the assumption 
that all independence tests are reliable, with a right value 
of k, the false positives will be well controlled. Thus，the 
experimental results show that our algorithms exhibit 
little sensitivity to false positive features because of these 
control strategies, even when a fixed significance 
threshold is used. 

6.  Conclusions 

In this paper, we have proposed a novel framework with 
two new algorithms to deal with streaming feature 
selection. Compared with two state-of-the-art algorithms 
Grafting and Alpha-investing, our algorithms have 
demonstrated more compactness and better accuracy in 
supervised learning on databases that contain many 
irrelevant and redundant features. 

In our experiments, we stimulated the feature set with an 
unknown but finite size.  In our future work, we will 
explore how to dynamically assess the predictive 
accuracy with an infinite size, when reaching a certain 
threshold. We will also study the impact of stopping 
criteria on the OSFS and Fast-OSFS algorithms. 
Furthermore, we plan to apply online streaming feature 
selection to real Mars crater data, where craters are 
represented by thousands of texture-based features that 
call for efficient feature selection.    
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