
1

Word Sense Disambiguation with Automatically
Acquired Knowledge

Ping Chen, Wei Ding, Max Choly, Chris Bowes

Abstract—Word sense disambiguation is the process of deter-
mining which sense of a word is used in a given context. Due to
its importance in understanding semantics and many real-world
applications, word sense disambiguation has been extensively
studied in Natural Language Processing and Computational
Linguistics. However, existing methods either narrowly focus on
a few specific words due to their reliance on expensive manually
annotated training text, or give only mediocre performance in
real-world settings. Broad coverage and disambiguation quality
are critical for real-world natural language processing applica-
tions. In this paper we present a fully automatic disambiguation
method that utilizes two readily available knowledge sources: a
dictionary and knowledge extracted from unannotated text. Such
an automatic approach overcomes the knowledge acquisition
bottleneck and makes broad-coverage word sense disambigua-
tion feasible in practice. Evaluated with two large scale WSD
evaluation corpora, our system significantly outperforms the best
unsupervised system and achieves the similar performance as the
top-performing supervised systems.

Index Terms—Natural Language Processing, Knowledge Ac-
quisition, Word Sense Disambiguation

I. INTRODUCTION

In natural languages, a word often represents multiple mean-
ings, and each meaning is called a sense of this word. Word
sense disambiguation (WSD) is the process of determining
which sense of a word should be adopted in given context.
WSD is a long-standing problem in Natural Language Process-
ing (NLP) and Computational Linguistics (CL), and has broad
impact on many important Natural Language Processing appli-
cations, such as Machine Translation, Information Extraction,
and Information Retrieval. However, although a lot of WSD
methods have been proposed, it is generally recognized that
explicit WSD is rarely applied in any real world applications
due to mediocre performance and insufficient coverage of
existing WSD systems [11].

When disambiguating a limited number of preselected
words, necessary knowledge can be carefully compiled to
achieve very high disambiguation precision as shown in [16].
However, such approaches designed in lab setting suffer a
significant performance drop in practice when domain or
vocabulary is unlimited and manual knowledge acquisition
becomes prohibitively expensive. The problem of WSD is
knowledge intensive by nature, and many knowledge sources
have been investigated ranging from manually sense-annotated

Ping Chen and Chris Bowes are with the Department of Computer and
Mathematics Sciences, University of Houston-Downtown, 1 Main St., Hous-
ton, TX 77002. E-mail: chenp@uhd.edu

Wei Ding and Max Choly are with the Department of Computer Science,
University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 02125.
E-mail: ding@cs.umb.edu

text, raw text, thesaurus, to lexical knowledge base (LKB),
e.g., WordNet, SemCor, Open Mind Word Expert, eXtended
WordNet, Wikipedia, parallel corpora. As the role of knowl-
edge is generally recognized in WSD, in [1] ten knowl-
edge types used in WSD are discussed including collocation,
semantic word associations, frequency of senses, semantic
roles, syntactic cues, pragmatics, etc. However, identification
of disambiguation-enabling knowledge types is only one side
of the story, and to build a practical WSD system knowledge
also needs to be efficiently acquired at a large scale. In general,
knowledge used in a practical WSD system need satisfy the
following criteria:

1) Disambiguation-enabling. Obviously useful WSD
knowledge should be capable of disambiguating senses.
Identification of such knowledge is still a very active
research topic, and new knowledge is constantly being
proposed and examined.

2) Comprehensive and automatically acquirable. The
disambiguation knowledge need cover a large number of
words and their various usage. Such a requirement is not
easily satisfied since a natural language usually contains
thousands of words, and some words can have dozens
of senses. For example, the Oxford English Dictionary
has approximately 301,100 entries, and the average
polysemy of WordNet inventory is 6.18. Obviously, such
a large-scale knowledge acquisition can only be achieved
with automatic techniques.

3) Dynamic and up to date. A natural language is not
a static phenomenon. New usage of existing words
emerges, which creates new senses. New words are
created, and some words may “die” over time. It is
estimated that every year around 2,500 new words
appear in English. Such dynamics requires constant and
timely maintenance and updating of WSD knowledge
base, which makes any manual interference (e.g., sense
annotation and supervised learning) even more imprac-
tical.

Taking into consideration the large amount and dynamic
nature of knowledge required by WSD, there are very limited
options when choosing knowledge sources for a practical WSD
system. Currently identifying suitable knowledge sources still
remains as an open and critical problem in WSD and also
other NLP fields [8]. Dependency knowledge was applied to
WSD in [5], however, its disambiguation capability was not
fully exploited by direct utilization of frequency of dependency
relations, and their WSD method only achieved 73% in both
precision and recall that are well below the most-frequent-



2

sense (MFS) baseline. In this paper we normalize the absolute
frequency of dependencies with Pearson’s χ2 test (details are
given in Section III-B), and together with coherent fusion of
three knowledge sources our WSD system can achieve above-
MFS-baseline performance that is a necessary condition for a
practical WSD system. The main contributions of our work
are:

1) Building a fully automatic WSD system that coherently
utilizes three knowledge sources: glosses from dictionar-
ies, the most frequent sense information, and normalized
dependency knowledge extracted from unannotated text.
No training materials or annotated corpus are required
in our WSD method. All of three knowledge sources
are disambiguation-enabling, provide a comprehensive
coverage of words and their usage, and are constantly
updated to reflect the current state of languages. Normal-
ized dependency knowledge extracted from unannotated
text can be efficiently collected and accessed without
any manual efforts. Moreover, the knowledge is not
created for the purpose of WSD, which means that
no extra efforts are required for their construction or
maintenance. All of these properties adhere closely to
our goal of building a practical WSD system.

2) State-of-art performance. Evaluated by a large real world
WSD testset (SemEval 2007 Task 07), our method
achieves 82.64% in both precision and recall, which
clearly outperforms the best unsupervised WSD system
(about 70% in precision and 50% in recall) and performs
similarly as the best supervised system (83.21% in
precision and recall). It is noteworthy that our system
outperforms the most-frequent-sense (MFS) baseline
(78.89% in the SemEval 2007 Task 07) that simply
selects the most frequent sense. To our best knowledge,
our method is the only fully automatic WSD technique
that performs better than MFS baseline based on systems
participating in the SemEval 2007 Task 07 (please
refer to Table II), and may lead off the application
of WSD in real world Natural Language Processing
applications. One additional experiment with Senseval-2
testing corpus further confirms the effectiveness of our
approach (please refer to Table I). We want to emphasize
that both experiments were performed under real world
settings, which is critical to support the full development
of practical software systems in the future [6].

This paper is organized as follows. Section II discusses
existing WSD methods. Section III describes how to acquire
and represent disambiguation-enabling knowledge. We present
our WSD system in section IV. Our system is evaluated with
both coarse-grained and fine-grained WSD evaluation corpora:
SemEval-2007 Task 07 (Coarse-grained English All-words
Task) and Senseval-2 (Fine-grained English All-words Task).
The experimental results are presented and analyzed in section
V. We conclude in section VI.

II. RELATED WORK

Generally WSD techniques can be divided into four cate-
gories [1],

• Dictionary and knowledge based methods. These methods
use lexical knowledge bases (LKB) such as dictionaries
and thesauri, and extract knowledge from word defini-
tions [7] and relations among words/senses. Recently,
several graph-based WSD methods were proposed. In
these approaches, first a graph is built with senses as
nodes and relations among words/senses (e.g., synonymy,
antonymy) as edges, and the relations are usually acquired
from a LKB (e.g., WordNet). Then a ranking algorithm is
conducted over the graph, and senses ranked the highest
are assigned to the corresponding words. Different re-
lations and ranking algorithms were experimented with
these methods, such as TexRank algorithm [10], per-
sonalized PageRank algorithm [2], a two-stage searching
algorithm [11], centrality algorithms [13].

• Supervised methods. A supervised method includes a
training phase and a testing phase. In the training phase,
a sense-annotated training corpus is required, from which
syntactic and semantic features are extracted to build
a classifier using machine learning techniques, such as
Support Vector Machine. In the following testing phase,
the classifier picks the best sense for a word based
on its surrounding words. Currently supervised methods
achieved the best disambiguation quality (about 80%
in precision and recall for coarse-grained WSD in the
most recent WSD evaluation conference SemEval 2007
[12]). Nevertheless, since training corpora are manually
annotated and expensive, supervised methods are often
brittle due to data scarcity, and it is impractical to
manually annotate huge number of words existing in a
natural language.

• Semi-supervised methods. To overcome the knowledge
acquisition bottleneck faced by supervised methods,
semi-supervised methods make use of a small annotated
corpus as seed data in a bootstrapping process [16]. A
word-aligned bilingual corpus can also serve as seed data
[17].

• Unsupervised methods. These methods acquire knowl-
edge from unannotated raw text, and disambiguate senses
using similarity measures. Unsupervised methods over-
come the problem of knowledge acquisition bottleneck,
but none of existing methods can outperform the most
frequent sense baseline, which makes them not useful
at all in practice. For example, the best unsupervised
systems only achieved about 70% in precision and 50%
in recall in the SemEval 2007 [12] Workshop. One
recent study utilized automatically acquired dependency
knowledge and achieved 73% in precision and recall [5],
which are still below the most-frequent-sense baseline
(78.89% in precision and recall in the SemEval 2007 Task
07).

Additionally there exist some “meta-disambiguation” meth-
ods that ensemble multiple disambiguation algorithms follow-
ing the ideas of bagging or boosting in supervised learning. In
[15], multiple sources were utilized to achieve optimal WSD
performance. Our approach is different in that our focus is
identification and ensembling of new disambiguation-enabling



3

and efficiently acquirable knowledge sources. In this paper we
propose a new fully automatic WSD method by integrating
three types of knowledge: dependency relations, glosses, and
the most-frequent-sense (MFS) information. In next section
we will discuss how to acquire and represent the knowledge.

III. ACQUISITION AND REPRESENTATION OF
DISAMBIGUATION-ENABLING KNOWLEDGE

Adoption of multiple knowledge sources has been utilized in
some WSD systems. Since our goal is to build a practical WSD
system, we only choose knowledge sources that provide broad
coverage and also can be automatically acquired. Three types
of knowledge are used in our WSD system: normalized de-
pendency knowledge, glosses, and most-frequent-sense (MFS)
information. Sense distribution information has proved very
useful in WSD. Glosses and most-frequent-sense information
can be directly accessed from Lexical Knowledge Bases
(LKBs). For example, in WordNet the first sense of a word
is the most frequent sense. Here is the procedure we used to
acquire, merge, and normalize dependency relations:

1) Corpus building through search engines
2) Document cleaning
3) Sentence segmentation
4) Parsing
5) Dependency relation merging
6) Dependency relation normalization
The first five steps of this process are discussed in the

section III-A, and the sixth step, dependency relation normal-
ization, is discussed in III-B.

A. Dependency relation acquisition and merging

To learn about a word and its usage we need collect many
valid sample sentences containing the instances of this word.
Preferably these instances are also semantically diverse and
cover different senses of these words. To collect a large
number of word instances, we choose the World Wide Web
as the knowledge source. Billions of documents are freely
available in the World Wide Web, and millions of Web pages
are created and updated everyday. Such a huge dynamic text
collection is an ideal source to provide broad and up-to-
date knowledge for WSD [3]. The major concern about Web
documents is inconsistency of their quality, and many Web
pages are spam or contain erroneous information. However,
factual errors (“President Lincoln was born in 1967.”) do not
hurt the performance of our WSD method as long as they are
semantically valid. Instead, to our WSD method knowledge
quality is more impaired by broken sentences of poor linguistic
quality and invalid word usage, e.g., sentences like “Colorless
green ideas sleep furiously” that follow syntax but violate
common sense knowledge, or “A chair green in the room
is” that violate syntax. Based on our experience these kinds
of errors are relatively rare especially when text is acquired
through a high quality search engine.

First target words are sent to a Web search engine as
keywords. Returned documents are parsed by a dependency
parser, Minipar [9], which also provides part-of-speech (POS)

Fig. 1. Merging two parse trees. The number beside each edge is the number
of occurrences of this dependency relation in the knowledge base.

information. Then dependency relations extracted from dif-
ferent sentences are merged and saved in a knowledge base.
The merging process is straightforward. A dependency relation
includes one head word/node and one dependent word/node,
and nodes from different dependency relations are merged as
long as they represent the same word. An example is shown in
Figure 1, which merges dependency relations extracted from
the following two sentences:

“Many people watch TV shows on YouTube.”

“He is an actor in a popular TV show.”

After merging dependency relations, we obtain a weighted
directed graph with words as nodes, dependency relations as
edges, and numbers of occurrences of dependency relations as
weights of edges.

B. Dependency relation normalization

Although absolute frequency of a dependency relation ob-
tained after the merging step can reflect the semantic related-
ness of head word and dependent word to a certain degree,
this direct measure is inevitably distorted by the occurrence
frequencies of head word and dependent word. For example,
suppose that both “wine → red” and “water → red” occur
5 times in the knowledge base, which indicates that these two
pairs of words are equally related. However, “wine → red”
should be a stronger connection since “water” is a more
common word than “wine” and occurs more frequently. To
overcome this bias, we use Pearson’s χ2 test to normalize
occurrence frequency to a value within [0, 1]. Pearson’s χ2



4

test is efficient to check whether two random variables X and
Y are independent by large samples [4].

Let nij denote the number of occurrences when (X,Y ) =
(xi, yj), where i, j = 1, 2, χ2 values can be calculated with a
contingency table as shown below:

Y/X X ¬X X’s marginal distribution
Y n11 n12 n1.

¬Y n21 n22 n2.

Y ’s marginal distribution n.1 n.2 N

By the null hypothesis H0 : P (X|Y ) = P (X), we have:

χ2 = N(n11n22−n12n21)
2

n1.n2.n.1n.2
∼ χ2(1)

Let’s illustrate the calculation process through an example.
Suppose from a corpus we obtain the frequency data about
“red” and “water” as shown below:

Y/X red ¬ red total
water 5 1258 1263

¬ water 2434 768954 771388
total 2439 770212 772651

χ2 = 772651×(5×768954−1258×2434)2

1263×771388×2439×770212 = 0.259

Since we need χ2 ≫ χ2
α(1) (α is the probability level),

so when α = 0.85, χ2
α(1) = 0.036, and 0.259 ≫ 0.036, the

connection strength of “water → red” is (1− 0.85) = 0.15.
Suppose from a corpus we obtain the frequency data about

“wine” and “red” as shown below:

Y/X red ¬ red total
wine 5 125 130

¬ wine 2434 770087 772521
total 2439 770212 772651

χ2 = 772651×(5×770087−125×2434)2

130×772521×2439×770212 = 223.722

Given α = 0.001, χ2
α(1) = 10.83, since χ2 ≫ χ2

α(1), the
connection strength of “wine → red” is (1−0.001) = 0.999.

When the number of occurrences is small, Pearson’s χ2

test becomes less useful. In our knowledge base, we assign 0
to those dependency relations whose occurrence frequencies
are below a preset threshold to eliminate those unreliable
connections. After the calculation of χ2 values, this new
weighted graph will be used in the following WSD process as
the normalized dependency knowledge base (a sample piece
is shown in Figure 5).

IV. WSD ALGORITHM

Our WSD system architecture is depicted in Figure 2.
Figure 3 shows our detailed WSD algorithm. Two scores are
calculated by functions DepScore and GlossScore, and will
be used to indicate the correct senses.

We illustrate our WSD algorithm through an example.
Assume we try to disambiguate “company” in the sentence
“A large company needs a sustainable business model.” As a
noun “company” has 9 senses in WordNet 2.1. Let’s choose
the following two senses to go through our WSD process:

• an institution created to conduct business

Fig. 2. WSD System Architecture

• small military unit
First we parse the original sentence and two glosses, and

get three weighted parse trees as shown in Figure 4. Different
weights are assigned to nodes/words in these parse trees. In
the parse tree of the original sentence the weight of a node is
reciprocal of the distance between this node and target node
“company” (line 14 in the WSD algorithm shown in Figure 3).
In the parse tree of a gloss the weight of a node is reciprocal
of the level of this node in the parse tree (line 17 in Figure 3),
and it is reasonable to assume that the higher level a word is
at within a parsing tree, the more meaning this word carries
comparing with the total meaning of the whole sentence.

Assume that a knowledge base contains the dependency
relations shown in Figure 5. Now we load the dependent
words of each word in gloss 1 from the knowledge base (line
15, 16 in Figure 3), and we get {large} for “institution” and
{small, large, good} for “business”. In the dependent words
of “company”, “large” belongs to the dependent word sets of
“institution” and “business”, so score1 of gloss 1 based on
dependencies is calculated as (lines 20, 21 in Figure 3):

1.0× 1.0× 0.7 + 1.0× 0.25× 0.8 = 0.9

We tried several ways to use the weights but multiplication
provides the best performance.

score2 of gloss 1 is generated by the overlapping words
between the original sentence and gloss 1. In this example,
there is only one overlapping word - “business”, so score2 of
gloss 1 is (lines 28, 29 in Figure 3):

0.33× 0.25 = 0.0825

We go through the same process with the second gloss
“small military unit”. “Large” is the only dependent word of
“company” in the dependent word set of “unit”, so score1 of
gloss 2 is:

1.0× 1.0× 0.8 = 0.8

There are no overlapping words in the original sentence and
gloss 2, so the score2 of gloss 2 is 0.

Both scores generated from DepScore function and
GlossScore function indicate that the first sense should be
the right sense, so according to line 11 in the WSD algorithm



5

Input: Glosses from WordNet;
S: the sentence to be disambiguated;
G: the knowledge base built in Section III;
1. Input a sentence S, W = {w| w is either a

noun, verb, adjective, or adverb, w ∈ S};
2. Parse S with a dependency parser, generate

parse tree TS ;
3. For each w ∈ W {
4. Input all w’s glosses from WordNet;
5. For each gloss wi {
6. Parse wi, get a parse tree Twi;
7. score1 = DepScore(TS , Twi);
8. score2 = GlossScore(TS , Twi);}
9. The sense with the highest score1

is marked as CandidateSense1.
10. The sense with the highest score2

is marked as CandidateSense2.
11. If CandidateSense1 is equal to

CandidateSense2, choose
CandidateSense1;

12. Otherwise, choose the first sense.
}

DepScore(TS , Twi)
13. For each node nSi ∈ TS {
14. Assign weight wSi =

1
lSi

, lSi is the
length between nSi and wi in TS ;}

15. For each node nwi ∈ Twi {
16. Load its dependent words Dwi from G;
17. Assign weight wwi =

1
lwi

, lwi is the
level number of nwi in Twi;

18. For each nSj {
19. If nSj ∈ Dwi

20. calculate connection strength sji
between nSj and nwi;

21. score = score + wSi × wwi × sji;}}
22. Return score;

GlossScore(TS , Twi)
23. For each node nSi ∈ TS {
24. Assign weight wSi =

1
lSi

, lSi is the
length between nSi and wi in TS ;}

25. For each node nwi ∈ Twi {
26. Assign weight wwi =

1
lwi

, lwi is the
level number of nwi in Twi;

27. For each nSj {
28. If nSj == nwi

29. score = score + wSi × wwi;}}
30. Return score;

Fig. 3. WSD Algorithm

we choose sense 1 of “company” as the correct sense. If
DepScore and GlossScore point to different senses, the most
frequent sense (the first sense in WordNet) will be chosen
instead (line 12 in Figure 3). Apparently a strong dependency
relation between a head word and a dependent word has a
powerful disambiguation capability, and disambiguation qual-

Fig. 4. Weighted parse trees of the original sentence and two glosses of
“company”

Fig. 5. A sample of normalized dependency knowledge base

ity is also significantly affected by the quality of dictionary
definitions/glosses.

In the WSD algorithm the DepScore function matches the
dependent words of target word (line 19 in Figure 3), and
we call this matching strategy as dependency matching. This
strategy will not work if a target word has no dependent
words at all. In this case, we can instead match the head
words that the target word is dependent on, e.g., matching
“need” (the head word of “company”) in Figure 4(a). Using
the dependency relation “need → company”, we can correctly
choose sense 1 since there is no such relation as “need →
unit” in the knowledge base. This strategy is especially helpful
when disambiguating adjectives and adverbs since they usually
only depend on other words, and rarely any other words are
dependent on them. The third matching strategy is to consider
synonyms as a match besides the exactly matched words.
Synonyms can be obtained through the synsets in WordNet.
For example, when we disambiguate “company” in “A big



6

company needs a sustainable business model”, “big” can be
considered as a match for “large”. We call this matching
strategy as synonym matching. These three matching strategies
can be combined and applied together, and [5] showed the
experimental results of these matching strategies.

The GlossScore function is a variant of the Lesk algorithm
[7], and it is very sensitive to the words used in glosses. In a
dictionary, glosses are usually very concise and include only
a small number of words, so this function returns 0 in many
cases and can not serve as a sufficient stand-alone disam-
biguation method. On the other hand, although dependency
knowledge usually generates non-zero scores, dependency
knowledge is noisy since a word can be a dependent of many
different words and itself can mean different things, e.g.,
“institution → large′′, “family → large′′. As shown in
the running example, dependency scores generated by different
senses can be very close or even misleading, and due to
noise dependency information only can only achieve 73.65%
accuracy using SemEval 2007 Task 07 data [5]. Dependency
knowledge can always point out a sense (the sense with
the highest score) even it could be wrong. However, if the
sense selected by dependency knowledge matches the sense
selected by gloss overlapping function, it has a high probability
to be correct. When both scores generated by dependency
knowledge and gloss overlapping are low, most frequent sense
is still the most reliable choice. With optimal combination
of these three knowledge sources our method can provide
broad-coverage and more accurate disambiguation that will
be verified in the following experiment section.

V. EVALUATION

Research on WSD not only provides valuable insights into
understanding of semantics, but also can improve performance
of many important Natural Language Processing applications.
Recently several workshops have been organized to evaluate
WSD techniques in real world settings. In this section, we will
discuss our experiment results with two large scale WSD eval-
uation corpora, Senseval-2 fine-grained English testing corpus
and SemEval 2007 Task 7 coarse-grained testing corpus. Both
evaluations require the disambiguation of all nouns, verbs,
adjectives, and adverbs in the testing articles, which is usually
referred as “all-words” task.

A. Experiment with Senseval-2 English testing corpus

Senseval-2, the Second International Workshop on Evalu-
ating Word Sense Disambiguation Systems, evaluated WSD
systems on two types of tasks (all word or lexical sample) in
12 languages. 21 research teams participated in English all-
word task [14]. In Senseval-2 testing corpus, there are totally 3
documents, which include 2473 words that need to be disam-
biguated. Article 1 discusses churches in England and contains
684 words that need to be disambiguated, article 2 discusses a
medical discovery about genes and cancers and contains 1032
words that need to be disambiguated, and article 3 discusses
children education and contains 757 words that need to be
disambiguated. Table I shows our system performance along

with the ten best-performing systems participated in Senseval-
2. Our WSD system achieves similar performance as the best
supervised system, and also outperforms MFS baseline.

System Precision Recall F1 score
SMUaw (supervised) 0.69 0.69 0.69

CNTS-Antwerp (supervised) 0.636 0.636 0.636
UHD system (unsupervised) 0.633 0.633 0.633

Sinequa-LIA-HMM (supervised) 0.618 0.618 0.618
MSF baseline 0.617 0.617 0.617

UNED-AW-U2 (unsupervised) 0.575 0.569 0.572
UNED-AW-U (unsupervised) 0.556 0.55 0.553

UCLA-gchao (supervised) 0.5 0.449 0.473
UCLA-gchao2 (supervised) 0.475 0.454 0.464
UCLA-gchao3 (supervised) 0.474 0.453 0.463
DIMAP (R) (unsupervised) 0.451 0.451 0.451

DIMAP (unsupervised) 0.416 0.451 0.433

TABLE I
COMPARISON WITH TOP-PERFORMING SYSTEMS IN SENSEVAL-2

B. Experiment with SemEval 2007 Task 7 testing corpus

To further evaluate our approach, we evaluated our WSD
system using SemEval-2007 Task 07 (Coarse-grained English
All-words Task) test data [12]. The task organizers provide
a coarse-grained sense inventory, trial data, and test data.
Since our method does not need any training or special
tuning, coarse-grained sense inventory was not used. The test
data includes: a news article about “homeless”, a review of
the book “Feeding Frenzy”, an article about some traveling
experience in France, an article about computer programming,
and a biography of the painter Masaccio. Two authors of
[12] independently annotated part of the test set (710 word
instances), and the pairwise agreement was 93.80%. This inter-
annotator agreement is usually considered as an upper bound
for WSD systems.

We followed the WSD process described in Sections III
and IV using the WordNet 2.1 sense repository. Among the
2269 target words, 1112 words are unique and submitted
to Google API as queries. The retrieved Web pages were
cleaned, and 1945189 relevant sentences were extracted. On
average 1749 sentences were obtained for each word. The
overall disambiguation results are shown in Table II. For
comparison we also listed the results of three top-performing
systems and three best unsupervised systems participating in
SemEval-2007 Task 07. All of the top three systems (UoR-
SSI, NUS-PT, NUS-ML) are supervised systems, which used
annotated resources (e.g., SemCor, Defense Science Organi-
zation Corpus). Strictly speaking, the best performing system,
UoR-SSI, does not use a supervised classifier. However, our
WSD achieved similar performance using much less manually-
encoded knowledge. Our fully automatic WSD system clearly
outperforms the three unsupervised systems (SUSSZ-FR,
SUSSX-C-WD, SUSSX-CR) and achieves performance simi-
lar as the top-performing supervised WSD systems.

It is noteworthy that our system surpasses the MFS baseline
that has proved very hard to beat in many WSD evaluations.
Apparently any WSD techniques that perform worse than MFS
baseline will have little use in practice. Due to the noise,



7

System Precision Recall F1 score
UoR-SSI (supervised) 83.21 83.21 83.21

UHD system (unsupervised) 82.64 82.64 82.64
NUS-PT (supervised) 82.50 82.50 82.50
NUS-ML (supervised) 81.58 81.58 81.58

MFS Baseline 78.89 78.89 78.89
SUSSZ-FR (unsupervised) 71.73 52.23 60.44

SUSSX-C-WD (unsupervised) 54.54 39.71 45.96
SUSSX-CR (unsupervised) 54.30 39.53 45.75

TABLE II
OVERALL DISAMBIGUATION PERFORMANCE (OUR WSD SYSTEM IS

MARKED IN BOLD)

dependency knowledge itself cannot pass the MFS baseline
in any of these articles. Clearly integration of three types
of knowledge significantly improves the WSD performance.
We examined correctly disambiguated and mis-disambiguated
words, and found that DepScore and GlossScore together are
highly accurate. In our experiment, these two scores point to
the same senses in 1007 out of 2269 target words. Among
these 1007 cases, 896 of them are correctly disambiguated.
In the rest of 1262 cases, GlossScore returns many zero
values due to concise glosses and short context sentences,
and DepScore also makes mistakes due to noisy dependency
relations since one identical word can mean different things
in different dependency relations. We also experimented with
just two knowledge sources: (1) glosses and MFS informa-
tion; (2) glosses and dependency knowledge; (3) dependency
knowledge and MFS information. When only two knowledge
sources are used, we adopted score threshold to eliminate noise
in order to improve accuracy, e.g., when gloss overlapping
score is too small we will select the first sense, but none of
these combinations can outperform the MFS baseline.

Senseval-2 and Semeval 2007 WSD test corpora provide
evaluation for both coarse-grained and fine-grained senses, and
cover diverse topics and a significant portion of commonly-
used English words (A college graduate knows approximately
20,000 - 25,000 English words). Evaluation with these two
testing corpora clearly shows the effectiveness of our approach
and its potential application in many practical NLP systems.

VI. CONCLUSION

Broad coverage and disambiguation quality are critical for
WSD techniques to be adopted in real-world applications.
This paper presents a fully automatic WSD method that
utilizes three automatically accessible and disambiguation-
enabling knowledge sources: glosses from dictionaries, the
most-frequent-sense information, and normalized dependency
knowledge extracted from unannotated text. Our WSD method
overcomes the knowledge acquisition bottleneck faced by
many current WSD systems. Our main finding is the “greater-
sum” disambiguation capability of these three knowledge
sources. We evaluated our approach with the SemEval-2007
and Senseval-2 corpora, and achieved similar performance as
the top performing supervised WSD systems. With better-than-
MFS-baseline performance and by using only widely available
knowledge sources, our method may provide a viable solution

to the problem of WSD and can be readily used in many real
world Natural Language Processing applications.

ACKNOWLEDGMENTS

This work is partially funded by NSF grant DUE 0737408
and CNS 0851984. This paper contains proprietary informa-
tion protected under a pending U.S. patent (No. 61/121,015).

REFERENCES

[1] Agirre, Eneko and Philip Edmonds, editors. 2006. Word Sense Disam-
biguation: Algorithms and Applications, Springer.

[2] Agirre, Eneko and A. Soroa. 2009. Personalizing pagerank for word
sense disambiguation. In Proceedings of the 12th conference of the
European chapter of the Association for Computational Linguistics
(EACL-2009), pp. 33-41.

[3] Bergsma, Shane, Dekang Lin, and Randy Goebel. 2009. Web-Scale N-
Gram Models for Lexical Disambiguation. IJCAI 2009: 1507-1512.

[4] Bickel, P. J. and K. A. Doksum. 2001. Mathematical Statistics: Basic
Ideas and Selected Topics (Second Edition). Prentice-Hall Inc.

[5] Chen, Ping, Wei Ding, Chris Bowes, and David Brown. 2009. A Fully
Unsupervised Word Sense Disambiguation Method and Its Evaluation
on Coarse-grained All-words Task. NAANLP 2009. pp. 28-36.

[6] Deal, S. V., Robert R. Hoffman. 2010. The Practitioner’s Cycles, Part 1:
Actual World Problems. IEEE Intelligent Systems, pp. 4-9, March-April,
2010

[7] Lesk, M. 1986. Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In
Proceedings of the 5th Annual International Conference on Systems
Documentation (Toronto, Ontario, Canada). V. DeBuys, Ed. SIGDOC
’86. pp. 24-26.

[8] McShane, Marjorie. 2009. Reference Resolution Challenges for Intelli-
gent Agents: The Need for Knowledge. IEEE Intelligent Systems, pp.
47-58, July-August, 2009

[9] Lin, Dekang. 1998. Dependency-based evaluation of minipar. In
Proceedings of the LREC Workshop on the Evaluation of Parsing
Systems, pp. 234–241, Granada, Spain.

[10] Mihalcea, Rada. 2005. Unsupervised Large-Vocabulary Word Sense Dis-
ambiguation with Graph-based Algorithms for Sequence Data Labeling,
in Proceedings of the Joint Conference on Human Language Technology
Empirical Methods in Natural Language Processing (HLT/EMNLP),
Vancouver, October, 2005. pp. 411-418.

[11] Navigli, Roberto. 2009. Word Sense Disambiguation: a Survey, ACM
Computing Surveys, 41(2), ACM Press, 2009. pp. 1-69.

[12] Navigli, Roberto, Kenneth C. Litkowski, and Orin Hargraves. 2007.
Semeval-2007 task 07: Coarse-grained english all-words task. In Pro-
ceedings of the Fourth International Workshop on Semantic Evaluations
(SemEval-2007), pages 30–35, Prague, Czech Republic.

[13] Navigli, Roberto and Mirella Lapata. An Experimental Study of Graph
Connectivity for Unsupervised Word Sense Disambiguation. IEEE
Trans. Pattern Anal. Mach. Intell. 32(4): 678-692 (2010)

[14] SENSEVAL-2: Second International Workshop on Evaluating Word
Sense Disambiguation Systems, July 2001, Toulouse, France.

[15] Stevenson, Mark and Y. Wilks. The Interaction of Knowledge
Sources in Word Sense Disambiguation. Computational Linguistics,
27(3):321C349, 2001.

[16] Yarowsky, D., 1995. Unsupervised word sense disambiguation rivaling
supervised methods. In Proceedings of the 33rd Annual Meeting on
Association For Computational Linguistics (Cambridge, Massachusetts,
June 26 - 30, 1995). pp. 189-196.

[17] Zhong, Zhi and Hwee Tou Ng. 2009. Word Sense Disambiguation
for All Words without Hard Labor. In Proceeding of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI-09), pp.
1616-1621.


