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Abstract This paper introduces a method for mining co-occurring events from
longitudinal data, and applies this method to detecting adverse drug reactions
(ADRs) from patient data. Electronic health records are richer than older data
sources (such as spontaneous report records) and thus are ideal for ADR mining.
However, current data mining methods, such as disproportionality ratios and tem-
poral itemset mining, ignore certain important aspects of the longitudinal data
in patient records. In this paper, we highlight two specific problems with current
methods, which we name temporal and contextual sensitivity, and discuss why
these two properties are vital to mining patterns from longitudinal data. We also
propose two sensitive longitudinal rate comparison measures, which utilize con-
dition occurrence rates and length of drug eras, for mining ADRs from this type
of data. These novel methods are then used to rank potential ADRs, along with
existing state-of-the-art methods, under many simulated yet realistic datasets. In
48 out of 60 experiments, the proposed longitudinal rate comparison methods sig-
nificantly outperform other methods in mining known ADRs from other drug /
condition pairs.

Keywords data mining · disproportionality methods · adverse drug reactions ·
longitudinal data

1 Introduction

Both drug availability and drug consumption increase every year, making adverse
drug reactions (ADRs) an increasingly pervasive and difficult problem. In the
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United States alone, ADRs send 700,000 patients to emergency rooms and account
for 120,000 hospitalizations per year [5]. All of this amounts to an estimated cost
of $177.4 billion per year [8]. Mortality due to ADRs continues to grows year after
year: just in the FDA reporting system alone, 63,839 ADR-related deaths were
reported in 2009; 82,724 in 2010, and 98,518 in 2011 [25].

To detect ADRs as soon as possible, it is imperative to monitor drug usage
and condition occurrence in healthcare institutions. Though self-reporting systems
(SRS) exist for patients to document their ADRs, data from hospital electronic
health records (EHRs) are of much higher quality. These records are entered by
trained professionals, and contain much more patient data, such as demographic
information and risk-related variables.

Detecting ADRs from patient data is an example of mining co-occurring events,
in which events are drug usage and condition occurrence. Many methods exist for
this general problem. However, for ADR detection, viable methods must contain
the following three properties:

– Temporal sensitivity: must be able to take into account the lengths of time,
rather than just counts.

– Contextual sensitivity: must be able to consider the strength of a potential
ADR with relation to the condition’s contextual information.

– Statistical significance: must be able to provide p-values in order to establish
significance.

Temporal and contextual sensitivity are important not only for ADR detection,
but also for mining temporally correlated events. Detection of temporal correlation
(which implies causality) has been studied in artificial intelligence and data mining
literature [16,18]. However, we argue that for a temporal pattern to be meaningful
in any problem domain, context and length of time must be taken into account.
Without this information, it is impossible to determine whether or not an event
following another is truly significant.

Current methods for temporal pattern mining (such as methods based on sup-
port and confidence) lack contextual sensitivity, as they do not consider occurrence
rates outside of co-occurrences. Others are not grounded in statistics [1, 13, 17].
Current methods to mine ADRs, which are based on proportionality ratios, are
grounded in statistics, but these lack temporal sensitivity, as do association rule
based methods [27]. Episode mining algorithms, which take into account temporal
contexts, do not provide measures of statistical significance [14,26].

We introduce a Poisson-based method which is able to mine statistically signif-
icant event patterns, and is temporally and contextually sensitive. This method is
based on the comparison of condition occurrence rates; thus, we call it longitudinal
rate comparison (LRC). LRC is contextually sensitive due to its comparisons, and
is temporally sensitive due to its reliance on occurrence rates. These properties are
not shared in any other method. We provide two techniques to perform the rate
comparison, LRC-ratio and LRC-SD, both of which are grounded in statistics and
are able to provide p-values. Our experiments on simulated EHR datasets show
that the LRC-ratio and LRC-SD methods obtain better ROC curves than existing
methods.

The contributions of this paper are thus:
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– A systematic analysis of the temporal sensitivity and contextual sensitivity
properties, explaining why they are necessary for mining patterns in longitu-
dinal data.

– The contextually and temporally sensitive LRC methods for extracting ADRs
from longitudinal data.

The rest of the paper is organized as follows. In section 2, we operationalize
the problem of mining ADRs, and introduce existing methods. Section 3 describes
temporal and contextual sensitivity, and issues with existing methods. In section
4, we introduce the LRC methods, which bypasses the problems inherent in using
proportionality methods in EHR data. Experiments in section 5 then compare the
two LRC methods against different versions of disproportionality measures. The
paper concludes in section 6.

2 Background

2.1 Problem Definition

The central problem of this paper is extracting potential ADRs from a set of
longitudinal patient data. This longitudinal dataset contains information about
patients over time, such as condition occurrences and drug usage periods. From
this, drug/condition pairs which may be potential adverse drug reactions (ADRs)
must be selected and ranked.

Operationally, potential ADRs can be detected by identifying abnormally high
rates of condition occurrence among drug users. As will be described, there exist
many methods for quantifying this abnormality.

2.2 A Framework for ADR Mining

The general problem of mining itemsets can be summarized in the following frame-
work. Without loss of generality, we use itemsets of size two:

1. For each possible set of items x1, x2, extract the co-occurrence counts:
– Number of data samples in which x1 and x2 co-occur, nx1x2 .
– Number of data samples which contain x1 but not x2, nx1x2

.
– Number of data samples which contain x2 but not x1, nx1x2

.
– Number of data samples which contain neither x2 nor x1, nx1x2

.
2. From these counts, extract an interestingness measure.
3. Determine a cutoff for interestingness, usually either fixed or derived from some

computation.
4. If itemset interestingness meets this cutoff, then mine out this pattern; other-

wise, discard.

In the ADR mining problem domain, x1 is a drug d and x2 is a condition c.
The interestingness measures used in ADR mining are called disproportional-

ity (or proportionality) ratios. These measures are calculated from co-occurrence
values, and are typically higher for drug / condition pairs more likely to be true
ADRs [3,6, 10,19].
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Condition No condition
Drug ndc ndc̄ nd

No drug nd̄c ndc nd̄
nc nc̄ n

Table 1 Contingency table. For some given drug and condition, ndc refers to the number of
subjects who have taken the drug and experienced the condition; ndc̄, subjects who have taken
the drug without experiencing the condition; nd̄c, subjects who have not taken the drug, but
experienced the condition; ndc, subjects who have neither taken the drug nor experienced the
condition.

Though these methods were developed for SRS data, Zorych et al. developed
co-occurrence counting methods for longitudinal data, and thus extended dispro-
portionality ratios to longitudinal data [27]. Instead of counting non-occurring
conditions, Zorych’s method counts the occurrence of other conditions; likewise,
non-drug events are counted by the usage of other drugs.

Cutoffs for proportionality ratios are usually determined either by convention
(e.g. when the probability of a type I error α < 0.05 [3]) or by an arbitrary
threshold. Some methods do not specify a specific threshold, while some studies
neglect thresholds altogether. Indeed, many studies compare methods by their
rank ordering of potential ADR pairs, and with evaluation methodologies such
as ROC curves, cutoffs do not need to be defined. Some work has also been done
using the false discovery rate (FDR) as the cutoff statistic, with a cutoff of 0.05 [2].

2.3 Proportionality Ratios

Most accepted ADR methods use proportionality measures. These measures quan-
tify how often a drug and condition co-occur compared to some baseline rate, and
mostly differ in the definition of the baseline. Potential ADRs are mined by spec-
ifying a cutoff, usually defined using confidence intervals, for these measures.

All disproportionality measures are ratios or combinations of the four count
values present in a contingency table, as shown in Table 1. The variable names
ndc,ndc̄,nd̄c, and ndc used in that table will be used to define each of the dispro-
portionality measures.

2.3.1 Proportional Reporting Ratio

The proportional reporting ratio (PRR), as defined in Equation 1, compares oc-
currences of a condition c in the presence of a drug d with occurrences in the
drug’s absence [9, 10]. Larger PRR signifies a positive effect of d on c, smaller
numbers signify negative effects, and a PRR of one signifies no effect. This is a
widely used measure in many studies, and is used in the UK Medicines Control
Agency (MCA) [10].

PRR =
ndc/nd
nd̄c/nd̄

(1)

PRR divides the dataset into two groups depending on the presence of d, then
returns the ratio of the measures in both groups. PRRs greater than two, a count
of over three, and a χ2 value over four, are used in the literature to signify potential
reactions [10,11]. The χ2 value is calculated using the contingency table.
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2.3.2 Reporting Odds Ratio

The reporting odds ratio (ROR) [19], shown in Equation 2, uses ratios of condition
occurrence to non-occurrence. The test hinges on the proportions of this ratio for
drug-taking subjects versus non-drug taking subjects. It is currently being used
by the Netherlands Pharmacovigilance Centre to detect ADRs [19].

ROR =
ndc/ndc̄
nd̄c/ndc

(2)

The drug-condition pair is signaled if the lower limit of the two-sided 95% confi-
dence interval exceeds 1. This confidence interval can be calculated using Equation
3, from [19,24].

ROR0.05 = exp

(
ln(ROR)± 1.96

√(
1

ndc
+

1

ndc̄
+

1

nd̄c
+

1

ndc

))
(3)

In practice, condition occurrence (nc) is very low for any given condition. Thus,
the ROR and PRR measures tend to give very similar numbers, though their
cutoffs differ.

2.3.3 Information Component

Bayesian confidence propagation neural networks (BCPNN) utilize a dispropor-
tionality measure known as information component (IC) [3]:

IC = log2
p(c, d)

p(c)p(d)

= log2
(ndc/n)

(nc/n)(nd/n)

where d is a drug, and c is a condition. IC is 0 if d and c are totally independent;
negative if d causes a decrease in the occurrence probability of c, and positive if it
causes an increase.

IC is assumed to be normally distributed. Thus, its credible interval (IC is a
Bayesian method) can be determined using its expected value and its standard
deviation.

The expected value and variance of the IC are given as follows [3]:

E(IC) = log2
(ndc + 1)(n+ 2)2

(n+ 1)(nd + 1)(nc + 1)

V ar(IC) =
1

(ln 2)2

(
n− ndc + γ − 1

(ndc + 1)(1 + n+ γ)
+

n− nd + 1

(nd + 1)(3 + n)
+

n− nc + 3

(nc + 1)(3 + n)

)
where:

γ =
(n+ 1)2

(nd + 1)(nc + 1)

The credible interval for α = 0.05 is therefore:

IC0.05 = E(IC)± 1.96 ∗ SD(IC) (4)
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If the lower bound of this interval is greater than 0, a possible ADR is signaled.
All equations can be found in [3].

BCPNNs have been used to mine ADRs from the WHO Uppsala Monitoring
Centre database since 1998 [3,4,15]. Derivation of the equations listed and rationale
can be found in the original paper by Bate [3].

The IC measure has also been extended for temporal data, using time lengths
as well as condition counts. It does so by changing the IC term [21]:

IC = log2
p(c, d)

p(c)p(d)

= log2
x1

x2/td̄ ∗ td

Here, x1 is the number of times c occurs in the presence of d, x2 is the number of
times c occurs elsewhere, td̄ is the time spent not under the drug, td is the time
spent under the drug. All other equations remain the same.

2.3.4 Gamma Poisson Shrinker

The Gamma Poisson shrinker (GPS) uses the following proportionality ratio [6]:

λ =
ndc

ndnc/n
(5)

This ratio is converted into the empirical Bayesian geometric mean (EBGM)
[6].

EBGM = exp(E(log λ) (6)

The expected value of log λ is obtained by means of a Bayesian update; λ is
assumed to be drawn from a Poisson distribution, and its prior is chosen to be a
mixture of two Gamma distributions. The credible interval is chosen in the same
way. For more details see [6, 7].

2.4 Co-occurrence Counting in Longitudinal Data

Zorych et al. proposed three different methods for defining contingency counts
based on longitudinal data [27]. The SRS method counts a co-occurrence whenever
a drug co-occurs with a condition, and estimates condition non-occurrence using
the occurrence of other conditions. In this way, this method attempts to generate
reports as seen in SRS data – one report for each co-occurring drug era and
condition occurrence.

This method does not count drugs which do not occur with conditions, or
conditions which do not occur with drugs. This is rectified in the modified-SRS

method [27]:

– ndc counts occurrences of c during exposure to d.
– ndc̄ counts occurrences of conditions that are not c during exposure to d, plus

the exposures to d during which no conditions occur.
– nd̄c counts occurrences of c during exposure to drugs that are not d.
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– ndc counts occurrences of conditions that are not c during exposure to drugs
that are not d, plus the occurrences of c with no corresponding drug, plus the
exposures to d with no reported conditions.

This counting method and others were used to obtain contingency values from
longitudinal data. These contingency values were used by various methods to de-
tect ADRs. Their results indicated that modified-SRS yielded the best ADR de-
tection performance, though the SRS method was close [27].

3 Analysis

In the context of existing ADR mining methods, we introduce the contexual and
temporal sensitivity properties, and discuss how they apply to longitudinal data.

In order to determine what conditions are abnormally frequent, we must com-
pare them to some baseline. In other words, the interestingness of any potential
ADR must depend partially on the context of the potential ADR. We call this
contextual sensitivity. Disproportionality measures, such as PRR and ROR, have
this property, due to comparisons between condition occurrences in the presence
and absence of drug usage. However, measures utilizing only the absolute quantity
of condition occurrences, such as support and confidence, do not.

Any interestingness measure must also take into account the time spent under
a drug. This is because determining some occurrence count to be abnormal is not
sufficient - we are interested in abnormal frequency, which considers time also.
Three conditions occurring within a year of drug usage is not as suspicious as
three conditions within a week. We deem this property temporal sensitivity.

Though disproportionality methods are appropriate for SRS data, their effec-
tiveness is hampered by their reliance on co-occurrence counts when applied to
longitudinal data [27], as we show below.

3.1 Contextual Sensitivity

Disproportionality ratio methods are inherently contextually sensitive, as they
compare some measure of frequency with some baseline (hence the “ratio”). Vari-
ous methods define both the frequency measure and the baseline measure in differ-
ent ways. However, adapting these methods for longitudinal data introduces bias
for contextual sensitivity.

Calculating contingency values requires counting the non-occurrence of events.
Specificially, nd̄c counts the absence of a drug, ndc̄, counts the absence of a con-
dition, and ndc counts the absence of both. Zorych’s methods count condition
non-occurrences whenever a different condition occurs while a patient is taking
(or not taking, depending on the count value in question) a certain drug, and
similarly for drug non-occurrences.

Though a natural adaptation, using this scheme, ndc̄ counts increase with the
number of non-c condition events in the time period under consideration. This
affects disproportionality ratios, when intuitively, the presence or absence of other
conditions should have no bearing on whether or not a drug causes a given condi-
tion. Thus, there exists a dependence of the disproportionality measure on occur-
rences of conditions not under question.
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ndc ndc̄ nd̄c ndc PRR Potential ADR?
Observation Period 2 0 1 2 2 Yes

Observation with Added Condition 2 1 1 2 1.3 No

Fig. 1 Diagram demonstrating the influence of unrelated conditions. The pair under consid-
eration is d2 and c27. Rectangles represent drugs; drug labels are on the left side of drug
rows.

The effect is shown in Figure 1. In this figure, shapes represent condition
occurrences (c4, c25, c27), rectangles (d2, d70) represent different drugs, and the
area that rectangles cover represents a period of time during which the drug was
used. Two observation periods are shown. Below the graphic is a table showing
the contingency counts associated with conditions 41 and 64, when counted using
the Zorych methods [27].

Condition 4 co-occurs with drug 2 twice in both conditions, but note that the
PRRs (calculated using Equation 1) are different. The only difference between
the two conditions is the addition of one unrelated condition occurrence (c25 in
the second observation), yet this simple change results in the PRR going from 2
(potential ADR) to 1.3 (not a potential ADR). This demonstrates the potential
effect that unrelated conditions have on disproportionality ratios, when using the
Zorych SRS counting method [27].

Apart from the problem of unrelated condition influence, longitudinal adapta-
tion also over-counts the number of other events in total. As an example, observe
the patient data in Figure 2. Both conditions 41 and 64 occur thrice. However,
note how many reports are generated for each. For condition 41, three reports are
generated, since each condition occurrence co-occurs with one drug era. For condi-
tion 64, however, two condition occurrences are simultaneous with three drug eras.
This results in a report for each condition occurrence, for each drug era, yielding 7
reports. Despite the fact that both conditions occurred the same number of times,
the marginal count of condition 64 is more than twice as high as that of condition
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ndc ndc̄ nd̄c ndc PRR Potential ADR?
Condition 41 2 1 1 5 4 Yes
Condition 64 2 1 5 1 0.8 No

Fig. 2 Diagram demonstrating over-counting. The drug under consideration is d56. Rectangles
represent drugs; drug labels are on the left side of drug rows.

41. This results in a much higher PRR for condition 41, as shown in the table in
Figure 2.

For patients with enough simultaneous events, this could theoretically lead to a
combinatorial explosion of “reports”, though the number of coinciding conditions
and drug usage eras is in practice low enough to mitigate this. Nevertheless, over-
counting non-occurring events biases results, as shown in the example.

3.2 Temporal Sensitivity

Apart from the issues arising from counting non-occurrences, there are issues with
merely counting occurrences as well. Longitudinal data contains temporal infor-
mation such as the duration of a drug era, which cannot be accounted for in
contingency counts. Yet drug era duration is important; a patient experiencing
a condition three times within one week is much more worrisome than the same
number of condition occurrences within a year.

For a more concrete example, observe the two patients in Figure 3, each suffer-
ing several occurrences of only one condition. Both patient observations yield the
same contingency values; specifically, the ndc and nd̄c counts of drug 15 and the
condition are both 3. Thus, any disproportionality method would yield the same
result for both the above and below case.

Intuitively, this should not be the case. The bottom patient has had the same
number of condition occurrences while taking drug 15, but in a much shorter time
span. The top patient’s condition occurrences could have been due to chance, but
it seems that the bottom patient’s conditions are much less likely to be so.

4 Longitudinal Rate Comparison

To attain both temporal and contextual sensitivity, we propose a method which
is based on comparing condition occurrence frequencies within different contexts.
Essentially, using frequencies allows us to take into account length of time, and
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Fig. 3 Diagram demonstrating temporal negligence.

comparing rates gives contextual sensitivity to the method. We call the proposed
method longitudinal rate comparison (LRC).

4.1 Counting Longitudinally

Rather than the four contingency values used in disproportionality ratios, LRC
depends on four values:

– ndc = x1, the drug/condition co-occurrence count.
– nd̄c = x2, the condition occurrence count in the absence of the drug.
– td, the time spent in a drug era.
– td̄, the time spent outside a drug era.

Condition occurrence counts (ndc and nd̄c) are necessary for determining the
significance of a drug/condition pair; without comparing condition prevalence both
in and out of drug eras, it is impossible to know whether a condition is abnormally
frequent under the presence of a drug, as we have no baseline. Thus, we retain
these counts, renaming them x1 and x2.

The time that a subject spends in and out of drug eras for a given drug is
required to avoid temporal negligence. These times, added up over all subjects,
are denoted td and td̄.

Given a drug, the LRC method divides the observation period of every patient
into the time periods within which the patient was taking the drug (time period
with length td), and the time within which the drug was not taken (time pe-
riod with length td̄). These time windows can be extended to include surveillance
periods.

For each condition, its count is calculated in the drug-taking time windows,
yielding the condition count value x1, and in the non-drug-taking time windows,
yielding x2. We also consider the total time taking the drug, td, and the total time
not taking the drug, td̄.
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4.2 Interestingness and Threshold

Using the condition occurrence rates λ1 = x1/td and λ2 = x2/td̄. We define two
interestingness measures, one based on the rate ratio (LRC-ratio), and another
based on the rate standardized difference (LRC-SD), and a method for extracting
significance values from them.

For both measures, we signal a potential ADR for a given condition / drug
pair when the condition occurrence rates λ1 and λ2 differ with p-value less than
0.05.

4.2.1 LRC-ratio

One possible interestingness value is the ratio of the two rates, which we call
LRC-ratio (or LRC-R for short):

LRC-ratio =
λ1

λ2
(7)

The p-value for LRC-R can be calculated using the C-test, which determines
the significance of two Poisson rates [23]. The method uses the fact that x1 is
distributed binomially, when conditioned on n = x1 + x2 and p = λ1

λ1+λ2
:

P (X1 ≤ x1|n, p) =
n∑
k=0

B(k, p)

For our two sided C-test, with the null hypothesis λ1 = λ2, the p-value is given by
the formula:

2 ∗min(P (X1 ≥ x1|n, p), 1− P (X1 ≥ x1|n, p)) (8)

When the condition occurrence rates are very similar, then we do not signal a
potential ADR, and LRC-R should be around 1.

4.3 LRC-standard deviation

LRC-SD uses the standardized difference of two condition counts as an interest-
ingness measure. The benefit of LRC-SD over LRC-R is that it uses an estimate
of the standardized variance; thus, it shrinks towards 0 as variance increases.

If the null hypothesis is that the two observed condition occurrence rates λ1

and λ2 are equal, then the standardized difference

SD =
λ1 − λ2√

V̂
(9)

should be 0. In this formula, V̂ is estimated variance, given by

V̂ =
x1

t2d
+
x2

t2
d̄
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To calculate the p-value for Equation 9, we add together all probabilities in the
joint space where the standardized differences Tk1,k2

and Tx1,x2 are the same [12]:

∞∑
x1=0

∞∑
x2=0

(tdλ̂2)x1 exp(−tdλ̂2)

x1!

(td̄λ̂2)x2 exp(−td̄λ̂2)

x2!
[I(Tk1,k2

= Tx1,x2)] (10)

where I is the indicator function and where: λ̂2 = k1+k2
td+td̄

.
When the condition occurrence rates are very similar, then we do not signal a

potential ADR, and LRC-SD should be around 0.

4.4 Example

As an example, consider a condition c and drug d, experienced and used by several
subjects. Suppose that all the subjects in our sample have collectively used d for
a total of 300 days, and within this time, they suffered c 18 times. The total
observation time minus the time spent under d is 500 days, and in this period,
subjects suffered c only twice.

From this, we get x1 = 18, x2 = 2, td = 300, td̄ = 500, and:

– λ1 = 18
300 = 0.06

– λ2 = 2
500 = 0.004

– LRC-ratio = 15
– LRC-SD = 3.9598, since V̂ = 0.0002

Since LRC-ratio is much greater than 1, and LRC-SD is larger than 0, it is
likely that d and c is a potential ADR. However, we cannot trust these ratios unless
their p-values, which we can calculate using Equations 8 and 10, are significant.
In our experiments, we use a significance threshold of 0.05.

5 Experiments

5.1 Data

Longitudinal patient data was generated using the Observational Medical Dataset
Simulator Generation 1 (OSIM) [22].

5.1.1 Observational Medical Dataset Simulator

OSIM was created by the Observational Medical Outcomes Partnership, a non-
profit agency with close ties to the FDA, in order to identify reliable methods for
mining huge volumes of data for ADRs. The advent of OSIM has circumvented
several difficult problems, namely:

– The difficulty of obtaining patient data, and thus evaluating ADR mining
methods, due to privacy laws such as HIPAA (Health Insurance Portability
and Accountability Act).

– Providing a method for injecting drug/condition reactions into the data, thereby
providing a ground truth and facilitating method evaluation.
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– Obtaining a high-quality dataset which is scalable, modifiable, and realistic,
yet anonymous and posing no threat to patient privacy.

The OSIM methodology accomplishes the latter goal by first obtaining proba-
bilities about patient demographics, drug usage, condition occurrences, and other
variables. With this information, the software generates datasets which preserve
these distributions, completely de-anonymizing the data. For more details about
the OSIM process, see [20,22].

5.1.2 Datasets

Fifteen datasets were generated using OSIM. All datasets contained 25,000 simu-
lated persons; the differences in their parameters are described in Table 2.

Dataset ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Drugs 30 30 30 30 30 35 35 35 35 35 40 40 40 40 40
Conditions 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50

Table 2 Run parameters for OSIM data generation. “Drugs” refers to number of drugs gen-
erated for that specific dataset; likewise for “Conditions”.

With the baseline probabilities, very large datasets would have to be generated
in order to observe an adequate number of occurrences of drug/condition reactions,
including those found in the ground truth. Thus, condition prevalence and drug
prevalence were increased so as to fall within the 1% - 10% category.

5.2 Methodology

For each drug/condition pair which occurs in the data, we extract the four con-
tingency values and the time values td, td̄. From these, all other calculations can
be done.

We use four different surveillance period lengths (t = 0, t = 7, t = 30, t = 365)
in order to detect delayed ADR effects. The value of t specifies the length of time
(in days) after drug usage has subsided in which we still consider a condition to be
possibly linked to that drug. For example, if t = 7, a condition appearing 6 days
after stopping drug usage is still considered a co-occurrence, but one appearing 8
days after is not.

We tested several different detection methodologies: ROR, PRR, RFET, IC
temporal pattern detection (TimeIC), BCPNN (IC), GPS, LRC-R, and LRC-SD.

The typical use case for these interestingness values is to use some sort of cutoff
to detect potential ADR signals, then rank these signal with the interestingness
measure.

Thus, in our experiments, we cull potential ADRs using methods specific to
each proportionality-ratio method, as done in their original papers. In particular,
for the following methods, drug/condition pairs are culled as follows:

– PRR: pairs are culled if PRR is less than 2.
– ROR: pairs are culled if the lower boundary of the two-sided 95% confidence

interval is less than or equal to 1.
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– RFET: pairs are culled if their false discovery rate is less than 0.05.
– BCPNN: pairs are culled if the lower boundary of the two-sided 95% confidence

interval is less than or equal to 0.
– TimeIC: pairs are culled if the lower boundary of the two-sided 95% confidence

interval is less than or equal to 0.
– GPS: pairs are culled if the one-sided 95% confidence interval is less than 1.
– LRC-R and LRC-SD: pairs are culled if their p-values are not less than 0.05.

In addition, pairs are removed if they do not contain at least 3 co-occurrences.
Methods are evaluated using a receiver operator characteristic curve (ROC)

after culling. The ROC curve is a standard way of comparing a method’s true
positive rate with its false positive rate, as the discrimination threshold for the
interestingness value is varied. Area under the curve (AUC) is also calculated.
Larger area means that the method better separates the ADR signals from the
non-signals.

5.3 Results

AUCs for all experiments are shown in Table 3. There seems to be a wide range
of difficulty for each dataset - for example, dataset 2 is relatively diffficult for all
methods, and dataset 1 is relatively easy. There does not seem to be an obvious
relationship between the value of t, or the number of conditions and drugs in a
dataset, with the dataset’s difficulty.

LRC-SD achieves the highest AUC for 48 out of the 60 testing conditions, with
one of these being a tie. The performance of the GPS, TimeIC, and IC methods
is close to LRC-SD, probably due to their usage of statistical shrinkage.

Calculating the significance of these AUC results is complicated by the large
range of difficulties between datasets. Figure 4 shows the means and standard
errors of all ADR measures tested, averaged over all datasets. Note that between
different values of t, error regions overlap, suggesting that differences between
values of t are not significant. Also, the standard deviations actually increase for
some methods (PRR, ROR, GPS) when averaged across all t (see darkest columns
in Figure 4). This suggests that a simple comparison of means will not suffice.

The large differences between datasets suggests a pairwise test approach. Justi-
fying this is a preliminary ANOVA with a significant p-value of less than 2×10−16,
showing that there is indeed a difference between methods. The results of the
pairwise t-tests with a Holm-Bonferroni adjustment are shown in Table 4. The
extremely small p-values suggest a significant different between the AUC values
achieved by LRC-SD, and the AUC values of all others.

6 Conclusion

This paper explores mining ADRs from longitudinal data, introduces the ideas
of conceptual and temporal sensitivity, and proposes two sensitive LRC measures
for mining ADRs in such environment. Temporal and contexual sensitivity are
important properties not only for ADR mining, but also for the general problem
of extracting temporal event patterns, a common topic in data mining. Through
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Fig. 4 The results of all experiments; each bar represents AUCs averaged across all datasets
for each measure and value of t. Error bars represent one standard deviation about and below
the mean.

extensive experiments, we demonstrate that the LRC measures, which are con-
textually and temporally sensitive, significantly improve over the state of the art
methods in the longitudinal context.
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Data t ROR PRR RFET IC GPS TimeIC LRC-SD LRC-R

1

0 0.984 0.815 0.835 0.941 0.989 0.922 0.988 0.843
7 0.988 0.817 0.859 0.942 0.990 0.927 0.993 0.845
30 0.990 0.820 0.917 0.942 0.992 0.937 0.992 0.868
365 0.591 0.592 0.773 0.737 0.790 0.726 0.760 0.742

2

0 0.766 0.743 0.745 0.796 0.765 0.789 0.825 0.726
7 0.815 0.759 0.823 0.867 0.815 0.861 0.905 0.746
30 0.837 0.776 0.878 0.901 0.837 0.897 0.945 0.746
365 0.666 0.667 0.841 0.859 0.731 0.891 0.903 0.662

3

0 0.763 0.766 0.749 0.784 0.763 0.814 0.875 0.806
7 0.803 0.782 0.799 0.837 0.803 0.871 0.918 0.792
30 0.768 0.748 0.805 0.819 0.789 0.850 0.896 0.760
365 0.622 0.601 0.742 0.786 0.724 0.839 0.879 0.726

4

0 0.794 0.746 0.710 0.760 0.793 0.757 0.795 0.742
7 0.838 0.808 0.800 0.844 0.868 0.841 0.885 0.776
30 0.819 0.791 0.789 0.820 0.818 0.847 0.892 0.693
365 0.747 0.716 0.795 0.844 0.778 0.844 0.885 0.683

5

0 0.901 0.835 0.816 0.871 0.880 0.861 0.905 0.846
7 0.921 0.827 0.827 0.892 0.898 0.882 0.926 0.825
30 0.842 0.818 0.848 0.913 0.918 0.902 0.949 0.834
365 0.723 0.673 0.859 0.915 0.772 0.911 0.958 0.758

6

0 0.771 0.751 0.787 0.811 0.823 0.773 0.814 0.797
7 0.840 0.814 0.876 0.905 0.902 0.866 0.913 0.768
30 0.844 0.817 0.918 0.910 0.905 0.874 0.921 0.757
365 0.716 0.654 0.900 0.909 0.870 0.905 0.952 0.718

7

0 0.729 0.677 0.673 0.767 0.812 0.786 0.827 0.837
7 0.775 0.745 0.752 0.842 0.871 0.866 0.910 0.787
30 0.853 0.818 0.792 0.907 0.925 0.938 0.988 0.779
365 0.592 0.593 0.817 0.848 0.780 0.844 0.887 0.732

8

0 0.736 0.717 0.671 0.753 0.768 0.761 0.802 0.793
7 0.847 0.744 0.794 0.907 0.889 0.932 0.984 0.791
30 0.849 0.744 0.802 0.905 0.889 0.933 0.985 0.717
365 0.632 0.632 0.799 0.838 0.766 0.869 0.912 0.725

9

0 0.755 0.666 0.790 0.822 0.849 0.841 0.906 0.833
7 0.725 0.636 0.788 0.823 0.849 0.839 0.906 0.792
30 0.774 0.648 0.820 0.846 0.871 0.866 0.933 0.805
365 0.560 0.592 0.873 0.852 0.749 0.871 0.941 0.823

10

0 0.745 0.729 0.693 0.761 0.760 0.756 0.792 0.797
7 0.824 0.782 0.784 0.867 0.823 0.864 0.907 0.767
30 0.779 0.742 0.771 0.834 0.798 0.828 0.871 0.714
365 0.703 0.680 0.825 0.888 0.815 0.888 0.932 0.763

11

0 0.744 0.661 0.652 0.729 0.776 0.727 0.764 0.792
7 0.788 0.747 0.817 0.902 0.915 0.902 0.949 0.838
30 0.767 0.727 0.834 0.865 0.883 0.863 0.909 0.793
365 0.666 0.633 0.729 0.770 0.732 0.834 0.876 0.686

12

0 0.801 0.770 0.776 0.831 0.843 0.816 0.859 0.886
7 0.864 0.826 0.854 0.929 0.912 0.896 0.945 0.830
30 0.833 0.816 0.902 0.890 0.858 0.900 0.949 0.828
365 0.596 0.597 0.880 0.874 0.782 0.864 0.906 0.828

13

0 0.760 0.742 0.684 0.701 0.761 0.687 0.715 0.897
7 0.874 0.875 0.806 0.850 0.905 0.845 0.886 0.745
30 0.875 0.846 0.815 0.850 0.905 0.846 0.887 0.730
365 0.707 0.655 0.851 0.832 0.812 0.824 0.864 0.685

14

0 0.778 0.766 0.777 0.825 0.823 0.804 0.846 0.871
7 0.816 0.767 0.809 0.876 0.851 0.851 0.896 0.803
30 0.770 0.720 0.840 0.883 0.855 0.858 0.904 0.787
365 0.650 0.611 0.929 0.917 0.765 0.934 0.982 0.757

15

0 0.824 0.802 0.865 0.943 0.883 0.884 0.931 0.838
7 0.851 0.827 0.917 0.932 0.924 0.927 0.977 0.858
30 0.831 0.831 0.918 0.921 0.902 0.917 0.966 0.870
365 0.771 0.748 0.943 0.906 0.783 0.917 0.963 0.788

Table 3 AUC measures for fifteen OSIM datasets, with four different surveillance period
lengths, and various ADR mining methods. For each dataset and t-value, the highest AUCs
are marked in bold.
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ROR PRR RFET GPS IC TimeIC LRC-R
PRR 1.5 × 10−9 - - - - - -
RFET 0.07587 3.0 × 10−7 - - - - -
GPS 5.1 × 10−10 < 2 × 10−16 0.04359 - - - -
IC 3.9 × 10−08 3.5 × 10−16 8.3 × 10−12 0.07338 - - -
TimeIC 1.9 × 10−07 7.9 × 10−15 8.1 × 10−10 0.07587 1.00000 - -
LRC-R 1.00000 0.00017 0.06192 2.3 × 10−7 5.7 × 10−9 1.6 × 10−8 -
LRC-SD 1.1 × 10−13 < 2 × 10−16 < 2 × 10−16 3.2 × 10−10 < 2 × 10−16 < 2 × 10−16 1.6 × 10−15

Table 4 p-values for pairwise t-tests between various method AUCs.


