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Abstract

Counting craters is a fundamental task of planetary science, because
it provides the only tool for measuring relative ages of planetary surfaces.
However, advances in surveying craters present in data gathered by plane-
tary probes have not kept up with advances in data collection. It becomes
extremely challenging to automatically count a very large number of small,
sub-kilometer size craters in a deluge of high resolution planetary images.
In this paper, we combine active learning with semi-supervised learning
to build an adaptive learning system to automatically detect craters from
high resolution panchromatic planetary images. We propose an adaptive
selective algorithm to iteratively enrich an original small training set, us-
ing unlabeled test set without additional human labeling effort, to detect
craters from a large volume of images. We propose three strategies to
improve detection accuracy by integrating classification with exploration
on unlabeled samples. The Majority Vote Strategy is used to automati-
cally obtain class labels by exploiting unlabelled samples. The De-Mixed
Strategy is used on instance filtering to obtain reliable samples. The Ac-
tive Stability Strategy is used to obtain an appropriate class distribution
in the constructed training set by detecting unstable classes. By using
those three strategies, we actively select test instances from test images
into an existing small initial training set while rebuilding the classifier
in the mean time. Owur proposed algorithms are empirically evaluated
on a large high resolution Martian image, exhibiting a heavily cratered
Martian terrain characterized by heterogeneous surface morphology. The
experimental results demonstrate that the proposed approach achieves a
higher accuracy than other existing approaches to a large extent.
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1 Introduction

Impact craters are approximately circular depressions in the surface of a planet
or other solid body in the Solar System, formed by the hyper-velocity impact of
smaller bodies with the surface. Craters are among the most studied geomor-
phic features in the Solar System because they yield information about the past
and present geological processes and provide the only tool for measuring rela-
tive ages of observed geologic formations [Tanaka, 1986]. Presently, all crater
surveys are done by means of visual inspection of images which are restricted
to only large craters; for example, 42,283 Martian craters with diameters larger
than 5 km have been cataloged in [Barlow, 1988]. As a result, there are millions
of sub-kilometer craters waiting to be identified in high resolution planetary
images. As a matter of fact, the size distribution of craters conforms to the
power-law as the large craters are rare and small craters are abundant [Tanaka,
1986]. Counts of significant number of craters, especially small craters, must be
collected from spatially extended regions in order to accumulate sufficient num-
ber of samples for accurate statistics. Geologic stratigraphy based on manually
collected databases has coarse spatial resolutions. Finer spatial resolutions of
the stratigraphy can only be obtained from statistics of smaller craters, and the
only viable means to obtain spatially comprehensive databases of small sub-
kilometer craters is through automating the process of crater detection.

It becomes extremely challenging to automatically count a very large num-
ber of small, sub-kilometer size craters in a deluge of high resolution planetary
images. Identification of craters in remotely sensed images can be considered
as a special case of object detection in images—an important task in computer
vision exemplified by a popular task of face detection. However, craters have
characteristics unlike most objects traditionally subjected to automated iden-
tification in images, because they are numerous, have large range of sizes, and
they continuously merge into a background. Craters lack specific features that
can reliably discriminate them from other objects, or collection of objects, also
present on planetary surfaces, including volcanic cones and valley fragments
resembling craters.

We apply supervised learning to crater detection in this paper. Many factors
impact the detection rate, including feature construction and selection, training
set construction, and classifier induction. In this paper, we focus on the problem
of training set construction. It is impractical to construct a large training set
sampled from a large pool of planetary images because a domain expert can only
manually label a small image in a particular location. We propose the Adaptive
Selective Algorithm to iteratively enrich an original small training set using un-
labeled test set, without additional human labeling effort, to detect craters from
a large volume of images. We propose three strategies on three different tasks
to improve detection accuracy by integrating classification with exploration on
unknown test samples. The Majority Vote Strategy is used to automatically
obtain class labels by exploiting unlabeled samples. The De-Mixed Strategy is
used on instance filtering to obtain reliable samples. The Active Stability Strat-
egy is used to obtain accurate class distribution in the constructed training set



by detecting unstable classes. By using those three strategies, we actively select
unlabeled test instances from test images into existing small initial training set
and rebuild the classifier. Our proposed algorithm is empirically evaluated on
a large high resolution Martian image, containing 3,500 sub-kilometer craters,
which are manually labeled by a domain expert. The study site presents a
challenging case for any crater detection task as it exhibits a heavily cratered
Martian terrain of 37,500 x 56,260 m?, characterized by heterogeneous surface
morphology. The experiment results demonstrate that the proposed approach
achieves a higher accuracy than other existing approaches to a large extent.

The paper is organized as follows. Section 2 discusses the related work.
Section 3 explains how we construct crater candidates and extract Haar-like
texture-based features from those candidates. Sections 4 discusses the pro-
posed Adaptive Selective Learning Algorithm for crater detection, and Section
5 presents the result of applying our methodology to find craters in the test site
on Mars. Section 6 summarizes our work and discusses future directions.

2 Related Work

Existing approaches of detecting craters from planetary images can be divided
into two general categories of unsupervised and supervised methods, and the
latter case requires inputs of a domain expert to construct an initial training
set.

The unsupervised methods rely on image processing techniques to identify
crater rims in an image as circular or elliptical features [Leroy et al., 2001; Honda
et al., 2003; Cheng et al., 2003; Barata et al., 2004; Kim et al., 2005]. The orig-
inal image is preprocessed to enhance the edges of the rims, and the actual
detection is achieved by means of the Hough Transform (HT) [Hough, 1962],
genetic algorithms [Honda et al., 2003], or the radial consistency algorithm [Earl
et al., 2005] that identifies regions of rotational symmetry. Specifically, in [Leroy
et al., 2001; Honda et al., 2003; Cheng et al., 2003], the preprocessing consists
of applying an edge-detecting algorithm; in [Barata et al., 2004], it consists of
calculating texture measures; and in [Kim et al.2005], it consists of a combina-
tion of edge detection, texture measurement, and edge direction analysis. The
performance of unsupervised methods on crater detection is usually worse than
that of supervised methods.

The supervised methods [Burl et al., 2001; Vinogradova et al., 2002; Plesko
et al., 2004; Wetzler et al., 2005] use machine learning concepts to build a
classifier model from a training set to detect craters. In a learning phase, the
training set of images, containing craters labeled by a domain expert, is fed into
a learning algorithm. In the detection phase, the previously induced classifica-
tion model detects craters in a new, unlabeled set of images. In [Burl et al.,
2001] and [Vinogradova et al., 2002], a continuously scalable template-model
technique is used to achieve detection. In [Wetzler et al., 2005], a number of al-
gorithms are tested and the Support Vector Machine (SVM) algorithm is shown
to achieve the best rate of crater detection. In [Plesko et al., 2004], genetic



programming is used to generate a population of random-detection algorithms
whose performance is iteratively improved using a training set as selection cri-
teria. Most recently, advances in face detection research are incorporated into
crater detection techniques. In [Kim et al. 2005], the combination of edge de-
tection, template matching, and neural network-based false positive recognition
scheme is used for detecting craters on Mars. In [Martins et al., 2008] a boosting
algorithm, originally developed by [Viola and Jones, 2004] in the context of face
detection, is adopted for identification of craters on Mars. In [Ding, 2010], a
boosting transfer learning algorithm is used for crater detection.

To the best of our knowledge, neither active learning nor semi-supervised
learning has been studied in the field of crater detection. Our method combines
the active learning and semi-supervised learning to construct different training
set according to different test set to achieve higher accuracy.

Active learning [Dasgupta and Hsu, 2008; Ertekin et al., 2007; Settles, 2009]
has gained much attention recently. In an active learning setting, a classifier is
first trained from an initial small training set, and the classifier is used to classify
an unlabeled test set. Then, it selects instances from the unlabeled data set,
asks a domain expert to label those selected instances, and adds those instances
into the training set. There are three scenarios in which active learning algo-
rithms may pose queries: the membership query synthesis [Augluin, 1988], in
which, the learner may request labels for any unlabeled instances including the
queries that the learner generates; the stream-based selective sampling [Cohn
et al.,1990,1994], in which, the unlabeled instances are sampled from the actual
distribution, and then the learner decides whether to query or discard it, and
the pool-based sampling [Lewis and Gale,1994], in which, instances are selected
from a large pool of unlabeled data set. However, the active learning requires
a human annotator to label all instances that the algorithm selects. It is still
quite time-consuming and expensive thus impractical in crater detection from
remotely sensed images. The Self-Training [Yarowsky, 1995] in semi-supervised
learning is an approach for building the training set from the unlabeled data set
automatically. Self-Training assumes that a classifier’s prediction, at least the
high confidence ones, tend to be correct. It uses unlabeled data without addi-
tional human effort and only selects those with high confidence. It may increase
the accuracy on data in small labeled size problems [Culp and Michailidis, 2007;
Haffari and Sarkar, 2007].

The proposed Adaptive Selective Learning Algorithm in this paper is dif-
ferent from active learning. Active learning still needs additional human effort
on labeling, while we obtain the class labels automatically when expanding the
original training set. Our method is also different from Self-Training. Self-
Training selects the instances with high confidences while our method achieve
better detection accuracy using the Major Vote Strategy, De-Mixed Strategy,
and Active Stability Strategy to select the instances from the unlabeled data
set. Our method combines active learning using the pool-based sampling sce-
nario and semi-supervised learning to construct the training set dynamically
according to a different unlabeled test set.
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Figure 1: Pipeline for constructing a crater candidate dataset

3 Constructing Crater Candidate Datasets

Figure 1 shows a diagram illustrating a pipeline for generating crater candidate
data, which will later be the inputs for the proposed learning algorithm.

The input of the pipeline is a panchromatic image which contains many high-
light and shadow regions. The pipeline processes highlight and shadow regions
in parallel using inverted image to process the shadow regions. First, we iden-
tify shadow and highlight segments from the input image and apply the shape
filter to remove shapes that likely do not belong to craters. Then we match the
highlight and shadow regions to get the locations that are possible to be craters,
namely, crater candidates. Criteria to match highlight and shadow regions to
build a crater candidate include the distance, the similarity, and the circular-
ity of the those two regions. Detailed discussion is provided in [Urbach and
Stepinski, 2009]. After that, we extract features from each crater candidates.

We define a crater candidate is the region that is indicative for craters, where
highlight and shadow regions can be matched. We construct a feature vector
for each candidate using Haar-like features [Papageorgiou et al. 1998]. These
features are simple texture features which are calculated using image masks
consisting only black and white sectors. The value of a feature is the difference
between the sum of gray pixel values located within the black sector and the
white sector of an image mask. Figure 2 shows nine image masks used in our case
study. The first five masks focus on capturing diagonal texture gradient changes,
while the remaining four masks on horizontal or vertical textures. In order to
detect craters in different diameters, each sampled image block is normalized
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Figure 2: Nine types of masks used for Haar-like feature extraction in our real
world case study

to a same image block. Each of these nine kinds of image masks probe the
normalized image block in different scales, with a step in the ratio of the mask
size. The total number of generated Haar-like features is determined by the
number of image masks, the number of scales used for each image mask, the
size of steps when scanning the masks across the normalized image block.

This pipeline is different from our previous work in [Urbach and Stepinski,
2009] with the following improvements. The pipeline uses thousands of Haar-like
image gradient texture features to represent crater candidates, while Urbach and
Stepinski [2009] uses several mathematical morphology features on geometric
shapes. Using such geometric features to distinguish true craters from other
objects present in the set of candidates yields less than optimal classification
results [Urbach and Stepinski, 2009]. Recent study [Martins et al., 2008] has
demonstrated that image gradient texture features are effective discriminants
between craters and non-crater objects. In addition, we employ semi-supervise
with adaptive selective learning to construct a training set according to different
test set, while the work in [Urbach and Stepinski, 2009] simply use a prefixed
manually built training set on crater detection. As to the crater dataset, it
is impractical and expensive to construct a large comprehensive training set.
The proposed Adaptive Selective Learning Algorithm automatically labels the
instances without additional human effort to enrich an original small training
set.

4 Adaptive Selective Learning

4.1 Problem Explanation

In this paper, we aim to design and implement a robust classification learning
algorithm that is capable of dealing with a large test set when the initial training
set is small. In the case of crater detection, it is impractical to ask domain
experts to label a large spectrum of craters in many images. Inevitably, the
critical set of features that distinguishes craters from non-craters in the training
set, which is only generated from a small set of image, may not well represent
those in a test set.

We present a new adaptive selective learning approach to actively select
instances from the test set to the training set to enrich the original small training
set. While adding the instances from the unlabeled data set to the training set,
we must deal with the following three problems:
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Figure 3: The flowchart of the Adaptive Selective Learning Algorithm

Class Label Acquisition : How can we automatically decide class
labels while adding unlabeled instances to the training set? Our
method does not need a human annotator to label instance on the
test set. Instead, the learning algorithm will label the unlabeled
instances as craters or non-craters.

Instance Filtering : Which instances should we select from the
unlabeled data set? That is, our algorithm needs to judge whether
an instance in the new test set can help induce a better classifier
for the test data. If the instance has a positive impact on classifier
induction, its class label will be determined automatically and the
instance will be added into the training set. Otherwise, the instance
will not be used.

Active Class Selection : How many instances should we add with
respect to each class, iteratively? In our crater detection case study,
we have two classes, craters and non-craters. We need to dynami-
cally decide the class ratio between the crater class and non-craters
class while expanding the original training set.



4.2 Adaptive Selective Learning

The Adaptive Selective Learning algorithm is designed to solve the problems
of class label acquisition, instance filtering and active class selection. Figure 3
depicts the whole process of the algorithm. The algorithm starts with a small
training set and iteratively adds new selected test instances from the test set
to the training set. Specially, our algorithm first partitions the initial training
set to n folds and uses a supervised learning algorithm (e.g. SVM) to build n
classifiers from the n folds. The algorithm applies the n classifiers to test set
and produces n labels for each test instance. Then we use the Majority Vote
Strategy (see section 4.3) to obtain the class labels to address the class label
acquisition problem. After labeling the instances in the test set, we use the
De-Mixed Strategy (see section 4.4) to select instances to address the instance
filtering problem. At the same time, on the training set, we use the Active Sta-
bility Strategy (see section 4.5) to test whether class distribution in the current
training set is stable to address the active class selection problem, if it is stable,
we use uniform distribution, if not, we calculate the desired class distribution.
Then, the algorithm selects the instances until it satisfies the expected class
distribution. The algorithm adds those newly selected test instances into the
training set and perform the whole process again until no more qualifying new
test instances can be found.

4.3 Majority Vote Strategy

The Majority Vote Strategy is designed to solve the class label acquisition prob-
lem: how can we automatically decide the class labels while adding the unlabeled
instances to the training set?

Let T be the training set, T' = {(Z;, v;)}._,, where &; =< fi1, fi2,- -\ fim >
is the feature vector of instance Z; in the training set, y; is the class label of
the instance Z; . y; € {0,1} for non-crater and crater instances, respectively.
t is the number of instance in the training set. Let U be the test dataset,
U = {Z;}}_,,%; =< fj1, fi2,--, fim > be the feature vector of instance T
in the test set, u is the number of instances in the test set. Let p; s be the
predicted label of Z; using the classifier Cy, where p; ; € {0, 1} is for non-crater
and crater instances, respectively.

The Adaptive Selective Learning Algorithm builds n classifiers {Cf};}zl.
The Majority Vote Strategy assigns a class label to a new test instance if the
majority votes of a crater candidate indicating it belongs to this class:

Z}L:l p.]mf

>p,j=1...p (4.1)
n

> 1pjf .
S =1 (4.2)

w1 and @9 are the user—deﬁned thresholds, and ¢; > 9. If the value of

Pi.f, . P
= s greater than ¢, then we classify x; as a crater, if it is smaller than



2, then we classify x; as a non-crater. If pp < M < 1, then we do not
label this candidate, because the n classifiers are uncertain about the class label
of this candidate. And the Majority Vote Strategy will not add this instance
to the training set. This strategy carefully selects new instances on which the
classifiers have high confidence and avoids those instances on which the existing
training set cannot consensus. The higher value of ;1 /s, less but more strong
crater /non-crater examples will be selected. The lower value of ;1 /ps, , more
but less strong crater/non-crater examples will be selected.

4.4 De-Mixed Strategy

The De-Mixed strategy is designed to solve the instance filtering problem:
Which instances should we select from the unlabeled data set?

The intuition behind this strategy is that we want to build a training set that
is well separable by the decision boundary of the classifier and has as few noisy
data as possible. If a crater candidate &}, successfully labeled by the Majority
Vote Stragety, is closer to the instances in the training set in the same class
label and is farther from the instances in the training set in the different class
label, then (Z;, P(Z;)), is added to the training set, where P(Z;) is the class
label obtained by the Majority Vote Strategy. Otherwise, the instance will not
be added into the training set.

Sopey dist(T;[e], Eile])  Yop<) dist(F[e], File])

Ne n

<wji=1...v (4.3)

where Z[c] is the instance in the test set with predicted label ¢, Z;[c] is the
instance in the training set with the same label c. &; [c/] is the instance in the
training set with label ¢, and ¢ =+ c. 1 is the user-defined threshold. v is the
number of instance successfully labeled by the Majority Vote Strategy; note that
v is less than p, the total number of instances in the test set. dist(Z;[c], Z;[c])
calculates the distance between an instance in the test set and an instance in the
training set. Y ., dist(Z;[c], Z;[c]) obtains the sum of the distance between the
instance Z;[c|] with class label ¢ in the test set and all the instances with label ¢ in

.. . . . "t dist(%;]c], @ .
the training set. n. is the number instance in class c. 2.5, distl@; (A Tile) obtains

Ne
the average distance between the instance Z;[c| with class label ¢ and all the
S dist(# (el 7 [e'])

n s
c

instances with label ¢ in the training set. The explanation for

is the same, but class ¢ is different from class ¢ . If @ =0, it means if the average
distance between the same class is smaller than the average distance between
the different classes, then we add (Z;, P(Z;)) to the training set. If p # 0,
it means if the average distance between the same class is smaller than the
average distance between the different classes plus p, then the algorithm adds
(Z;, P(Z;)) to the training set with a certain tolerance on noisy data.



4.5 Active Stability Strategy

The Active Stability Strategy is designed to solve the third problem: How many
instances should we add regarding each class?

The idea behind this strategy is that the instances whose predicated class
labels changed in this iteration compared to the last iteration are near volatile
boundaries. Thus, we assess which classes are near volatile boundaries and
sample more instances from those unstable classes in the test set.

The Active Stability Strategy is used only on the training set to obtain the
sampling distribution. The strategy uses the n classifiers to predict the instances
in the training set which composed by the initial training set and new instances
selected from the test set by the Majority-Vote and De-Mixed Strategies. For a
training example, if the new generated class label is different from the previous
class label which is generated by the previous n classifiers using the training
in last iteration, then it indicates that we need to sample from these unstable
classes. We use equation (4.4) to obtain the sampling distribution.

unstable[c]
Num(c) = Z\_classes\ cunstable[i] *p (44)

=0 Ne

where Num(c) is the number of class ¢ need to be added, unstable|c] is the
number of instances whose classification changes, n. is the number of class ¢ in
the training set. We divide unstable[c] by n. to avoid small classes from being
ignored and large classes from being over-emphasized. |classes| is the number
of classes. p is the total number of instances to be added in the round.

[Lomasky et al., 2007] proposes an active class selection algorithm named
Redistricting which iteratively builds training sets using the labeled data. The
major differences between Redistricting and the Active Stability Strategy are:
first, Redistricting builds the training set using the labeled data, while the Active
Stability Strategy builds the training set iteratively using the unlabeled data.
Second, Redistricting does not consider which instance should be added, it just
samples the instances from the labeled data randomly, while we select the high
quality instances from the unlabeled data set actively using the Majority Vote
Strategy and the De-Mixed Strategy.

4.6 Pseudocode of Adaptive Selective Algorithm
The pseudocode of the Adaptive Selective Algorithm is shown in Algorithm 1.

Algorithm 1 Adaptive Selective Algorithm

Input: (1) Training set T = {(,y:) }i—;, test set U = {&;}_,.
(2)p, number of instances to be added in round r, user defined thresh-
holds

p1, w2 and .
1 Initially, let Ty = T = {(Zi, ;) }i=y,U = {#;}_; and r = 1.
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Divide T} into n stratified folds 771,71 2,...,T1,n
For f =1ton do
Build Classifier Cy from {T1 — T s}, C’f/ from T ¢
For all ¥; in Ty ; do label &; with P.(#;) with Cy end For
For all Z; in U, do label 7; as p; y with C; end For
end For
(e LR AP S R
do label #; =1 (1 is for crater)
end If

IF Z=t o =1,
do label Z; = 0 (0 is for non-crater)
end If
‘While no instance can be added in T, 44
If r = 2 then
Toqq= random sample size of p

else

unstable[c]

Compute Num(c) = |Cl“55€57\lcunstable[i] * p
=0 Nne
Initialize counts(c),c € {0,1}
For all z;
If Loy dist@1AFl) 3 dist(@ e File )
Ne

n s
c

<p
If counts(c) < Num(c)
yi = P(Z;)
add (fjvyj) to Thdd
counts(c) + +;
end If
end If
end For
T =T, 1+ Tada
Initialize unstable[c],c € {0,1}
Divide Tyqq into n stratified folds Ty44,1, Tadd,2 , Tadd,n
For f=1 to n do
Try=Tr—1,rUTudd,s
Build the Classifier Cy form {T, — T, s}
For all Z; in T, ; do label Z; as p,(&;) with Cy end For
If P.(Z;) # pr—1(Z;) unstable [y;] + + end If
end For
r++
end While

We first discuss how Active Class Selection is used in the Adaptive Selective

Learning Algorithm. We begin with a Cross Validation [Kohavi,1995] with n
folds over 77, the initial training set. We obtain a prediction for each @; € T7.

In the second round, we collect 75 of size p. We next perform a Cross Validation

11



over all of the data in the training set and create a classifier for each fold. Note
that on subsequent iterations, we keep the data from T,._ in the same folds, and
stratify only the newly generated data T,44 into the existing folds. For each fold,
we compare the classification results of P.(Z;) and P._1(Z;) on each instance
Z; € T1. If the labels are different, then the counter for the class specified by
yi, unstable[y;], is incremented. We conclude by generating predictions of the
new batch of data T,4q and the increment r. After the second round we add
instances using the formula (4.4), where ¢ is a class from the set of all classes in
the dataset.

We explain the proposed Adaptive Selective Learning Algorithm in detail.
Steps 1 to 2 initialize the training set and the test set. Steps 3 to 7 use Cross
Validation to label instances in the training set, use each fold to build a classifier
and label instances in the test set. Steps 8 to 13 use the Majority Vote strategy
to obtain the class labels. Steps 15 to 38 use the Active Stability Strategy.
Steps 20 to 21 check whether each instance satisfies the criteria of the De-Mixed
Strategy. Steps 32 to 37 are used to get the unstable[c]. we add the newly
generated folds to each fold in the last round r — 1 and build new classifier from
{T:.—T, ¢} and then compare the predicted label in this round and the previous
round, if it is different. Then unstable[y;] is increased, y; is the real class label
of instance x; if it is from the initial training set; otherwise y; is the predicted
label obtained by the Majority Vote Strategy. The stopping criterion is that no
more instances can be added in T,44, that is, the instances in the test set which
have not been chosen before do not satisfy all the three strategies, thus no more
qualified instances can be added into the training set and the calculation stops.

5 Experiment Setup and Experimental Results

5.1 Test Image

We have selected a portion of the High Resolution Stereo Camera (HRSC) nadir
panchromatic image h0905 [HRSC, 2010], taken by the Mars Express spacecraft,
to serve as the case study site for crater detection. As illustrated in Figure 4, the
selected image has the resolution of 12.5 meters/pixel and the size of 13,500,000
(3,000 by 4,500) pixels. A domain expert manually marked 3,500 craters in this
image to be used as the ground truth to which the results of auto-detection
are compared. The image represents a significant challenge to automatic crater
detection algorithms. It covers terrain having spatially variable morphology and
its contrast is rather poor (this is most noticeable when the image is inspected
at a small spatial scale). We divide the image into three sections denoted as
the west region, the central region, and the east region. The central region is
characterized by surface morphology that is distinct from the rest of the image.
The west and east regions have similar morphology but the west region is much
more heavily cratered than the east region.

12



West Region Central Region East Region

Figure 4: Site for the case study, located in the Xanthe Terra, centered on
Nanedi Vallis and covers mostly Noachian terrain on Mars, from the image
HRSC nadir panchromatic h0905, resolution of 12.5m/pixel. The site’s north-
south extension is 40 km, east-west extension is nearly 60 km and it is divided
into 3 regions. The 3,500 craters in the manually established ground truth
catalog are shown lighter gray circles with sizes proportional to the diameters
of the craters. Vertical lines indicate boundaries between the west, central, and
east regions.
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5.2 Experimental Results
5.2.1 Experimental setup

We first test the sensitivity of the parameters chosen for the three proposed
strategies. Figure 5 shows the experimental results on the ¢;, s in the Ma-
jority Vote Strategy, u in the De-Mixed Strategy, and p in the Active Stability
Strategy. The accuracy improves with the value of ¢ increases. This is rea-
sonable, because the higher value that the classifiers get from the class label,
the more confident that the label could be correct. While the accuracy decrease
with the increase of o, this is due to the fact that more mislabeled samples
are added with the increase of 5. The accuracy first increases then later de-
creases with the increase of u. This is because that the farther of u is from 0,
either in negative or positive values, the more mixed samples are allowed to be
added into the training set. The accuracy is not sensitive to the p threshold in
the Active Stability Strategy, because the learning process will be performed in
many iterations, the accuracy will not change too much if the total number of
instances selected from the test set are about the same.

We identify 12,542 crater candidates in the image using the pipeline depicted
in Figure 1. Each crater candidate image block is normalized to a standard scale
of 48 pixels. Each of the nine kinds of image masks probes the normalized image
block in four different scales of 12 pixels, 24 pixels, 36 pixels, and 48 pixels, with
a step of a third of the mask size (meaning 2/3 overlap), returning 121 scale
independent feature values. We totally extract 1,089 Haar-like features using
nine types of masks illustrated in Figure 2 as the feature vectors to represent
each crater candidate. Then, we use the feature selection algorithm described in
[Ding, 2010] to select top 10 features from the 1,089 features and only those 10
best features are used in the experiments. The training set consists of instances
selected randomly from amongst crater candidates located in the northern half
of the east region. We set thresholds ¢1 = @2 = 0.5 for the Majority Vote
Strategy, threshold p = 0 for the De-Mixed Strategy and p is set to 80 for each
iteration for the Active Stability Strategy based on empirical observation. The
training set consists of 204 positive instances and 39 negative instances.

5.2.2 Detecting the Difference between the Training Set and the
Test Set

In order to better understand the results of our approach, it is useful to assess
dissimilarity between the set of features vectors in the original training set and
the sets of feature vectors in the west, central, and east regions. We have
calculated the KL-divergence [Kullback and Leibler, 1951] between the training
set and the test set. Formula 5.1 is the equation to calculate KL-divergence with
two variables. In words, it is the average of the logarithmic difference between
the probabilities P and Q, where the average is taken using the probabilities P.
if the quantity 0 x log 0 appears in the formula, it is interpreted as zero.
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Apparently, the KL-divergence is not symmetric. The KL-divergence from
the west region, the central region and the east region to the training set is 0.65,
0.91, and 0.42. The smaller the value of the KL divergence is, the similar two
images are. The central region has the largest divergence. The reason why the
east region has smallest divergence is that the training set comes from a part of
the east region. The KL-divergence indicates a robust algorithm should be able
to achieves high accuracy in all different regions of this challenging case study
site.

Drr(PllQ) = ZP(Z') log (5.1)

5.2.3 Experimental Results

Sub-kilometer craters marked by a domain expert are served as the ground
truth in our performance evaluation process. The Adaptive Selective Learning
Algorithm classifies crater candidates as craters and non-craters. The number of
ground truths covered by the craters detected by the algorithm is TP (True Posi-
tives). The number of crater candidates that are not craters but mistakenly clas-
sified as craters is FP (False Positives). The number of crater candidates that are
not craters and correctly classified as non-craters is TN (True Negatives). The
number of crater candidates that are craters but failed to be identified as craters
is FN (False Negatives). We compare accuracy (accuracy = %)
between the Adaptive Selective Learning Algorithm and other three algorithms
of random sampling, Redistricting and Self-Training.

e Random Sampling: it is a widely used approach for training data
selection. It produces subset of the data which has a distribution
similar to the original test data set by randomly sample each in-
stance independently. This subset of data are added to the training
set, and the class labels of those new instances are obtained by a clas-
sifier trained on the original training set. This approach is the most
common way to get the class label in a traditional semi-supervised
learning method.

e Redistricting: The original method was proposed in [Lomasky et
al., 2007] and it used the idea of assessing the boundary classes. In
our experiments, we implemented the core method of redistricting,
that is, it assesses the unstable class and decides the class ratio to be
achieved. To assure a fair comparison, the redistricting implemented
in our paper does not use the true labels provided by a domain
expert. Instead, we obtain the class labels by a classifier trained on
the training set which is a typical way in a semi-supervised learning
method.

e Self-Training: it is proposed in [Yarowsky, 1995] and it adds new
instances with high confidence from the test set to the training set.
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Figure 5 shows the accuracy using Adaptive Selective Learning, Random
Sampling, Redistricting and Self-Training. The ground truth of the entire image
serves as an external criterion to evaluate the performance of the four algorithms
on the test set. Of the four algorithms, the base classifier used is LIBSVM
[Chang, 2001], a SVM classifier using the radial basis function kernel (normalized
Euclidean distance is used in the De-Mix strategy to approximately preserve
the kernel distance). The experiments have been performed ten times and the
average accuracies are reported. In the figure, the X axis value means the
total number of training samples, including the original training set and the
newly added samples from the test set. From Figure 6, we can see the Adaptive
Selective Learning yields the best accuracy in all regions. We analyze the results
in detail as follows.

First, the Random Sampling may performance better than Redistricting at
the beginning, for example, in the central region, but not as good as Adaptive
Selective Learning. This is because the Redistricting only pays attention to the
class distribution but not the instance selection, thus it sometimes may be worse
than Random Sampling. The Adaptive Selective Learning not only considers
the class distribution but also the instance selection. Thus, it is always performs
the best compared to the other three algorithms.

Second, Self-Training only selects the instance with high confidence. It is
clearly that the higher the confidence of an instance, the further of its distance
to the decision boundary. Thus, Self-Training only selects those instances which
are far away from the decision boundary. These kinds of instances cannot con-
tinuously contribute to the classifier induction while adding more redundant
instances. Therefore, the accuracy of Self-Training will decrease when more in-
stances are added. As discussed in details in Section 4, the Adaptive Selective
Learning does not only select those with higher confidence but also maintain
a good class ratio between two different class labels craters and non-craters.
Hence it performs better than Self-Training.

Third, the difference between Redistricting and Adaptive Active Learning
illustrated in the central region (Figure 6B) is larger than those in the west
region and the east region. This shows that the quality of candidates in the
central region is not as good as those in the west region and the east region.
The reason of this is due to much diversified surface morphology of the central
region, compared to other two regions.

Finally, all algorithms cannot keep improving detection accuracy after too
many new test instances are added into the training set. The prediction accuracy
of the derived classifiers from the training set will be gradually decreased due
to the errors introduced during automatic labeling process. This phenomenon
is clearly demonstrated in Figure 6C. The accuracy values are decreased after
more than 1,500 candidates are added into the training set.

We further compare the four algorithms with the state-of-the-art semi-supervised
learning algorithm S3VMs [Chapelle, et al., 2006]. Figure 7 summarizes the per-
formance of five algorithms using LIBSVM, Random Sampling, Self-Training,
Redistricting, S3VM, and Adaptive Selective Learning. We compare these al-
gorithms by accuracy, precision, and recall. Column one is the number of can-
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Adaptive
Redistricting S3VMs  Selective
Learning

West 6428 Accuracy  80.48%  82.05% 82.92% 86.68% 84.78%  88.91%

Random Self-
Sampling  Training

# of

Candidates Evaluation  LIBSVM

Region Precision  81.54%  83.34% 84.79% 87.01% 86.79%  90.46%
Recall 7731%  78.99%  80.86% 83.83% 83.33%  85.94%

Central 2813 Accuracy  75.15%  76.82%  75.95% 77.93% 80.21%  83.86%

Region Precision  75.56%  78.13%  80.02% 82.72% 83.26%  89.86%
Recall 71.21%  74.81%  73.75% 75.55% 74.85%  80.83%

East 3301 Accuracy  83.03%  84.91%  85.03% 87.37% 84.21%  89.28%
Region Precision  79.56%  80.83%  81.12% 82.45% 80.08%  83.36%
Recall 84.45%  85.54%  86.61% 89.9% 87.56%  91.34%

Figure 7: Crater detection accuracy results of the LIBSVM only, Random Sam-
pling, Self-Training, Redistricting, S3VMS, and Adaptive Selective Learning.

didates showing how many candidates detected in each region. Each column is
the best result that the algorithm can achieve. LIBSVM serves as the classifier
used in the other three algorithms except for S3VMs. From the table, we can
see, compared to only using LIBSVM, Random Sampling can mostly improve
1.57%, 1.67%, 1.88% in accuracy in three regions, respectively; Self-Training
can mostly improve 2.44%, 0.80%, 2.00% in accuracy; Redistricting can mostly
improve 6.20%, 2.78%, 4.34% in accuracy; S3VMs can mostly improve 4.30%,
5.06%, 1.18% in accuracy; and Adaptive Selective Learning can mostly improve
8.43%, 8.71%, 6.25% in accuracy. The Adaptive Selective Learning again has
improved the most in precision and recall. All in all, our approach, Adap-
tive Selective Learning, performs the best. Furthermore, we observe that the
improvement in the central region is greater that the other two regions using
our approach because Adaptive Selective Learning can intelligently generated
different training set according to different test set.

5.3 CONCLUSIONS AND FUTURE WORK

This paper aims at improving detection rate for auto-detection of small craters in
high resolution images of planetary surfaces. The proposed Adaptive Selective
Learning uses innovative methods on training set construction, using active
learning and semi-supervised learning. Significant performance gain has been
observed in our case study site on Mars.

In future work, we should make analysis on the initial training set. Analyze
the instances in the initial training set when transfer the knowledge from the
test set and discard the instances which are not compatible with the test set. In
addition, how to intelligently decide the thresholds for Majority Vote Strategy,
De-Mixed Strategy should be further studied.
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