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Abstract—It is a nontrivial task to build an accurate Emerging Pattern (EP) classifier from high-dimensional data 

because we inevitably face two challenges (1) how to efficiently extract a minimal set of strongly predictive EPs 
from an explosive number of candidate patterns, and (2) how to handle the highly sensitive choice of the minimal 
support threshold. In order to address these two challenges, we bridge causal relevance and EP discriminability 
(the predictive ability of emerging patterns) to facilitate EP mining and propose a new framework of mining EPs 
from high-dimensional data. In this framework, we study the relationships between causal relevance in a causal 
Bayesian network and EP discriminability in EP mining, and then reduce the pattern space of EP mining to direct 
causes and direct effects, or the Markov blanket of the class attribute in a causal Bayesian network. The 
proposed framework is instantiated by two EPs-based classifiers, CE-EP and MB-EP, where CE stands for direct 
Causes and direct Effects, and MB for Markov Blanket. Extensive experiments on a broad range of datasets 
validate the effectiveness of the CE-EP and MB-EP classifiers against other well-established methods, in terms of 
predictive accuracy, pattern numbers, running time, and sensitivity analysis. 

Index Terms—Emerging Patterns, Causal Bayesian Networks, Causal Relevance, EP Discriminability 

1 INTRODUCTION 

Association rule mining seeks to find association patterns that meet predefined minimum support and 

confidence constraints from a given dataset [7, 23]. This problem is usually divided into two steps. The 

first is to find frequent itemsets whose supports exceed a predefined minimum support threshold; and 

the second is to generate association rules from those frequent itemsets with the constraint of minimal 

confidence [32-33]. Associative classification integrates association rule mining and classification [22, 

35]. In associative classification, the consequent of an association rule is a class label, and the classifier 

is constructed using a set of association rules. This classifier is expected to produce accurate classifica-

tions and yield an interpretable model [3, 16]. Liu et al. [22] introduced CBA (Classification Based on 

Associations), the first associative classifier. 

An illustrating example of association rules for classification is given in Table 1 using the Balloon 

dataset from the UCI machine learning repository [4], with the class attribute, inflated (T (true), F 
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(false)), and 4 features: color (yellow, purple), size (large, small), act (stretch, dip) and age (adult, child). 

The dataset consists of 20 samples as listed in Table 3 of Section 3.1.  

 If we set the minimum support threshold to 0.2 and the minimum confidence threshold to 0.8, the 

top five association rules mined from this dataset for classification are shown in Table 1. 

TABLE 1 EXAMPLES OF CLASSIFICATION ASSOCIATION RULES 

ID            Association rule 

1 act=stretch==>inflated=T 
2 age=adult==>inflated=T 
3 act=dip & age=child==>inflated=F 
4 color=yellow & act=stretch ==>inflated=T 
5 color=purple & act=stretch ==>inflated=T 

 

Later, Dong and Li proposed a new type of association patterns named Emerging Patterns (EPs for 

short) whose support values change significantly from one class to another [9]. Different from associa-

tion rule mining, a data set is divided into several subsets by their class labels in EP mining. The ratio 

of the support of an itemset in one class and that of this itemset in a contrasting class is measured us-

ing the growth rate. Those patterns whose growth rates satisfy a predefined minimum threshold are 

called EPs. Hence, EPs represent strong contrasts between different classes of data. For example, to 

mine EPs from the Balloon dataset, this dataset is divided into two classes: inflated =T and inflated =F 

before mining, then the EPs of each class are mined from the corresponding class data, respectively, as 

shown in Table 2, under the minimum support threshold of 0.2 and a growth rate greater than 1. 

TABLE 2 EXAMPLES OF EPS MINED FROM BALLOON DATASET 

ID EPs of the class inflated=T EPs of the class inflated=F 

1 act=stretch act=dip 
2 age=adult age=child 
3 - (act=dip) & (age=child) 

 

From the example above, we can see that EPs give more concise and understandable patterns than 

association rules. Moreover, the presence of EPs gives evidence about which class the object should 

belong to. Thus, the discovery process of EPs prefers classification. Dong et al. proposed the first EPs-

based classifier, called CAEP (Classification by Aggregating Emerging Patterns)[10]. EPs-based classi-

fication has shown to be a powerful method for constructing accurate classifiers, even for imbalanced 

data [10-11, 13].  This paper focuses on mining EPs for classification. 

  Most associative classifiers are constructed in two steps: generating frequent patterns satisfying 

minimum support and confidence constraints, and then making predictions based on the selected pat-

terns. Although many pruning strategies have been proposed, an explosive number of rules can still be 

discovered from high dimensional and dense data even using a rather high minimum support thresh-

old. The large number of candidate rules makes it difficult to store, retrieve, prune, and sort them effi-

ciently for classification. Furthermore, they hamper the understanding of the final classifiers, and even 
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lead to overfitting. Hence how to select a suitable minimum support threshold is not only a challeng-

ing problem, but also the key to control the performance of associative classifiers. A small support 

threshold could generate a large number of rules while a large value might prune many predictive 

rules and cause serious accuracy degradation.  

 As a special type of association mining, mining EPs from high-dimensional data also encounters the 

above challenging problem, especially with the advent of the emerging datasets with tens of thou-

sands of features in many real-world applications, such as image processing, gene expression data, text 

data, etc. Thus, to effectively mine EPs from high-dimensional data, two challenging research issues 

need to be further explored:  

      (1) How to efficiently mine a minimal set of strongly predictive EPs from high-dimensional data; 

and 

 (2) How to deal with the highly sensitive choice of the minimal support threshold. 

 To battle these challenges, we propose a new framework for mining EPs from high-dimensional da-

ta by bridging causal relevance in causal Bayesian networks and EP discriminability (the predictive 

ability of EPs) in EP mining. More specifically, the causal relevance of a target node in causal Bayesian 

networks with respect to other nodes is divided into three categories, irrelevant nodes, Markov blan-

ket (direct causes, direct effects and direct causes of the direct effects of the target node), and redun-

dant nodes while the pattern space in EP mining with respect to EP discriminability is classified as 

non-EPs, strongly predictive EPs, and redundant EPs.  Through studying the relationships between 

causal relevance in a causal Bayesian network and EP discriminability in EP mining, we bridge causal 

relevance and EP discriminability to reduce the pattern space in EP mining to the direct Causes and 

direct Effects (CE), or the Markov Blanket (MB) of the class attribute in causal Bayesian networks to 

facilitate EP mining in an innovative framework and mine EPs from high-dimensional data. 

The main contributions of this paper are as follows: 

(1) The paper gives a theoretical analysis of the relationships between causal relevance in causal 

Bayesian networks and EP discriminability in EP mining. With this theoretical framework, the pattern 

space in EP mining is reduced to the space of CE or MB of the class attribute in a causal Bayesian net-

work instead of the combinations of all features, which greatly reduces computational cost and re-

source demand in the stage of EP mining. 

(2) By bridging causal relevance with EP discriminability, mining EPs from the space of CE or MB of 

the class attribute in a causal Bayesian network, naturally endows EPs with strongly predictive ability, 

since the causal factors of a variable give a natural interpretation of the events occurring in real-world 

applications. Most importantly, in a causal Bayesian network, the CE or the MB of a target node is 

unique and minimal, and hence, our framework has a good chance to generate a minimum set of EPs.   
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(3) With the above innovative framework, two new EPs-based classifiers, CE-EP and MB-EP, are 

proposed. Extensive experiments on a broad range of datasets, including 24 UCI datasets and 12 very 

high-dimensional datasets, validate the effectiveness of the proposed approaches against other well-

established methods, in terms of predictive accuracy, pattern numbers, and running time. 

(4) The experiments of sensitivity analysis on seven minimum support thresholds demonstrate that 

the CE-EP and MB-EP classifiers not only can efficiently and effectively handle very high-dimensional 

data, but also are insensitive to the minimum support thresholds. Moreover, our experiments discover 

that the EPs-based classifiers are less sensitive to the minimum support threshold than the associative 

classifiers, and the choice of a suitable minimum support threshold is the key to control CBA and 

CMAR while it is not crucial to CAEP, especially to both CE-EP and MB-EP. Finally, our study of im-

pact of the minimal growth-rate threshold illustrates that both CAEP and CE-EP classifiers are also less 

sensitive to the minimal growth-rate threshold. 

 The reminder of the paper is structured as follows. Section 2 reviews previous work. Section 3 pro-

vides the backgrounds on emerging patterns and causal Bayesian networks, and Section 4 bridges 

causal relevance with EP discriminability, and then presents a framework for mining EPs from high-

dimensional data. Experimental results are reported in Section 5, and we conclude in Section 6. 

2 PREVIOUS WORK 

2.1 EPs-based Classifiers 

Associative classification integrates association rule discovery and classification into a prediction 

model. Successful algorithms of associative classifiers include CBA [22], CMAR [19] and CPAR [36]. 

CBA (Classification Based on Association) uses an Apriori-like algorithm to generate a single rule-set 

and ranks the rules according to their confidence/support values. Then CBA adopts “one matching 

pattern determines the class of an instance” approach to select the best rule to be applied to each test 

instance. Based on CBA, Li et al. introduced CMAR (Classification based on Multiple-class Association 

Rule) that generates classification association rules through a FP-tree and uses multiple rules to per-

form the classification, while CPAR (Classification based on Predictive Association Rule) combines the 

advantages of both associative classification and traditional rule-based classification. Instead of gener-

ating a large number of candidate rules as in associative classification, CPAR adopts a greedy algo-

rithm to generate rules directly from the training data. 

  Dong and Li introduced Emerging Patterns (EPs) to represent strong contrasts between different 

classes of data [9]. An emerging pattern is a multivariate pattern whose support value increases sharp-

ly from a background dataset to a target dataset. Compared to association rules, EPs capture emerging 

trends in time-stamped datasets, or useful contrasts between data classes [9, 28]. In addition, Jumping 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT 5 

Emerging Patterns (JEPs, as defined in Section 3.1) is a special type of EPs whose supports increase 

from zero in a background dataset to non-zero in a target dataset [17]. Like other patterns or rules 

composed of conjunctive combinations of attributes and values, EPs can be easily understood and 

used directly in a wide range of applications, such as predicting diseases [20], failure detection [24], 

and discovering knowledge in gene expression data [5, 12, 21]. 

EPs represent strong contrasts between different classes of data, and the presence of EPs in a query 

object gives some evidence about which class the object should belong to. Therefore, EPs have shown 

very successful results on constructing accurate and robust classifiers. In comparison with associative 

classifiers based on association rules, EPs-based classifiers use the aggregation of the discriminating 

power of the set of matching EPs to classify an instance. Dong et al. proposed the first EPs-based clas-

sifier, called CAEP (Classification by Aggregating Emerging Patterns)[10]. In fact, both CMAR and 

CPAR have adopted the idea of CAEP by using multiple rules instead of one rule to classify an in-

stance. CAEP first discovers all the EPs from the training data for each class. When a new test instance 

is classified by aggregating the differentiating power of a set of EPs that apply, a score is computed for 

each class, and this test instance is classified to the class with the highest score. Based on CAEP, Li et al. 

proposed a JEP-classifier which is distinct from the CAEP classifier [17]. The JEP-classifier uses JEPs 

exclusively because JEPs discriminate between different classes more strongly than any other type of 

EPs. Since discovery of all EPs from the training data is time consuming, Li et al. [18] presented a lazy 

EPs-based classifier, called DeEPs, to improve the efficiency and accuracy of CAEP and JEP-classifier. 

Whenever a new test instance is considered, DeEPs uses it as a filter to remove irrelevant feature val-

ues in order to reduce the search space. Since an EP mining process of DeEPs is instance-based, all the 

training data has to be stored for re-learning during the entire classification process. Fan and Rama-

mohanarao proposed a robust EP-classifier named SJEP-classifier, exclusively using a strong JEP [11]. 

A strong JEP from the class C1 to the class C2 satisfies two conditions: (1)the support of itemset X is ze-

ro in C1  but non-zero in C2 and satisfies a minimal support threshold in C2, and (2) any proper subset 

of X does not satisfy condition (1). The SJEP-classifier integrates the CP-tree data structure into the EP 

classifier, which uses far fewer JEPs than a JEP-classifier yet gets higher predictive accuracy than exist-

ing EPs-based classifiers.  

Due to the limitation of the existing EP mining techniques, existing EP-based classifiers could not ef-

fectively handle datasets with more than sixty dimensions without prior feature set reduction using 

desktop computers of 2006 [25]. It is still a challenging research issue to build an accurate EPs-based 

classifier from a high-dimensional dataset. In this study, we bridge causal relevance in causal Bayesian 

networks and EP discriminability in EP mining to help construct accurate EPs-based classifiers from 

high-dimensional data. 
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2.2 Learning Causal Bayesian Networks from Data 

A causal Bayesian network is a Bayesian network in which each directed edge is described as a di-

rect causal influence imposed on a child node by its parent nodes. Since structure learning of causal 

Bayesian networks in observational data is essentially the same as structure learning of Bayesian net-

works, learning Bayesian networks is one of the most common methods to explore causal relationships 

in the observed data [29, 31]. Structure learning methods of Bayesian networks include global and lo-

cal learning approaches. A global learning approach attempts to uncover a complete Bayesian network 

over all model features, but it can only deal with no more than 300 features [6, 8]. 

A local learning approach without learning a complete Bayesian network has been considered as an 

effective means to handle hundreds of thousands of features [2, 34]. The local learning focuses on two 

specific tasks: (a) identification of features that are direct causes and direct effects of the target of inter-

est, and (b) discovery of the Markov blanket of the target of interest. For the first task, two major algo-

rithms HITON_PC and MMPC were introduced by Aliferis et al. [2].  For the second task, the discov-

ery of the Markov blanket of a target is to find the set of parents, children, and parents of the children 

for the target of interest in a faithful Bayesian network. Margaritis and Thrun first invented a sound 

algorithm, GS for discovery of the Markov blanket of a target [27]. Based on the GS algorithm, an 

IAMB algorithm was presented which guarantees to find the actual Markov blanket given enough 

training data and is more efficient than GS [1]. However, it still requires a sample size exponential in 

the size of the Markov blanket. Based on the IAMB algorithm, HITON_MB derived from HITON_PC, 

MMMB developed from MMPC, and PCMB have been introduced without requiring a sample set ex-

ponential to the size of the Markov blanket [2, 30]. 

3 DEFINITIONS AND NOTATIONS 

3.1 Emerging Patterns 

Assume we have a dataset D defined upon a set of N features (F1, F2, … , FN) and the class attribute C. 

For every feature Fi, i = 1,… , N, we assume it is in a discrete domain that we denote as dom(Fi). Let I 

be the set of all items, I = ⋃ dom(Fi)
N
i=1 . An itemset X is a subset of I and its support in D, denoted 

supportD(X), is defined as follows. 

Definition 1.  (Support)   𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐷(𝑋) =
𝑐𝑜𝑢𝑛𝑡 (𝑋)

|𝐷|
                                                                         (1) 

where countD(X) is the number of instances in D containing X and |D| is the number of instances in D. 

Let C = {C1 ,C2 ,… , CK } be a finite set of K distinct class labels. The dataset D can be partitioned into 

D1 ,D2 ,… ,DK , where Dj  consists of instances with class label Cj , j = 1,… , K. The growth rate of X from Ds 

to  Dm   (s,m = 1,… , K  and s ≠ m) is defined as follows. 
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Definition 2. (GR: Growth Rate)[9]  GRD →D (X) =
support  (X)

support  (X)
. (1) If supportD (X) = 0 

and supportD (X) = 0, then GRD →D (X) = 0; and (2) if supportD (X) ≠ 0 but supportD (X) = 0, then 

GRD →D (X) = ∞. 

Definition 3. (EP: Emerging Pattern)[9] Given a threshold ρ > 1, an EP from  Ds to  Dm is an itemset X 

where GRD →D (X) ≥ ρ.  

Definition 4. (JEP: Jumping Emerging Pattern) If GRD →D (X) = ∞, the itemset X is called a Jumping 

EPfrom Ds to  Dm. 

An EP e from Ds to  Dm is called an EP e of Dm. The goal of EP mining is to extract the EP set Ei for each 

class Ci which consists of EPs from D − 𝐷𝐶 to 𝐷𝐶 , given a pre-defined growth rate threshold ρ and a mini-

mum support threshold. 

Definition 5. (Growth Rate Improvement)[37] Given an EP e, the growth rate improvement of e, 

Rateimp(e), is defined as the minimum difference between its growth rate and the growth rates of all of its 

subsets, 

Rateimp(e) = min(∀e′ ⊂ e, GR(e) − GR(e′)).                                (2)  

Definition 5 illustrates that a positive growth rate improvement threshold, Rateimp(e) > 0, ensures 

a concise and representative set of EPs that are not subsumed by each other and consist of EPs with 

strong predictive power. Thus, the growth rate improvement can help to eliminate EPs that are unin-

teresting or redundant. Table 3 shows the Balloon dataset with the class attribute, inflated (T (true), F 

(false)), 4 features: color (yellow, purple), size (large, small), act (stretch, dip) and age (adult, child), 20 

samples from the UCI machine learning repository [4], and act-r which is an artificial feature added by 

us that is redundant to act. 

TABLE 3 THE BALLOON DATASET WITH AN INCLUSION OF REDUNDANT FEATURE act-r 

ID color size act-r act age Inflated   

1 yellow small yes stretch adult T 

2 yellow small yes stretch child T 

3 yellow small no dip adult T 

4 yellow large yes stretch adult T 

5 yellow large yes stretch child T 

6 yellow large no dip adult T 

7 purple small yes stretch adult T 

8 purple small yes stretch child T 

9 purple small no dip adult T 

10 purple large yes stretch adult T 

11 purple large yes stretch child T 

12 purple large no dip adult T 

13 yellow small no dip child F 

14 yellow small no dip child F 

15 yellow large no dip child F 

16 yellow large no dip child F 

17 purple small no dip child F 

18 purple small no dip child F 

19 purple large no dip child F 

20 purple large no dip child F 
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An illustrating example is given in Tables 4 and 5 using the Balloon dataset. The minimum support 

threshold is 0.2 and the growth rate threshold is  ρ > 1.  The candidate EPs are of two classes T (when 

the inflated is true) and F (when the inflated is false) with 20 samples and 4 features: color, size, act and age.  

TABLE 4 THE CANDIDATE EPS FROM CLASS F TO CLASS T    TABLE 5 THE CANDIDATE EPS FROM CLASS T TO CLASS F 

 

From Definition 3, in Table 4, both {act=stretch} and {age=adult} are EPs of class T. In Table 5, by 

Definition 5, we can see that {act=dip, age=child} is an EP of class F due to  Rateimp(act = dip, age =

child) > 0. 

When applying EPs to classification, the EP set of each class is used to decide to which class a test in-

stance t should belong. More specifically, we derive k scores for t, one score per class, by feeding the 

EPs of each class into a scoring function, that is, label(t) = argmaxC ∈C score(t, Ci). The following defi-

nition provides the scoring function of the EPs-based classifier [10]. 

Definition 6 (Aggregate Score). Given an instance t and a set Ei of EPs of class Ci ∈ dom(C) mined from 

the training data, the aggregate score of t for Ci is defined as 

score(t, Ci ) = ∑
GR     

→   
(e)

GR     
→   

(e)+1e⊆t,e∈E ∗ supportC (e)           (3) 

A potential problem in Definition 6 is that the number of EPs from different classes is likely unbal-

anced. If a class Ci contains more EPs than another class Cj, a test instance tends to obtain higher scores 

for Ci than for Cj, even if the test instance actually belongs to Cj. Thus, the score computed by Defini-

tion 6 cannot be directly used to classify a test instance. Dong et al. [11] presented a concept of a base 

score for class Ci, baseScore(Ci), which was first calculated from the training instances of the class. With 

the base score, the new score of an instance t for Ci, named normScore(t, Ci), is defined as the ratio of 

the score, score(t, Ci), calculated by Definition 6 and the base score, baseScore(Ci),  

normScore(t, Ci) =
score(t,C )

baseScore(C )
.                           (4) 

The class with the highest normScore wins and ties are broken by putting the test instance into the 

class with the largest population. One way to determine the base scores is that baseScore(Ci) can be the 

median of the scores of the training instances of class Ci [11]. For example, assume there are 5 training 

instances from each of the positive (+) and negative (-) classes; with all EPs of each class, assume the 

scores of the positive training instances computed by Definition 6 are 17.85, 18.61, 18.76, 19.75, 20.24, 

and the scores of the negatives are 7.8, 7.87, 8.20, 8.57, 8.61. The (median) base scores for the positive 

and negative classes are 18.76 and 8.20, respectively. Given a test instance t (known to be from the 

Candidate EP Support 
(class F) 

Support 
(class T) 

𝑮𝑹 → (e) 

{act=stretch} 0 0.67 ∞ 

    

{age=adult} 0 0.70 ∞ 

Candidate EP Support 
(class T) 

Support 
(class F) 

𝑮𝑹 → (e) 

{act=dip} 0.33 1 3 
{age=child} 0.33 1 3 
{act=dip, age=child} 0 1 ∞ 
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negative class) with scores 10.17 and 7.92 for the positive and negative classes respectively, we have 

normScore(t,+)= 10.17/18.76 = 0.54 and normScore(t,−)= 7.92/8.2 =0.97. The instance s is thus labeled 

as the negative class. 

Later, Zhang et al. introduced a simpler score function based on information theory to avoid com-

puting the base score for each class [38] and defined the score function of a test instance t by Eq.(5). 

𝐿(𝑡||𝐶𝑖) = −∑ log2 𝑃(𝑋𝑘|𝐶𝑖)
𝑝
𝑘=1 , 𝑋𝑘 ∈ 𝐸𝑖  𝑎𝑛𝑑 𝑋𝑘 ∈ 𝑡                               (5) 

 The test instance t is assigned the class label 𝐶𝑖 when 𝐿(𝑡||𝐶𝑖) is the minimum. Given an itemset X, 

𝑃(𝑋|𝐶𝑖) is approximately computed by Eq. (6). 

𝑃(𝑋|𝐶𝑖) = (|𝑋 ∩ 𝐶𝑖| + 2 ∗ (
|𝑋|

|𝐷|
)) (|𝐶𝑖| + 2)⁄                                               (6) 

where |X ∩ Ci| is the number of training instances belonging to class Ci and containing X, |X| is the total 

number of training instances containing X, |D| is the total number of training instances, and |Ci| is the 

number of training instances of class Ci. In addition, to ensure that we can always find a partition for 

an instance, all single-item itemsets of each class whether they satisfy the given thresholds or not are 

taken into account when Eq. (5) is used to classify a test instance. 

3.2 Causal Bayesian Networks 

Discovery of causal relationships between events has found wide applications in science and technol-

ogy. Since late 1980’s, the work on formal theories of causality and causal induction by Spirtes, Pearl 

and others has been gaining ground [29, 31]. Since causal Bayesian networks provide a convenient 

framework for reasoning among random variables, to simplify our presentation, we focus on causal 

Bayesian networks to represent causal relationships between variables in this paper. Since a causal 

Bayesian network is a Bayesian network and its structural learning in observational data is essentially 

the same as structure learning of Bayesian networks, one of the most exciting prospects in the last two 

decades has been the possibility of using Bayesian networks to discover causal relationships among 

features in observed data [29, 31]. The words “node” and “feature” are used interchangeably in the 

rest of this paper. 

Definition 7 (Bayesian Networks)  Let P be a discrete joint probability distribution of a set of random 

nodes F via a directed acyclic graph G. We call the triplet < 𝐹, 𝐺, 𝑃 > a (discrete) Bayesian network if 

< 𝐹, 𝐺, 𝑃 > satisfies the Markov condition: every node is independent of any subset of its non-descendant 

nodes conditioned on its parents. 

With the Markov condition, a Bayesian network encodes the joint probability P over a set of nodes 

F = {F1, F2, … , Fn} and decomposes the joint probability into a product of the conditional probability distri-

butions over each node given its parents in G. Assuming Pa(Fi) is the set of parents of Fi in G, the joint 

probability P is written as Eq. 7.  

P(F1, F2, … , Fn) = ∏ P(Fi|Pa(Fi))
n
i=1    (7) 
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A simple Bayesian network is shown in Fig. 1 [14]. The number of possible values each node can take 

and the probabilities that are associated with this structure are not shown for better clarity. 

Definition 8 (Faithfulness) A Bayesian network satisfies the faithfulness condition if and only if every 

conditional independence entailed by the directed acyclic graph G is also present in the joint probability P. 

Definition 9 (Causal Bayesian Networks) A causal Bayesian network is a Bayesian network < 𝐹, 𝐺, 𝑃 > 

with the additional semantics that for all Fi ∈ F and Fj ∈ F, i ≠ j, if a node Fi is a parent of node Fj in G, then 

Fi is a direct cause for Fj. 

Definition 10 (Causal Markov Condition) In a causal Bayesian network, if every node is independent of 

its non-effects (i.e., non-descendants) given its direct causes (i.e., parents), then the causal Markov condi-

tion holds.  

The causal Markov condition permits the joint distribution of the features in a causal Bayesian network 

to be factored as in Eq. 7. 

Definition 11 (Causal Faithfulness) A causal Bayesian network satisfies the faithfulness condition if it 

satisfies the faithfulness condition of Definition 8. 

4 A FRAMEWORK OF MINING EPS FROM HIGH-DIMENSIONAL DATA 

4.1 Causal Relevance and EP Discriminability 

It is infeasible to examine a search space covering all possible item combinations for high-dimensional 

and dense data. A potentially effective way to mine EPs from high-dimensional data is to avoid the 

combinations of all items. From Tables 4 to 5, we can see that the final set of EPs does not contain fea-

tures size and color, since their corresponding EPs have no impact on the construction of accurate clas-

sifiers. Motivated by this observation, in this section, we bridge causal relevance in causal Bayesian 

networks and EP discriminability (the predictive ability of an EP) in EP mining to address the two 

challenges on the minimal strongly predictive EP set and the impact of the minimal support threshold. 

   With the causal Markov condition, we define the causal relevance of a target node in causal Bayesian 

networks with respect to other nodes in three categories, irrelevant nodes, Markov blanket, and re-

dundant nodes as follows. 

 

Fig. 1. A simple example of a Bayesian network of Lung Cancer 
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Definition 12 (Irrelevant Nodes) In a causal Bayesian network, if Fi has no paths to connect with the tar-

get node C, node Fi is an irrelevant node with respect to C, that is, 

∀f ∈ dom(Fi), ∀c ∈ dom(C), P(C = c|Fi = f) = P(C = c)  (8) 

In causal Bayesian networks, if a node Fi has no path to a target node C, it doesn’t carry any predictive 

information about C at all, no matter what the context is. For example, let the node “Lung Cancer” be a 

target node in Fig. 1.,  node “Born an Even Day” in Fig. 1 is disconnected from “Lung Cancer”, thus the 

pattern: {“Born an Even Day”=yes} or {“Born an Even Day”=no} cannot provide any predictive infor-

mation to the target node of Lung Cancer. 

Definition 13 (MB: Markov Blanket)[29] In a causal Bayesian network, the Markov blanket of a node Fi, 

denoted as MB(Fi), is the set of its direct causes, its direct effects and the direct causes of its direct effects 

(spouses).  

For example, in Fig.1, the Markov blanket of node “Lung Cancer” includes direct causes: “Smoking” 

and “Genetics”, direct effects: “Coughing” and “Fatigue”, and direct cause of the direct effects (spouse):  

“Allergy”. 

Property 1[29] In causal Bayesian networks with causal faithfulness, the MB(Fi) is unique and satisfies the 

following property: 

∀S ∈ F − (MB(Fi)⋃{Fi}), P(Fi|MB(Fi), S) = P(Fi|MB(Fi))  (9) 

This property says that the Markov blanket of a node Fi is not only unique but also stores infor-

mation about Fi that cannot be obtained from any other nodes in causal Bayesian networks. For exam-

ple, in Fig.1, if we know the information of the Markov blanket of “LungCancer”, it shields “LungCancer” 

from other nodes. Thus, if we know the Markov blanket of “LungCancer”, any nodes outside of it 

would be redundant. The redundant nodes in causal Bayesian networks are defined as follows. 

Definition 14 (Redundant Nodes) In a causal Bayesian network, if a node Fi has a path to connect with 

the target node C but doesn’t belong to MB(C), then it is a redundant node with respect to C. 

In a causal Bayesian network, if a node is redundant with respect to a target node C, the values of 

this node are fully determined by the MB(C). For example, with the causal Bayesian network in Fig.1, 

according to the causal Markov condition (see Definition 10), once all the direct causes of node “Lung-

Cancer” have been given, the values of its indirect causes are fully determined by their corresponding 

direct causes of node “LungCancer”. Thus, the indirect causes of “Lung Cancer” don’t bring any addi-

tional information to “Lung Cancer”. For instance, increased “Anxiety” will increase “Smoking,” but this 

cannot influence directly “LungCancer,” when the value of “Smoking” is known in advance. Conse-

quently, with two patterns for predicting whether a person suffers from lung cancer, {“Smok-

ing”=yes}→{“Lung Cancer”=yes} and {“Anxiety”=yes and “Smoking”=yes}→{“Lung cancer”=yes}, from Fig. 

1, it suffices to have {“Smoking”=yes}→ {“Lung Cancer”=yes} as a predictive pattern, and we do not need 
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to know about “Anxiety.”  With the Markov blanket of a target node, other nodes in a causal Bayesian 

network become irrelevant or redundant nodes with respect to the target node.  

In Fig. 2a, this Bayesian network is learned from the Balloon dataset in Table 3 without considering 

the artificial feature act_r (using the MMHC algorithm with the parameter alpha=0.01 [34]). We can see 

that both color and size are irrelevant to the class attribute inflated (in red color) while features act and 

age are both direct causes of the class attribute. In fact, in Tables 4 and 5, the EPs of both classes don’t 

include features color and size. In Figure 2b, the Bayesian network is learned from the Balloon dataset 

with the artificial feature act_r that is redundant to act, as shown in Table 3. We can see that feature 

act_r is also a redundant node with respect to the class attribute inflated. 

The above observations further motivate us to explore the potential relationships between causal 

relevance in a causal Bayesian network and EP discriminability in EP mining, as shown in Fig. 3, to 

handle EP mining from high-dimensional data. We give the following propositions to address these 

relationships. 

Proposition 1. If Fi is an irrelevant node with respect to the target node C in a causal Bayesian network, 

then ∀f ∈ dom(Fi),  the pattern {Fi = f} is a non-EP. 

Proof. Assume a dataset D has two classes C = {Cp ,Cn }, Dp  represents Cp  class data, Dn  represents 

Cn class data,  supD (Fi = f) is the support value of the itemset {Fi = f} in Dp and  supD (Fi = f) is its 

support value in Dn. Then GR(Fi = f) from Dn to Dp is calculated as follows. 

                          

Fig. 2 (a) The Bayesian network learned from the Balloon dataset; (b) the Bayesian network learned from the Balloon dataset with 

the artificial feature act-r. 

 

 

Fig.3.Causal relevance and EP discriminability 
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      Since Fi is an irrelevant node with respect to the target node C in the causal Bayesian network, by 

Eq.(8), we get the following equation. 
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According to Definition 3 in Section 2.1, Proposition 1 is proven. 

From Definition 5 in Section 2.1, for an EP e, if we can find an e′ ⊂ e to make Rateimp(e) ≤ 0, then e 

might be an uninteresting or redundant EP given its subset e′, and the EP e might be replaced by its 

subset e′. Thus, avoiding generation of these redundant EPs in advance will improve search efficiency. 

We give Proposition 2 below to explain the relationships between redundant nodes in causal Bayesian 

networks and EP redundancy in EP mining.

Proposition 2. If a node Fi is a redundant node to the target node C in a causal Bayesian network and M is 

the Markov blanket of C, then ∀f ∈ dom(Fi), and there exists m ∈ ⋃ dom(Mi)
|M|
i=1 , such that the candidate EP 

of {Fi = f,M = m} is a redundant EP with respect to the EP of {M = m}.  

Proof. Since Fi is a redundant node with respect to C, by Property 1, the following equation holds:  

∀c ∈ dom(C), P(C = c|M = m, Fi = f) = P(C = c|M = m)   (10) 

𝐺𝑅(Fi = f, S = s) from Dn to Dp is calculated as follows. 
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Thus, we get 𝐺𝑅𝐷 →  
(Fi = f,M = m) − 𝐺𝑅𝐷 →  

(M = m) = 0. According Definition 5 in Section 2.1, we 

have proven Proposition 2. 

With the results of Propositions 1 and 2, we can remove irrelevant and redundant nodes with respect 

to the class attribute in causal Bayesian networks to achieve the goal of pruning non-EPs and redun-

dant EPs before EP mining. Thus, by removing irrelevant and redundant nodes in causal Bayesian 

networks, we can reduce the pattern space in EP mining to the space of the Markov blanket of the class 

attribute in a causal Bayesian network, and we get Proposition 3 as follows. 

Proposition 3. The pattern space in EP mining for classification can be reduced to the space of the Markov 

blanket of the class attribute in causal Bayesian networks. 

With Proposition 3, within the Markov blanket of the class attribute, both the direct causes and the 

direct effects have a direct connecting path to the class attribute while the direct causes of the direct 

effects (spouses) of the class attribute don't. Thus, in causal Bayesian networks, the spouses of the class 

attribute cannot individually predict the class attribute and may enhance the predictive power of the 

direct effects only when they join with the direct effects. With the causal Markov condition, direct 

causes joined with the direct effects give the highest predictive ability to predict the class attribute and 

a natural interpretation for what happens to the class attribute. For example, as indicated in Fig.1, the 

nodes “Smoking”, “Genetics”, “Coughing”, and “Fatigue” give the most highly predictive ability to pre-

dict whether a person suffers from “Lung Cancer”, while the node “Allergy” cannot individually pre-

dict “Lung Cancer”. “Allergy” may enhance the predictive power of “Coughing” when it joins with 

“Coughing”. Thus, the pattern space in EP mining can be naturally reduced to direct causes and direct 

effects of the class attribute in causal Bayesian networks, and then we obtain Proposition 4 as follows. 

Proposition 4. The pattern space in EP mining for classification can be further reduced to direct causes 

and direct effects of the class attribute in causal Bayesian networks.  

4.2 Mining Emerging Patterns from High-dimensional Data 

With Propositions 1 to 4 above, we give a new framework for mining EPs with high-dimensional da-

ta, as shown in Fig. 4 with 4 steps. The key steps of our framework are (1) Step 1: identifying CE (direct 

Causes and direct Effects) or MB (the Markov Blanket) of the class attribute from data, and (2) Step 3: 

mining EPs from CE or MB space. 

Step 1: Identifying CE and MB of the class attribute. As stated in Section 2.2, structure learning of 

causal Bayesian networks in observational data is essentially the same as structure learning of Bayesi-

an networks. When the number of features is small, we can adopt existing Bayesian network structure 

learning algorithms to construct a complete Bayesian network, and then get the CE or MB of the class 

attribute. When there are tens of thousands of feature dimensions, learning a complete Bayesian net-

work is simply impossible [8]. 
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 In fact, in our framework, both the CE approach and the MB approach only need to get the CE or 

MB of the class attribute, and don’t need to distinguish which node is a direct cause, a direct effect, or 

a spouse from the CE set or MB set. Rather than recovering a complete Bayesian network among all 

features, our framework only uses local learning techniques to uncover cause-effect relationships be-

tween the class attribute and other nodes or to uncover the MB of the class attribute. Most importantly, 

in a causal Bayesian network with causal faithfulness, the CE or MB of a target is unique and minimal.  

Therefore, no matter whether the number of features in a dataset is small or large, our framework 

adopts local learning techniques to capture the CE or the MB of the class attribute.  For the CE ap-

proach of EP mining, there are two state-of-the-art local learning techniques, MMPC and HITON_PC 

(detailed descriptions in [2]). Since those two algorithms are complete under the assumption of causal 

faithfulness, we introduce the HITON_PC algorithm into our framework to get the CE of the class at-

tribute without uncovering a complete Bayesian network. For the MB approach, the HITON_MB algo-

rithm is used to get the MB of the class attribute [2]1. To identify the MB of the class attribute, the HI-

TON_MB algorithm first discovers the CE of the class attribute by the HITON_PC algorithm and, then, 

identifies the spouses of the class attribute. 

Step 3: Mining EPs from the pattern space of CE or MB of the class attribute. At step 3, with the CE 

or MB of the class attribute, our framework gives two approaches, CE approach to mine EPs from the 

space of direct causes and direct effects, and MB approach to mine EPs from the space of the Markov 

blanket. Since the CE or MB of the class attribute is unique and minimal in a causal Bayesian network, at 

step 3, we adopt the ConsEPMiner algorithm2  which is a level-wise, candidate generation-and-test ap-

proach to mine EPs [37]. The ConsEPMiner algorithm follows the set-enumeration tree search frame-

work and the breadth-first search strategy, and mines EPs satisfying several constraints including the 

growth-rate improvement constraint. With the EPs mined by our two approaches, two classifiers, the 

CE-EP and MB-EP classifiers, are constructed, and they both use the score function defined by Eq.5 in 

Section 3.1 for classification.   
 

1 The codes of HITON_PC and HITON_MB are available at http://www.dsl-lab.org/causal_explorer. 
2 The code of the ConsEPMiner algorithm is available at http://goanna.cs.rmit.edu.au/~zhang. 

 

Fig. 4  The framework of building EPs-based classifiers from high-dimensional data 

 

 

 

http://www.dsl-lab.org/causal_explorer
http://www.dsl-lab.org/causal_explorer
http://goanna.cs.rmit.edu.au/~zhang
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5 EXPERIMENTAL RESULTS 

5.1 Experimental Setup 

In order to thoroughly evaluate the proposed framework, thirty six datasets (Table 6) are selected, in-

cluding the UCI datasets (the first 24 datasets), very high-dimensional biomedical datasets (hiva, ovari-

an-cancer, lymphoma, and breast-cancer), NIPS 2003 feature selection challenge datasets (madelon, arcene, 

dorothea, and dexter), and four frequently studied public microarray datasets (the last 4 datasets), re-

spectively. 

TABLE 6   #: THE NUMBER OF FEATURES, SIZE: THE NUMBER OF INSTANCES 

Dataset # SIZE Dataset # SIZE 

australian 14 690 promoters 57 106 

breast-w 9 3,146 spect 22 267 

crx 15 690 spectf 44 267 

cleve 13 303 tictactoe 9 958 

diabetes 8 768 vote 16 435 

german 20 1,000 wdbc 30 569 

house-votes 16 230 madelon 500 2,000 

hepatitis 19 155 hiva 1,617 4,229 

horse-colic 22 368 ovarian-cancer 2,190 216 

hypothyroid 25 3,163 lymphoma 7,399 227 

heart 13 270 dexter 20,000 300 

infant 86 5,337 breast-cancer 17,816 286 

ionosphere 34 351 arcene 10,000 100 

kr-vs-kp 36 3,196 dorothea 100,000 800 

labor 16 57 colon 2,000 62 

liver 6 345 leukemia 7,129 72 

mushroom 22 8,124 lung-cancer 12,533 181 

pima 8 768 prostate 6,033 102 

 

Our comparative study involves three types of comparisons, using ten-fold cross-validation on all da-

tasets.  

 Comparing CE-EP and MB-EP classifiers against a well-known EP classifier, CAEP [10] and a Strong 

Jumping EP classifier,  SJEP [11]. 

 Comparing CE-EP and MB-EP classifiers with three well-known associative classifiers: CBA [22], 

CMAR [19] and CPAR [36]. 

 Comparing CE-EP and MB-EP classifiers with the state-of-the-art non-associative classifiers, includ-

ing Naïve Bayes (NB), Knn, Decision Tree J48, SVM, Bagging and AdaBoost using their Weka im-

plementations with default parameters [15]. 

To discretize continuous features, we use the discretization method in the Causal Explorer Toolkit 

provided by Aliferis et al. [1]. In the experiments, we set the minimum confidence threshold to 0.8 for 

CBA and CMAR, and set the growth rate to 20 for CAEP, CE-EP and MB-EP classifiers. To thoroughly 

test the impact of the support threshold values, we set seven minimum supports for CE-EP, MB-EP, 

CAEP, CBA, and CMAR, including 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, respectively. We select the best 

classification accuracy under the seven minimum supports as the results for our comparative study. The 

SJEP classifier uses the minimal support threshold suggested in the original paper [11]. The parameters 
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for CPAR are set the same as those reported in [36]. CBA, CMAR, and CPAR are implemented in the 

LUCS KDD Software Library in Java [26], while CE-EP, MB-EP and CAEP are implemented in C++. The 

experiments are performed on a Window 7 DELL workstation with an Intel Xeon 2.93 GHz processor 

and 12.0 GB RAM. 

5.2 Comparison of Predictive Accuracy 

5.2.1. Comparing with Other 11 Classifiers 

Tables 7 to 9 report the predictive accuracies of our two classifiers, CE-EP and MB-EP, in comparison with 

other eleven classifiers, including two EP, three associative and six non-associative classifiers on the thirty 

six benchmark datasets. We select the best predictive accuracy under the seven minimum supports as the 

results for our comparative study. The best results among all classifiers are highlighted in bold for each da-

taset and the symbol “/” denotes that the classifier runs out of memory due to a huge number of candidate 

patterns.  

In Table 7, compared to CAEP and SJEP, CE-EP achieves the highest accuracy on twenty one datasets 

out of the thirty six datasets while CAEP and SJEP fail to deal with the twelve very high-dimensional 

datasets. On three datasets, diabetes, liver and pima, SJEP gets very low predictive accuracy, since there are 

not enough SJEPs in those datasets for classification. In Table 8, CBA, CMAR and CPAR only have re-

sults on the twenty four low dimensional datasets as they fail to deal with a high feature space. From 

Tables 7 and 8, we can see that CE-EP outperforms SJEP, CBA, CMAR, and CPAR. Table 9 compares the 

accuracy of our two classifiers against well-known classifiers such as Naive Bayes (NB), Decision Tree 

J48, Knn, SVM and two ensemble classifiers, Bagging and AdaBoost. In comparison with these six classi-

fiers, CE-EP is significantly superior to NB, Knn, J48, Bagging and AdaBoost and very competitive with 

SVM on all the thirty six datasets in Table 9. 

TABLE 7 COMPARISON OF PREDICTIVE ACCURACY (%): CE-EP, MB-EP, SJEP, AND CAEP 

Dataset CE-EP MB-EP SJEP CAEP Dataset CE-EP MB-EP SJEP CAEP 

australian 83.97 83.97 78.24 84.71 promoters 72.00 72.00 / / 

breast-w 96.88 96.88 90.80 96.88 spect 72.69 72.69 56.92 69.23 

crx 82.21 82.21 76.32 84.85 spectf 83.85 85.00 75.00 / 

cleve 84.83 82.76 81.72 85.52 tictactoe 69.58 69.58 99.88 82.95 

diabetes 72.11 71.18 20.79 68.95 vote 95.95 95.95 93.33 90.00 

german 71.50 71.30 73.90 72.80 wdbc 81.79 83.39 70.36 81.96 

house-votes 96.82 96.82 93.18 90.91 madelon 59.00 60.85 / / 

hepatitis 85.33 85.33 86.00 86.00 hiva 93.70 93.67 / / 

horse-colic 85.83 83.33 81.39 79.72 ovarian-cancer 92.86 92.86 / / 

hypothyroid 72.82 72.82 75.47 67.78 lymphoma 77.73 77.73 / / 

heart 83.70 82.96 81.85 85.93 dexter 88.33 89.33 / / 

infant 94.92 94.78 / / arcene 86.67 86.67 / / 

ionosphere 92.94 91.76 94.74 90.29 breast-cancer 92.22 91.48 / / 

kr-vs-kp 92.23 91.54 91.82 83.49 dorothea 95.06 95.06 / / 

labor 96.00 92.00 86.00 94.00 colon 95.00 90.00 / / 

liver 61.76 61.76 10.29 57.65 leukemia 100.00 100.00 / / 

mushroom 96.18 95.54 98.12 96.18 lung-cancer 99.44 100.00 / / 

pima 72.11 71.18 20.79 68.95 prostate 94.00 94.00 / / 
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TABLE 8 COMPARISON OF PREDICTIVE ACCURACY (%): CE-EP, CBA, CMAR, AND CPAR 

Dataset CE-EP CBA CMAR CPAR Dataset CE-EP CBA CMAR CPAR 

australian 83.97 86.96 86.96 85.51 ionosphere 92.94 88.88 90.58 88.88 

breast-w 96.88 94.09 90.82 92.95 kr-vs-kp 92.23 93.56 89.41 88.71 

crx 82.21 86.52 85.51 85.51 labor 96.00 54.33 89.17 80.33 

cleve 84.83 83.12 85.82 78.61 liver 61.76 60.90 4.12 58.14 

diabetes 72.11 73.18 64.24 73.31 mushroom 96.18 78.67 99.37 98.66 

german 71.50 74.50 71.00 65.70 pima 72.11 73.45 63.94 67.97 

house-votes 96.82 96.96 96.96 96.96 promoters 72.00 28.13 42.50 63.00 

hepatitis 85.33 49.50 83.33 72.34 spect 72.69 64.42 62.66 64.42 

horse-colic 85.83 83.69 83.91 82.02 spectf 83.85 55.84 80.07 54.74 

hypothyroid 72.82 94.78 90.00 89.56 tictactoe 69.58 100 99.26 71.43 

heart 83.70 84.07 84.07 77.41 vote 95.95 95.40 95.40 94.01 

infant 94.92 63.72 90.00 84.30 wdbc 81.79 95.79 95.61 92.91 

 

TABLE 9 COMPARISON OF PREDICTIVE ACCURACY (%) WITH NON-ASSOCIATIVE CLASSIFIERS 

Dataset CE-EP NB Knn J48 SVM Bagging AdaBoost 

australian 83.97 84.78 81.88 85.79 85.36 85.80 86.38 

breast-w 96.88 95.99 95.14 94.56 97.00 95.57 94.85 

crx 82.21 85.36 81.59 84.20 85.51 84.64 85.36 

clever 84.83 84.82 79.54 75.91 82.51 79.54 84.82 

diabetes 72.11 70.44 68.23 72.00 73.18 72.40 73.18 

german 71.50 74.90 69.00 74.00 76.20 73.70 71.60 

house-votes 96.82 85.19 79.63 77.03 83.33 82.96 81.11 

hepatitis 85.33 83.87 80.65 80.65 84.52 83.23 80.65 

horse-colic 85.83 79.08 76.34 81.79 81.79 85.05 83.70 

hypothyroid 72.82 95.57 95.29 95.64 95.57  95.54 95.23 

heart 83.70 90.87 91.74 96.52 96.96 96.96 96.96 

infant 94.92 91.91 92.51 95.39 95.41 95.65 95.43 

ionosphere 92.94 88.89 88.60 92.02 91.74 91.45 89.46 

kr-vs-kp 92.23 83.92 95.15 99.31 94.99 99.22 93.84 

labor 96.00 91.22 87.72 92.98 85.96 80.70 87.72 

liver 61.76 61.16 61.74 60.00 60.29 59.71 60.87 

mushroom 96.18 85.68 100.00 100.00 99.11 100.00 98.44 

pima 72.11 70.44 68.75 72.01 73.18 72.40 73.18 

promoters 72.00 74.53 55.66 63.21 79.25 60.38 66.04 

spect 72.69 66.67 64.79 65.54 70.04 67.79 69.66 

spectf 83.85 86.63 57.75 62.57 81.25 90.37 75.40 

tictactoe 69.58 69.20 98.43 85.70 98.33 90.40 72.31 

vote 95.95 94.23 94.23 94.01 94.93 95.40 82.87 

wdbc 81.79 77.68 79.96 75.92 79.61 80.32 76.27 

madelon 59.00 59.20 52.95 57.50 56.35 62.20 60.50 

hiva 93.70 87.06 95.38 96.39 94.70 96.64 96.47 

lymphoma 77.33 68.28 63.88 70.93 77.53 64.76 60.79 

breast-cancer 92.22 93.01 86.36 80.77 92.31 84.97 83.57 

ovarian-cancer 92.86 70.83 83.33 89.35 93.52 88.89 90.74 

dorothea 95.06 90.25 90.63 89.38 92.00 94.13 93.75 

arcene 86.67 63.00 77.00 56.00 81.00 72.00 71.00 

dexter 88.33 93.33 63.67 82.67 91.33 86.67 81.33 

colon 95.00 79.03 79.03 79.03 85.48 85.48 85.48 

leukemia 100.00 93.06 97.22 90.28 98.61 90.28 100.00 

lung-cancer 99.44 98.34 98.34 90.61 100.00 93.92 96.69 

prostate 94.00 69.61 88.24 88.24 94.12 92.16 91.18 

 

TABLE 10 WIN/TIE/LOSS COUNTS OF CE-EP VS. THE OTHER 12 CLASSIFIERS (PAIRWISE T-TEST AT 95% SIGNIFICANCE LEVEL) 

 MB-EP SJEP CAEP CBA CMAR CPAR NB Knn J48 SVM Bagging AdaBoost 

CE-EP 5/28/3 29/2/5 26/6/4 11/4/9 13/5/6 16/1/7 22/7/7 28/2/6 23/4/9 15/9/12 21/5/10 20/5/11 

 

To further investigate the classification results, we conduct paired t-tests at a 95% significance level 

and summarize the win/tie/lose counts of CE-EP against the other algorithms in Table 10 (note: if a clas-

sifier fails to run on a dataset while our method can do it, then our classifier wins ). With the summary of 

the win/tie/lose counts shown in Table 10, we can see that CE-EP usually outperforms CAEP, CBA, 

CMAR and CPAR. Meanwhile, the MB-EP classifier has extremely similar performance with CE-EP. In 

comparison with the well-known non-associative classifiers, CE-EP is significantly superior to NB, Knn, 

http://www.sgi.com/tech/mlc/db/hepatitis.data
http://www.sgi.com/tech/mlc/db/hypothyroid.all
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J48, Bagging and AdaBoost, and is competitive with SVM on all the thirty six datasets. 

The above empirical results demonstrate that mining EPs in the pattern space of direct causes and di-

rect effects, or the Markov blanket of the class attribute can find high quality patterns which possess the 

most differentiating power. Most importantly, the CE-EP and MB-EP classifiers can not only handle very 

high-dimensional datasets such as the last twelve datasets in Table 6, but also produce very promising 

predictive accuracy. 

Why do the EPs mined by CE-EP possess such high discriminating power? We use vote, a UCI dataset, 

as an illustrating example. The vote dataset has 16 features (attributes) and one class attribute.  Each fea-

ture has two values, yea and nay, and the class attribute is divided into two classes: Democrat (D) and Re-

publican (R). Tables 11 to 13 give the EPs of the two classes mined from the vote dataset by the CE-EP al-

gorithm, respectively. 

It is clear that the EPs in Tables 11 to 12 are constructed from features physician-fee-freeze, adoption-of-

the-budget-resolution and synfuels-corporation-cutback, whose indices in the original vote dataset are 4, 3 

and 11, respectively. The EPs constructed from these three features are highly discriminative as indicated by 

the high growth ratio GR(e). Note that Feature 4 is the direct cause of the class attribute while Features 3 

and 11 are the direct effects of the class attribute in the causal Bayesian network learned from the vote 

dataset.  

From the viewpoint of feature discriminability, the mutual information measure and the chi-squared 

test both show that Features 4, 3 and 11 are the most informative features among all of features with re-

spect to the class attribute. This is consistent with the feature discriminability described in Table 13. 

TABLE 11 THE EPS FROM CLASS R(REPUBLICAN) TO CLASS D (DEMOCRAT) 

Emerging Patterns Support(class R) Support(class D) GR(e) 

{physician-fee-freeze=nay& adoption-of-the-budget-resolution=yea} 0.0179 0.8614 48.12 

{physician-fee-freeze=nay&synfuels-corporation-cutback=yea} 0 0.4419 ∞ 

{adoption-of-the-budget-resolution=yea&synfuels-corporation-cutback=yea} 0.0179 0.4082 22.81 

 

TABLE 12 THE EPS FROM CLASS D (DEMOCRAT) TO CLASS R (REPUBLICAN) 

Emerging Patterns Support(class D) Support(class R) GR(e) 

{physician-fee-freeze=yea&adoption-of-the-budget-resolution=nay} 0.02 0.8333 37.08 

{physician-fee-freeze=yea&synfuels-corporation-cutback=nay} 0.01 0.85  75.23 

{adoption-of-the-budget-resolution=nay&synfuels-corporation-cutback=nay} 0.03 0.74  21.90 

{physician-fee-freeze=yea&adoption-of-the-budget-resolution=nay& 
synfuels-corporation-cutback=nay} 

0.0037 0.73 197.3 

 
TABLE 13 FEATURE DISCRIMINABILITY OF FEATURES 4, 3 AND 11  

Feature Feature Discriminability (Pr(C|F=V)(F denotes a feature and V means its value) 

4(physician-fee-freeze) 0.99(C=democrat; V=nay) 0.92 (C=republican; V=yea) 

3 (adoption-of-the-budget-resolution) 0.91(C=democrat; V=yea) 0.83(C=republican; V=nay) 

11(synfuels-corporation-cutback) 0.86(C=democrat; V=yea) 0.52(C=republican; V=nay) 

 
Accordingly, we conclude that the EPs extracted from the pattern space of direct causes and direct ef-

fects are high-quality patterns and possess the most discriminative power. They are the best candidates to be 

used to construct a highly accurate classifier. 
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5.2.2 Comparing with Top-k Feature Ranking Methods 

For the last 12 high-dimensional datasets in Table 6, we further compare the CE-EP algorithm with the 

two top-k feature ranking methods, the mutual information (MI for short) measure and the chi-squared 

test (CHI for short). For both ranking methods, we select the top 20 and top 30 features respectively, and 

then use the selected features to train EP classifiers to get the benchmark results. 

TABLE 14 THE PREDICTIVE ACCURACY (%) OF CE-EP VS. CHI AND MI  

Dataset CE-EP CHI(20) CHI(30) MI(20) MI(30) 

madelon 59.00 62.35 62.35 61.90 63.45 

hiva 93.70 94.29 94.43 92.44 90.59 

ovarian-cancer 92.38 86.77 85.71 84.29 84.76 

lymphoma 77.73 74.09 77.73 81.36 79.55 

dexter 88.33 90.67 92.33 85.00 88.67 

breast-cancer 92.22 90.74 90.37 90.74 91.11 

arcene 86.67 70.00 71.11 72.22 70.00 

dorothea 95.06 93.92 93.92 94.05 94.18 

colon 95.00 90.00 88.33 91.67 90.00 

leukemia 100.00 100.00 100.00 100.00 100.00 

lung-cancer 99.44 100.00 98.89 97.22 98.33 

prostate 94.00 92.00 94.00 94.00 93.00 

Ave. 89.46 87.07 87.43 87.07 86.97 

 

For CE-EP, we set the support threshold to 0.2 and the growth rate threshold to 20. From Tables 14 

to 16, we can see that CE-EP gets much better performance than both the CHI and MI methods on the 

predictive accuracy and the number of mined patterns (MI(20) or CHI(20) denotes the top 20 features 

selected by the MI or CHI method). 

TABLE 15  WIN/TIE/LOSS (PAIRWISE T-TEST AT 95% SIGNIFICANCE LEVEL) 

 CHI(20) CHI(30) MI(20) MI(30) 

CE-EP 7/3/2 5/5/2 8/2/2 8/2/2 

 
TABLE 16 THE NUMBER OF MINED PATTERNS OF CE-EP VS. CHI AND MI  

Dataset CE-EP CHI(20) CHI(30) MI(20) MI(30)  Dataset CE-EP CHI(20) CHI(30) MI(20) MI(30) 

madelon 22 86 140 90 144  arcene 27 98 150 168 747 

hiva 28 80 120 80 120  dorothea 45 107 160 507 335 

ovarian-cancer 40 634 3480 672 2303  colon 27 259 815 251 807 

lymphoma 33 827 20963 225 3111  leukemia 54 314 687 281 673 

dexter 35 250 967 225 751  lung-cancer 39 971 3656 2636 10300 

breast-cancer 40 234 615 1353 16287  prostate 134 366 1149 334 1149 

5.3 Comparison of the Number of Patterns 

In this section, we compare the numbers of patterns selected by CE-EP and MB-EP with the CAEP, 

CBA and CMAR classifiers, as these five associative classifiers all focus on generating patterns with the 

support-confidence framework. We report the average numbers of patterns over all seven minimum 

support thresholds. Since on wdbc, kr-vs-kp, ionosphere, horse-colic and german, CAEP cannot run using 

all the support thresholds due to huge numbers of patterns, the numbers of patterns on these datasets 

is averaged over the available support thresholds. 

As depicted in Tables 17 and 18, it is clear that the CE-EP and MB-EP classifiers select many fewer pat-

terns than the CAEP, CBA and CMAR classifiers on all the datasets. 

These results further illustrate that extracting the EPs from the space of direct causes and direct effects 
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or the Markov blanket of the class attribute not only gets a much smaller set of EPs but also achieves a 

higher predictive accuracy than the existing EPs-based and associative classifiers. Tables 17 to 18 also 

indicate that even with very high-dimensional datasets, the numbers of patterns selected by CE-EP and 

MB-EP don’t change much in comparison with those on the twenty four low-dimensional datasets while 

CAEP, CBA, and CMAR cannot deal with those datasets, even with a rather high support threshold. 

TABLE 17 COMPARISON OF NUMBERS OF PATTERNS (AVERAGE ON SEVEN SUPPORT THRESHOLDS): CE-EP, MB-EP, AND CAEP 

Data CE-EP MB-EP CAEP Data CE-EP MB-EP CAEP 

australian 41 41 751  promoters 8 8 / 

breast-w 269 269 269 spect 12 12 2906 

crx 20 20 866  spectf 25 102 / 

cleve 45 55 449 tictactoe 39 39 227 

diabetes 20 25 50 vote 18 18 1715 

german 30 35 2935 wdbc 48 92 2840 

house-votes 10 10 1041 madelon 22 29 / 

hepatitis 19 24 757 hiva 29 114 / 

horse-colic 31 34 2935 ovarian-cancer 17 17 / 

hypothyroid 24 24 146 lymphoma 44 44 / 

heart 36 57 331 dexter 38 59 / 

infant-mortality 71 114 / arcene 27 27 / 

ionosphere 35 48 4160 breast-cancer 42 177 / 

kr-vs-kp 53 359 1807 dorothea 47 65 / 

labor 37 52 438 colon 26 56 / 

liver 4 4 25 leukemia 54 2139 / 

mushroom 258 915 1059 lung-cancer 39 53 / 

pima 20 25 51 prostate 113 113 / 

 

TABLE 18 COMPARISON OF NUMBERS OF PATTERNS (AVERAGE ON SEVEN SUPPORT THRESHOLDS): CE-EP, MB-EP, CBA, AND CMAR 

Data CE-EP MB-EP CBA CMAR Data CE-EP MB-EP CBA CMAR 

australian 41 41 2462 7388 ionosphere 35 48 40955 18274 

breast-w 269 269 477 1278 kr-vs-kp 53 359 6513 2746 

crx 20 20 3140  5531 labor 37 52 8701 10650 

cleve 45 55 3354 5570 liver 4 4 16 13 

diabetes 20 25 205 375 mushroom 258 915 47214 23108 

german 30 35 15404 1960 pima 20 25 208 382 

house-votes 10 10 8356 15734 promoters 8 8 8339 272 

hepatitis 19 24 14863 17523 spect 12 12 113 1093 

horse-colic 31 34 25820 5304 spectf 25 102 11011 3489 

hypothyroid 24 24 15275 5503 tictactoe 39 39 832 1005 

heart 36 57 3068 5585 vote 18 18 8477 15734 

Infant-mortality 71 114 109652 2972 wdbc 48 92 43271 27708 

5.4 Comparison of Running Time of EP Classifiers 

Table 19 reports the average running time over seven minimum support thresholds of CE-EP and MB-EP 

against CAEP. The running time contains all execution time, including importing datasets, ten-fold cross 

validation learning and testing. The best result for each dataset is highlighted in bold. As stated in Section 

5.3, since on wdbc, kr-vs-kp, ionosphere, horse-colic and german, CAEP cannot run under all the support 

thresholds, the running time for these datasets is averaged over the available support thresholds. 

Table 19 shows that CE-EP and MB-EP are faster than CAEP on all the datasets. The running time of 

CAEP fluctuates a little among different datasets while CE-EP and MB-EP, especially CE-EP, have a very 

stable running time for both low and high dimensional datasets. On the dorothea dataset, the running 

time of MB-EP is greater than CE-EP due to the very large space of this dataset, up to 100,000 features. 
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TABLE 19 COMPARISON OF RUNNING TIME (AVERAGE ON SEVEN SUPPORT THRESHOLDS): CE-EP, MB-EP, AND CAEP 

Data CE-EP MB-EP CAEP Data CE-EP MB-EP CAEP 

australian 43 43 50 promoters 30 30 / 

breast-w 51 51 51 spect 30 30 87 

crx 31 31 42 spectf 31 32 / 

cleve 31 31 53 tictactoe 31 31 33 

diabetes 31 31 48 vote 30 30 47 

german 31 32 129 wdbc 31 32 89 

house-votes 27 32 54 madelon 32 33 / 

hepatitis 37 39 43 hiva 36 37 / 

horse-colic 31 31 51 ovarian-cancer 34 44 / 

hypothyroid 32 32 107 lymphoma 32 32 / 

heart 45 46 50 dexter 38 75 / 

Infant-mortality 50 75 / arcene 34 36 / 

ionosphere 43 45 146 breast-cancer 47 145 / 

kr-vs-kp 48 84 390 dorothea 164 1780 / 

labor 31 31 42 colon 32 37 / 

liver 10 10 10 leukemia 50 90 / 

mushroom 64 85 100 lung-cancer 42 71 / 

pima 45 45 46 prostate 34 51 / 

5.5 Sensitivity Analysis on Support Thresholds 

To further explore the performance of CE-EP, MB-EP, CAEP, CBA and CMAR, we conduct sensitivity 

analysis on the predictive accuracy and the number of selected patterns, of CE-EP, MB-EP, CAEP, CBA, 

and CMAR under seven minimum support threshold values in the following subsections.  

TABLE 20  SENSITIVITY ANALYSIS ON PREDICTIVE ACCURACY (%): CE-EP, MB-EP, AND CAEP 

Dataset                  CE-EP                 MB-EP CAEP 

max min ∆accu max min ∆accu max min ∆accu 

australian 83.39 83.39 0 83.39 83.39 0 84.71 84.26 0. 45 

breast-w 96.88 96.22 0.26 96.88 96.22 0.26 96.88 96.22 0.26 

crx 82.21 82.21 0 82.21 82.21 0 84.85 84.41 0.44 

cleve 84.83 84.48 0.35 82.41 82.07 0.34 85.52 82.76 2.76 

diabetes 72.11 72.11 0 71.18 71.18 0 68.95 68.82 0.13 

german 71.50 70.60 0.9 71.30 70.50 0.8 72.80 69.00 3.8 

house-votes 96.82 96.82 0 96.82 96.82 0 90.91 90.45 0.46 

hepatitis 85.33 85.33 0 85.33 85.33 0 86.00 84.00 2 

horse-colic 85.83 85.28 0.55 83.33 83.06 0.27 84.72 84.17 0.55 

hypothyroid 72.82 72.82 0 72.82 72.82 0 67.78 67.06 0.72 

heart 83.70 82.59 1.1 82.96 82.96 0 85.93 83.33 2.6 

infant 94.92 94.88 0.04 94.78 94.73 0.05 / / / 

ionosphere 91.76 90.88 0.88 91.76 90.59 0.17 90.29 89.12 1.17 

kr-vs-kp 92.23 91.70 0.53 91.54 90.47 1.07 83.49 81.70 1.79 

labor 96.00 96.00 0 92.00 92.00 0 94.00 92.00 2 

liver 61.76 61.76 0 61.76 61.76 0 57.65 57.65 0 

mushroom 96.18 94.85 1.33 95.54 94.19 1.35 96.18 94.30 1.88 

pima 72.11 72.11 0 71.18 71.18 0 68.82 68.82 0 

promoters 72.00 72.00 0 72.00 72.00 0 / / / 

spect 72.69 72.69 0 72.69 72.69 0 69.23 65.77 3.46 

spectf 83.85 83.85 0 85.00 84.62 0.38 / / / 

tictactoe 69.58 69.26 0.32 69.58 69.26 0.32 82.95 67.26 15.69 

vote 95.95 95.95 0 95.95 95.95 0 90.00 89.05 0.95 

wdbc 81.79 81.61 0.18 83.39 82.86 0.53 81.96 80.71 1.25 

madelon 59.00 59.00 0 60.60 60.60 0 / / / 

hiva 93.70 93.70 0 93.67 93.67 0 / / / 

ovarian-cancer 92.86 92.38 0.48 92.86 92.38 0.48 / / / 

lymphoma 77.73 77.27 0.46 77.73 77.27 0.46 / / / 

dexter 88.33 88.33 0 89.33 89.00 0.33 / / / 

arcene 86.67 86.67 0 86.67 86.67 0 / / / 

breast-cancer 92.22 92.22 0 91.48 91.11 0.37 / / / 

dorothea 95.06 95.06 0 95.06 95.06 0 / / / 

colon 95.00 95.00 0 90.00 90.00 0 / / / 

leukemia 100 100 0 100 100 0 / / / 

lung-cancer 99.44 99.44 0 100 99.44 0.56 / / / 

prostate 94.00 93.00 1 94.00 93.00 1 / / / 

5.5.1 Sensitivity Analysis on CE-EP, MB-EP, and CAEP 

Table 20 shows the change of predictive accuracy of CE-EP, MB-EP, and CAEP under seven support 
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thresholds, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4. In the second row of Table 20, “max”, “min”, and 

“∆accu” denote the maximum predictive accuracy under seven support thresholds, minimum predic-

tive accuracy under seven support thresholds and the difference between the maximum predictive ac-

curacy and minimum predictive accuracy. From Table 20, we can see that on the predictive accuracy, 

CE-EP and MB-EP are less sensitive to the support thresholds than CAEP. For all datasets, both CE-EP 

and MB-EP are insensitive to the different support thresholds, even for those high-dimensional datasets. 

Furthermore, CE-EP is not only more insensitive, but also always achieves higher accuracy under all the 

seven support thresholds than CAEP.  In fact, from Table 20, on the 24 UCI datasets, CAEP is also insen-

sitive to the support thresholds except for the tictactoe dataset. 

TABLE 21  SENSITIVITY ANALYSIS ON THE NUMBER OF PATTERNS: CE-EP, MB-EP, AND CAEP 
Dataset CE-EP MB-EP CAEP 

max min ratio max min ratio max min ratio 
australian 51 27 1.9 51 27 1.9 1665 76 21.9 

breast-w 449 171 2.6 449 171 2.7 449 171 2.6 

crx 22 18 1.2 22 18 1.2 2066 77 26.8 

cleve 56 33 1.7 71 40 1.8 892 73 12.2 

diabetes 22 18 1.2 30 22 1.4 77 44 1.8 

german 34 28 1.2 42 32 1.3 16649 136 122.4 

house-votes 10 10 1.0 10 10 1.0 1616 330 4.9 

hepatitis 19 17 1.1 24 14 1.7 1335 114 11.7 

horse-colic 31 22 1.4 44 27 1.6 9383 306 30.7 

hypothyroid 27 20 1.4 27 20 1.4 262 104 2.5 

heart 43 28 1.5 74 36 2.1 599 72 8.3 

infant 94 60 1.6 206 71 2.9 / / / 

ionosphere 39 28 1.4 59 35 1.7 7125 503 14.2 

kr-vs-kp 86 36 2.4 1037 93 11.2 6130 92 66.6 

labor 38 37 1.0 53 52 1.0 2000 124 16.1 

liver 4 4 1.0 4 4 1.0 27 24 1.13 

mushroom 450 129 3.5 2076 216 9.6 2449 226 10.8 

pima 22 18 1.2 27 22 1.2 77 34 2.3 

promoters 8 8 1.0 8 8 1.0 / / / 

spect 12 12 1.0 12 12 1.0 6832 88 77.6 

spectf 27 23 1.2 149 67 2.2 / / / 

tictactoe 56 30 1.9 56 30 1.9 641 54 11.9 

vote 18 18 1.0 18 18 1.0 2938 554 5.3 

wdbc 60 36 1.7 148 48 3.1 6132 600 10.2 

madelon 22 22 1.0 33 28 1.2 / / / 

hiva 31 28 1.1 206 71 2.9 / / / 

ovarian-cancer 17 18 0.9 17 18 0.9 / / / 

lymphoma 57 32 1.8 57 32 1.8 / / / 

dexter 40 34 1.8 65 51 1.3 / / / 

arcene 29 21 1.4 29 21 1.4 / / / 

breast-cancer 51 40 1.3 276 93 3.0 / / / 

dorothea 52 41 1.3 74 55 1.3 / / / 

colon 27 25 1.1 57 56 1.0 / / / 

leukemia 54 54 1.0 2416 1493 1.6 / / / 

lung-cancer 39 38 1.0 55 51 1.1 / / / 

prostate 134 74 1.8 134 74 1.8 / / / 

 

Table 21 shows the change of the numbers of selected EPs of CE-EP, MB-EP, and CAEP under seven 

support thresholds. In the second row of Table 21, “max”, “min”, and “ratio” denote the maximum 

number of selected EPs under seven support thresholds, minimum number of selected EPs under seven 

support thresholds and the ratio of the maximum number of selected EPs and minimum number of se-

lected EPs. As shown in Table 21, on the numbers of selected EPs, CE-EP and MB-EP are less sensitive to 

the support thresholds than CAEP. Both CE-EP and MB-EP are very insensitive to the different support 
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thresholds, even for those high-dimensional datasets, while CAEP is sensitive to the support thresholds 

on the 24 UCI datasets. 

  From Tables 20 to 21, we can conclude that on both low and high dimensional datasets, CE-EP and 

MB-EP are insensitive to the support thresholds on both predictive accuracy and the number of selected 

EPs. We can also come to the conclusion that EPs-based classifiers, CE-EP, MB-EP, and CAEP, are insen-

sitive to the support thresholds on the predictive accuracy, although CE-EP and MB-EP are less sensitive 

to the support thresholds than CAEP. The explanation is that the EPs denote a strong contrast between 

classes, thus they have very strong differentiating power to predict each class. For example, although 

CAEP is sensitive to the support threshold on the number of selected EPs, this has little impact on its 

predictive accuracy. 

5.5.2 Sensitivity Analysis on CE-EP, CBA, and CMAR 

Since MB-EP has an extremely similar performance with CE-EP, in the following subsections, we only have 

the sensitivity analysis on CE-EP, CBA and CMAR under seven support thresholds, 0.005, 0.01, 0.05, 0.1, 

0.2, 0.3, and 0.4. In Fig. 5, we plot the predictive accuracy of CE-EP, CBA and CMAR on the 24 UCI datasets 

in Table 6 with seven support thresholds. 

As shown in Fig.5, CE-EP is less sensitive to the support thresholds than CBA and CMAR and always 

achieves a higher accuracy under all the seven support thresholds than CBA and CMAR on most da-

tasets. The choice of the support thresholds is the key to both CBA and CMAR. For example, in Fig. 5, 

when the minimum support threshold is up to 0.3 or 0.4, the corresponding accuracies of both CBA and 

CMAR are greatly reduced.  

On some datasets, the accuracies of CBA and CMAR are even reduced to 0, such as clever, diabetes, 

german, ks-vr-kp, liver, pima, promoters, spect and tictactoe. On the infant-mortality, spectf, and wdbc data sets, 

CBA doesn’t work on all seven support thresholds due to the huge number of candidate patterns. 

In Fig.6, we have a further sensitivity analysis of CE-EP, CBA, and CMAR on the number of selected 

patterns. We plot the numbers of selected patterns of CE-EP, CBA and CMAR on all 24 UCI datasets 

with the seven minimum support thresholds, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4. From Fig.6, we can see 

that the numbers of selected patterns of CBA and CMAR are sensitive to the support thresholds. With a 

small support threshold, CBA and CMAR select a large number of association rules. With the support 

threshold increasing, the number of selected rules is greatly reduced.  

Along with Fig. 5, we can conclude that when the support threshold is small, CBA and CMAR can ob-

tain a large number of association rules for classification to achieve good accuracy as shown in Fig. 5. 

When the support threshold is large, CBA and CMAR prune too many rules, including useful rules, 

which results in low predictive accuracy. For example, in Fig.5, when the minimum support threshold 
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moves up to 0.4, on some datasets, the accuracies of CBA and CMAR are even reduced to 0, such as clev-

er, diabetes, german, ks-vr-kp, liver, pima, promoters, spect and tictactoe. The explanation is that CBA and 

CMAR can no longer select any rules under this minimum support threshold, as shown in Fig.6. From 

Figures 5 and 6, it is clear that with a small support threshold, a large number of association rules pro-

vide rich information for classification and make CBA and CMAR achieve high accuracy. But in this case, 

it is also difficult to store, retrieve and maintain a large number of candidate patterns for classification. 

For example, in Fig.6, on the infant-mortality, spectf, and wdbc datasets, CBA doesn’t work under a small 

support threshold due to the huge number of rules.   

 

Figure 5:  Sensitivity analysis on predictive accuracy: CE-EP, CBA, and CMAR 
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Figure 6:  Sensitivity analysis on the number of patterns: CE-EP, CBA, and CMAR 

As for CE-EP, under all seven support thresholds, it not only selects a small set of EPs, but also is in-

sensitive to the support threshold. Therefore, these results further validate the theoretical analysis of the 

relationships between causal relevance and EP discriminability. More specifically, when CE-EP mines 

the EPs from the space of the direct causes and direct effects of the class attribute, they can achieve 

strongly predictive EPs no matter whether the support threshold is small or large. This also explains why 
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the accuracy of CE-EP remains stable under the different support thresholds as shown in Fig. 5.  

5.6 Sensitivity Analysis on the Minimal Grow-rate thresholds 

To explore the impact of the minimal grow-rate threshold on the performance of both CE-EP and CAEP, 

we conduct an analysis on the predictive accuracy of CE-EP and CAEP under seven minimum growth-rate 

thresholds, as shown in Figures 7 and 8, where GR stands for Growth Rate thresholds and the minimum 

support threshold is fixed at 0.1. Since MB-EP has an extreme similar performance with CE-EP, we don’t 

plot the performance of MB-EP under the seven minimum growth-rate thresholds. On infant, ionosphere, 

promoters and spectf, CAEP cannot run under all seven growth-rate thresholds, and therefore Fig.7 plots the 

predictive accuracy of the other 20 low-dimensional datasets under the seven growth-rate thresholds. In 

Figure 8, the X-axis denotes all of the thirty six datasets corresponding to Table 6. Figures 7 to 8 show that 

both CAEP and CE-EP are not sensitive to the minimum growth-rate thresholds at all, especially CE-EP. 

 
Figure 7: The impact of growth-rate thresholds on CAEP (The 20 datasets on the X-axis are: 1.australian, 2. breast-w, 3.crx, 4.cleve, 

5.diabetes, 6.german,7. house-votes, 8.hepatitis, 9.horse-colic, 10. hypothyroid, 11.heart, 12.kr-vs-kp, 13.labor, 14. liver, 15.mushroom, 

16. pima, 17.spect, 18.tictactoe, 19. vote, 20. wdbc).  

 

Figure 8: The impact of growth rate thresholds on CE-EP 

5.7   Summary on the Experimental Results 

Based on the comparative study in Sections 5.2 to 5.6, we have the following findings: 

   (1) With the seven support thresholds, the experiments demonstrate that the EPs-based classifiers are less sen-

sitive to the support thresholds than the associative classifiers. Especially, on the predictive accuracy, EPs-based 

classifiers, CE-EP, MB-EP and CAEP, are less sensitive than associative classifiers, CBA and CMAR. As for the 

number of selected patterns, CE-EP and MB-EP are less sensitive than CAEP, CBA and CMAR, while CAEP is 

less sensitive than CBA and CMAR. Thus, the choice of a suitable support threshold is the key to control CBA 

and CMAR while it is not crucial for CE-EP, MB-EP and CAEP. Moreover, the study on the minimal grow-rate 
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thresholds verifies that both CE-EP and CAEP are insensitive to the minimal grow-rate thresholds on the predic-

tive accuracy. 

    (2) The CE-EP and MB-EP classifiers are more accurate than the five associative classifiers (CAEP, SJEP, CBA, 

CMAR, and CPAR) and the five state-of-the-art non-associative classifiers (NB, Knn, J48, Bagging, and Ada-

Boost), and are very competitive with SVM. Meanwhile, both our classifiers produce smaller numbers of EPs. 

Moreover, CAEP, SJEP, CBA, CMAR and CPAR cannot handle high-dimensional datasets. As for the running 

time, CE-EP and MB-EP are faster than CAEP on all datasets. This verifies our theoretical analysis of the rela-

tionships between causal relevance and EP discriminability to help avoid generating non-EPs or redundant EPs 

in advance. 

   (3) Both the CE-EP and MB-EP classifiers can handle very high feature dimensions well yet get very promising 

performance. Although the MB-EP classifier considers the information of direct causes of the direct effects of the 

class attribute, it gets extremely similar performance with the CE-EP classifier. This validates that the direct 

causes and direct effects of the class attribute in causal Bayesian networks give a natural interpretation of what 

happens to the class attribute, and then naturally endows EPs with strong discriminating power. 

6 CONCLUSIONS 

How to mine EPs from high-dimensional data is a challenging issue in EP mining. Meanwhile, how to 

deal with high sensitivity to minimal support thresholds is another challenging problem. In this paper, we 

have brought causal relevance and EP discriminability together to reduce the pattern space of EP mining to 

the direct causes and direct effects or the Markov blanket of the class attribute in causal Bayesian networks, 

and proposed a new framework for building accurate EPs-based classifiers from high-dimensional data. 

Extensive experiments on a broad range of datasets have demonstrated the effectiveness of the proposed 

approach against other well-established methods, in terms of predictive accuracy, pattern numbers, run-

ning time, and sensitivity analysis on the minimal support thresholds and minimal grow-rate thresholds. 
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