
TPAMI-2011-10-0721(R2)

1

Abstract—We propose a new online feature selection framework
for applications with streaming features where the knowledge of
the full feature space is unknown in advance. We define
streaming features as features that flow in one by one over time
whereas the number of training examples remains fixed. This is
in contrast with traditional online learning methods that only
deal with sequentially added observations, with little attention
being paid to streaming features. The critical challenges for
online streaming feature selection include (1) the continuous
growth of feature volumes over time; (2) a large feature space,
possibly of unknown or infinite size; and (3) the unavailability of
the entire feature set before learning starts.

In the paper, we present a novel Online Streaming Feature
Selection (OSFS) method to select strongly relevant and non-
redundant features on the fly. An efficient Fast-OSFS algorithm
is proposed to improve feature selection performance. The
proposed algorithms are evaluated extensively on high-
dimensional datasets and also with a real-world case study on
impact crater detection. Experimental results demonstrate that
the algorithms achieve better compactness and higher prediction
accuracy than existing streaming feature selection algorithms.

Index Terms— Feature selection, streaming features, supervised
learning

I. INTRODUCTION

eature selection in predictive modeling has received
considerable attention in statistics and machine learning
[14-15, 26, 43] during the last three decades. A variety of

feature selection algorithms have been developed and proven
to be effective in improving prediction accuracy for
classification [2, 20, 33]. Traditional feature selection methods
assume that all features are pre-computed and presented to a
learner before feature selection takes place. This assumption,
however, is often violated in many real-world applications
where not all features can be present in advance. For example,
many image processing processes involve a search of potential
features for machine learning algorithms to fulfill the pattern
recognition goal, but image features are often expensive to
generate and store and therefore may exist in a streaming
format [13, 22, 42]. More specially, Mars crater detection
from high resolution planetary images is an important task in
planetary research because it provides an effective solution for
measuring the relative ages of planetary surfaces. While
texture features have proven to be effective in crater detection

1 School of Computer Science and Information Engineering, Hefei University
of Technology, China
2 Department of Computer Science, University of Vermont, USA
3 Department of Computer Science, University of Massachusetts Boston, USA
4 QCIS Centre, Faculty of Engineering & Information Technology, University
of Technology, Sydney, Australia (* contact author)

xwu@cs.uvm.edu, ykui713@gmail.com,ding@cs.umb.edu,
 jsjxwangh@hfut.edu.cn, xqzhu@it.uts.edu.au

[11], tens of thousands of texture-based features, in different
scales and different resolutions, can potentially be generated
for high resolution planetary images. It is infeasible to pre-
generate texture features from planetary images that have a
near global coverage of the Martian surface.
 An intriguing question is that if we need a high level of
computational effort to generate those features up front,
should we develop a new way of integrating new features as
they arrive and carry out the computation, or should we wait a
long time for all features to become available and then carry
out the learning process? This presents an interesting research
question on how to design an effective mechanism to deal
with feature selection without the knowledge of the full
feature space. At the same time, when the potential feature
space is enormous, an exhaustive search over the entire feature
space becomes very costly or simply infeasible. Under such
circumstances, we need an effective design to ensure that
feature selection is properly and effectively carried out, even
though smoothing through the entire feature space is simply
not an option.
 Indeed, many existing feature selection algorithms are
effective in selecting a subset of predictive features for various
classification problems, but their scope is essentially limited to
the problem settings that all features are given before the
learning begins and they therefore cannot deal with the above
challenges [9, 22, 34].
 Motivated by these observations, we formulate dynamic
features as streaming features, whereby features are no longer
static but flow in one by one, and each new feature is
processed upon its arrival. Based on the newly formulated
problem, we present a novel framework for selecting features
from streaming features, which is inspired by feature
relevance and feature redundancy. This framework involves
two key components: (1) the utilization of feature relevance to
select features on the fly, and (2) the removal of redundant
features from the selected candidates thus far, based on feature
redundancy. Two new algorithms, Online Streaming Feature
Selection (OSFS) and Fast-OSFS, are proposed to validate the
effectiveness of the proposed framework.
 In summary, the unique contributions that distinguish the
proposed work from existing approaches are threefold: (1) our
work advances the relevance- and redundancy-based feature
selection one step further for handling streaming features; (2)
a novel framework based on feature selection is proposed to
manage streaming features; and (3) two new online streaming
feature selection algorithms are proposed with extensive
comparisons and experimental studies.
 The remainder of the paper is organized as follows. Section
2 discusses related work. Section 3 presents the proposed
framework for streaming feature selection. Section 4 describes
two algorithmic solutions to the streaming feature selection
problem. Section 5 reports experimental results and a case

Xindong Wu1,2, Kui Yu1, Wei Ding3, Hao Wang1, and Xingquan Zhu4*

Online Feature Selection with Streaming Features

F

TPAMI-2011-10-0721(R2)

2

study on streaming features for impact crater detection, and
Section 6 concludes the paper.

II. RELATED WORK

For many years, feature selection as an effective means for
handling data with high dimensionality has been generally
viewed as being the problem of searching for an optimal
subset of features. Feature selection can be broadly classified
into three categories: wrapper, filter, and embedded methods.
A wrapper method performs a heuristic search in the space of
all possible feature subsets, using a classifier of choice to
assess each subset. Although this method has high accuracy,
the exponential number of possible subsets makes the method
computationally expensive in general [7, 18].
 The filter methods, independent of any classifiers, apply
evaluation measures such as distance, information,
dependency, and consistency to select features and then build
a classifier using selected features [5, 10, 23, 27]. Because of
their simplicity and fast computational performance, many
filter methods have been proposed to solve the feature
selection problem [24, 30]. In recent studies especially, causal
filter methods have attracted much attention [3, 6].
 The embedded methods attempt to simultaneously
maximize classification performance and minimize the
number of features used. These types of methods are typically
more efficient than the wrapper methods because a filter
algorithm is built with a classifier to guide the feature
selection procedure. A variety of embedded feature selection
methods have been introduced, including using classification
or regression as an optimization problem with specified loss
and penalty functions [16, 29, 37-39].
 The work discussed above shares one common assumption,
which is that all candidate features are available from the very
beginning, because all features are examined at each iteration
to select the best feature. In the context of streaming features,
feature dimensions continuously increase and not all features
are presented in advance. Consequently, this poses great
challenges to traditional feature selection methods.
 Several research efforts have been made to address the
streaming feature challenge. Perkins and Theiler considered an
online feature selection problem and proposed the Grafting
algorithm based on a stagewise gradient descent approach for
online feature selection [22]. Grafting treats the selection of
suitable features as an integral part of learning a predictor in a
regularized learning framework. It optimizes the L1-
regularized maximum likelihood using two iterative steps:
optimizing over all the free parameters and selecting new
features. Grafting operates in an incremental iterative fashion,
gradually building up a feature set while training a predictor
model using gradient descent. In each iteration, a fast gradient-
based heuristic is used to identify a feature that is most likely
to improve the existing model, with the model being
incrementally optimized using gradient descent. Glocer et al.
extended this algorithm to solve the edge detection problem in
grayscale imagery [13]. While the Grafting algorithm is able
to handle streaming features, it needs to select the value of a
regularization parameter—λ in advance to determine which
feature is most likely to be selected for the model at each
iteration. Choosing a suitable regularization parameter λ

inevitably requires information about the global feature set.
Therefore, Grafting is ineffective in dealing with streaming
features with an unknown feature size.
 Ungar et al. and Zhou et al. studied streamwise feature
selection and proposed two novel algorithms based on
streamwise regression, information-investing, and Alpha-
investing [31, 40-41]. Dhillon et al. extended the Alpha-
investing method and proposed a multiple streamwise feature
selection algorithm to address the case of multiple feature
classes [12]. The Alpha-investing method sequentially
considers new features for addition to a predictive model by
modeling the candidate feature set as a dynamically generated
stream. Alpha-investing can handle candidate feature sets of
unknown or even infinite sizes. It uses linear and logistic
regression to dynamically adjust the threshold of error
reduction required for evaluating a new feature for inclusion
by the predictive model so far.

One inherent deficiency of Alpha-investing is that it only
considers adding new features but never evaluates the
redundancy of selected features after new features have been
added. Because the information-investing uses a very similar
approach to Alpha-investing, we adopt Alpha-investing in this
paper for comparative studies. Alpha-investing requires some
prior knowledge about the structure of the feature space in
order to heuristically control the choice of candidate feature
selection. In real-world applications, obtaining sufficient prior
information about the structure of the feature space is not
always feasible. Our proposed framework, by comparison,
makes an additional effort to manage the real-world feature
selection problem in streaming features without any
prerequisite for (or prior knowledge of) the feature space
structure.

III. A FRAMEWORK FOR FEATURE SELECTION WITH

STREAMING FEATURES

In this section, we formally define streaming features and
discuss relevant special characteristics. Based on the new
definition, we review notations of feature relevance and make
two propositions to deal with feature redundancy in streaming
features.

 Definition 1 Streaming features: Streaming features
involve a feature vector that flows in one by one over time
while the number of training examples remains fixed.

The uniqueness of feature selection in streaming features,
compared to traditional feature selection, is as follows.

• The dynamic and uncertain nature of the feature
space. Feature dimensions may grow over time and
may even extend to an infinite size.

• The streaming nature of the feature space. Features
flow in one at a time and each feature is required to be
processed online upon its arrival.

Due to the inapplicability of traditional feature selection
methods for handling applications involving streaming
features, we will review some notations of feature relevance
and then propose two methods to handle feature redundancy in
streaming features. To characterize feature relevance, an input
feature can be in one of three disjoint categories, namely,
strongly relevant, weakly relevant or irrelevant [18-19]. In the

TPAMI-2011-10-0721(R2)

3

definitions below, F represents a full set of features and C
denotes the class attribute (note that the full feature set F does
not include the class attribute C). Assuming X� denotes the ith
input feature, F − �X��	represents the feature subset excluding
feature X� .

Definition 2 Conditional Independence [19]: Two distinct
features X� ∈ F and X
 ∈ F are conditionally independent on a
subset S ⊆ F, iff P�X�|X
, S� = P�X�|S� or P(Xk|Xi,S) =P(Xk|S).

Definition 3 Strong relevance: A feature X� is strongly
relevant to C iff ∀S ⊆ F − �X��	s. t. P�C|S� ≠ P�C|S	, X��.

Definition 4 Weak relevance: A feature X� is weakly
relevant to C iff it is not strongly relevant, and
																		∃S ⊂ F − �X��	s. t. P�C|S� ≠ P�C|S, X�� (1)
Definition 5 Irrelevance: A feature X� is irrelevant to C iff

it is neither strongly nor weakly relevant, and
 ∀S ⊆ F − �X��	s. t.		P�C|S	, X�� = P�C|S� (2)

 Weakly relevant features can be further divided into
redundant features and non-redundant features [36] based on a
Markov blanket criterion [19].

Definition 6 Markov blanket: Denoting M� ⊂ F a subset of
features, if for the given M� the following property
																				∀Y ∈ F − M�	s. t.		P�C|M�, Y� = P�C|M��	 (3)
holds, then M� is a Markov blanket for C (MB(C) for short).

Definition 7 Redundant features: A feature X�	 is
redundant to the class attribute C, if and only if it is weakly
relevant to C and has a Markov blanket, MB(X�), that is a
subset of the Markov blanket of MB(C).

The Markov blanket of a feature X� subsumes the
information that X� has about C while the Markov blanket of
the class attribute C carries information that all of the other
features have about C. In other words, the Markov blanket of
the class attribute C is the optimal feature subset which
contains all the weakly relevant but non-redundant features
and strongly relevant features, as shown in Figure 1.

Figure 1: Feature relevance and Markov blanket of C

While irrelevant features can be easily removed, removing
redundant features is the key task for an optimal feature
selection process. Existing methods for removing redundant
features are based on the Markov blanket criterion: let G be
the current set of features (G contains the whole set of features
at the beginning, i.e. G=F); at any phase, if there exists a
Markov blanket for a feature X within the current G, X is
removed from G [19]. When the full feature space is large,
finding a Markov blanket for a feature is very difficult.
Moreover, it is nontrivial to convert existing learning methods
to deal with redundant features in streaming features because
the prior knowledge about the whole feature space is unknown.

 Within the context of streaming features, we set the MB(C)
as an empty set initially and gradually build the MB(C) over

time. We then use it to identify and remove redundant features
from the streaming features. If an incoming feature is relevant
to the class attribute C and is added into the current feature set,
we use Proposition 1 to determine which of the selected
features observed so far may become redundant as time passes.

 Proposition 1 As the features flow in one by one, a current
Markov blanket of the class attribute C at time t is denoted as
CMB�C��. At time t+1, a new feature X� which is relevant to
C is added to	CMB�C���� . If for any existing feature Y in
CMB(C)t+1, ∃S ⊆ �CMB�C���� − Y�		s. t.		P�C|Y, S� = P�C|S� ,
then Y is redundant and can be removed from CMB�C����.

Theorem 1 [19] Assume G is our current set of selected
features, and a previously removed feature X� ∉ ! has a
Markov blanket within G. When " ∈ #$�X�� is removed
based on a Markov blanket within G, then X� also has a
Markov blanket within G-{Y}.

 Theorem 1 shows that a redundant feature removed earlier
remains redundant during the rest of the process when some
features within its Markov blanket are later removed. We use
Corollary 1 to guarantee that Proposition 1 satisfies this
desirable property.

 Corollary 1 A feature X� removed earlier by Proposition 1
remains redundant when some features within MB�X�� are
removed during the rest of the streaming feature selection
process.

Proof: Assuming that at time t feature X� is discarded
because its Markov blanket	MB�X�� ⊆ CMB�C� by Proposition
1. Assume ∃Y ∈ MB�X�� is removed later. In this case,
Theorem 1 guarantees that X� also has a Markov blanket
within	�MB�X�� − "� ∪ �MB�Y��. Thus, in streaming features,
if at time	t + ε	�ε > 0�, Y is removed, X� remains redundant
because it still has a Markov blanket in CMB�C� − �Y�. As a
result, a feature removed earlier by Proposition 1 remains
redundant during the rest of the process. □□□□

Corollary 1 therefore guarantees that the strongly relevant
features and non-redundant features can be selected as the
features stream one by one over time. By Proposition 1 and
Corollary 1, we propose a framework for feature selection
with streaming features that contains two major steps: (1)
online relevance analysis that discards irrelevant features and
retains relevant ones; and (2) online redundancy analysis
which eliminates redundant features from the features selected
so far (see Figure 2).

 1. Initialization
 Best candidate feature set BCF={}, the class attribute C
 2. Online Relevance Analysis

(1) Stream in a new feature X
(2) Determine whether X is relevant to C.

 a. If X is irrelevant to C, then X is discarded
 b. Otherwise, X is added to BCF
 3. Online Redundancy Analysis
 Online identify redundant features and remove them from

BCF by Proposition 1.
4. Alternate steps 2 and 3 until a predefined prediction

accuracy or the maximum number of iterations is reached.
5. Output selected features contained in BCF.

Figure 2: The framework for Feature Selection with Streaming Features

TPAMI-2011-10-0721(R2)

4

IV. ONLINE STREAMING FEATURE SELECTION

ALGORITHMS

In this section, we propose two new algorithms to
implement the framework for feature selection with streaming
features: Online Streaming Feature Selection (OSFS) and an
accelerated OSFS (Fast-OSFS), for streaming feature
selection.

A. An Online Streaming Feature Selection Algorithm

 OSFS Algorithm: The pseudo-code of the Online Streaming
Feature Selection (OSFS) algorithm is shown in Figure 3,
where *+,�-, .|/� denotes conditional independence test
between a feature X and the class attribute C given a subset S,
012�-, .|/� represents conditional dependence test, and BCF
stands for the set of best candidate features so far.

Figure 3: The OSFS algorithm

OSFS employs a two-phase optimal subset discovery
scheme: online relevance analysis (from steps 6-11) and
online redundancy analysis (from steps 12-20). In the
relevance analysis phase, OSFS discovers strongly and weakly
relevant features and adds them into BCF. When a new feature
arrives, OSFS assesses its relevance to the class attribute C
and decides to either discard the new feature or add it to BCF,
according to its relevance.

Once a new feature is included into BCF, the redundancy
analysis phase is triggered. In this phase, using Proposition 1,
OSFS dynamically identifies and eliminates redundant
features within BCF. If a subset exists within BCF to make
any existing feature in BCF and the class attribute C
conditionally independent, the previously selected feature Y,
Y∈BCF, becomes redundant and is removed from BCF. OSFS
alternates the above two phases till one of the following
stopping criteria is satisfied: (1) a predefined prediction
accuracy is satisfied, or (2) the maximum number of iterations
is reached, or (3) no further features are available.

The 345 and 678 functions in OSFS: In Figure 3, OSFS
uses the notations *+,�-, .|/� and 012�-, .|/� to denote the
conditional independence/dependence tests to identify
irrelevant and redundant features. The tests can be
implemented using the G: test that is an alternative to the χ:
test [28, 21] (refer to reference [21], pp. 611-615 and reference
[28], pp. 148-151for detailed explanations about the G: test).
 We briefly explain the G: test using one example. With three
features,	X�,	X< and X
, we set S�<

=>? to be the number of counts

satisfying X� = a, X< = b and X
 = c in a dataset. S�<
=>, S<

>? and

S

? are defined in a similar way. If X� and X< are conditionally

independent given X
, the G: statistic is defined as

 G: = 2∑ S�<

=>?

=,>,? ln
GHIJ
KLM	GJ

M

GHJ
KL		GIJ

LM (4)

 This formula can be easily extended to the case in which X�
and X< are conditionally independent given a subset of S. The
G: statistic is asymptotically distributed as χ: with appropriate
degrees of freedom. In general, when we check the conditional
independence of X� and X< given S, the number of degrees of
freedom df used in the test is calculated as

 df = �r� − 1��r< − 1�∏ r
SJ∈G
 (5)

where r� is the domain (number of distinct values) of X�. As a
heuristic, Spirtes et al. reduced the number of degrees of
freedom by one for each count that is equal to zero [28].

 A significance level of α is used to measure the probability
of rejecting a conditional independency hypothesis, so we can
conclude the conditional independence at α level (often
significance levels of 0.01 or 0.05 are used).

To measure the functions Ind�C, X|S� and 	Dep�C, X|S� ,
OSFS uses a p-value returned by the G: test to measure these
two functions. Under the null hypothesis of the conditional
independence between a feature X and the class attribute C
given the subset S, assuming X is the p-value returned by the
G: test and α is a given significance level, the functions
Ind�C, X|S� and	Dep�C, X|S� in OSFS are defined as follows.

Definition 8 YZ[�\,]|^�:	 The function Dep�C, X|S�
defines that X and C are conditionally dependent given S. This
function holds if and only if X	 ≤ α, which concludes that the
null hypothesis is rejected.

Definition 9 bcd�\,]|^�: The function Ind�C, X|S� defines
that X and C are conditionally independent given S. This
function holds if and only if X	 > α, which concludes that the
null hypothesis is accepted.

With the above two definitions and Proposition 1, we
conclude that for the current BCF, X is redundant to C and
should be discarded if the function *+,�-, .|/� holds
conditioned on a subset S. Otherwise, we conclude that X is
strongly relevant or non-redundant to C for the time being, and
then add X into BCF if the function 012�-, .|/� holds
conditioned on all subsets within the current BCF.
 Reliability of the 345 and 678: According to the work of
[1, 28] by performing a reliable conditional independence test
between X� and X< given X
, the average number of instances
per cell of the contingency table of �X�, X<� ∪ X
 must be at
least φ , i.e., N/��r� − 1� × �r<i�� × r
� ≥ φ (N is the total
number of instances,	r� is the number of distinct values of X�,
and φ is often set to 5 or 10). With the G: test, the calculation
of S�<

=>? requires the counting of the number of occurrences of
all different possible values for features X� , X< and X
 , This
implies that the number of training instances required to
accurately count these values is exponential to the size of the
conditioning set X
. Hence in the OSFS algorithm, we assume
Ind�X� , X<|X
� holds unless there are at least five training
instances (φ = 5) for each set of different possible values of
X�, X< and X
.

Reliability of OSFS: As illustrated by the algorithm in
Figure 3, conditional tests on line 7 and line 15 control the

TPAMI-2011-10-0721(R2)

5

reliability of OSFS because these two lines could make false
positive and false negative errors that correspond to traditional
type I and type II errors. A type I error in statistics is the error
of rejecting the null hypothesis when it is true while a type II
error is the error of accepting the null hypothesis when it is
false.

The false negative errors denote that OSFS may discard
strongly relevant or non-redundant features incorrectly. The
dependence test on line 7 always performs a reliable test, since
it is an unconditional independence test. OSFS might conduct
unreliable tests on line 15 when the available instances are
insufficient to check the tests conditioning on all subsets of
BCF, and false negative errors may then occur. For example,
an incoming feature X is strongly relevant to C. On line 15,
assume BCF contains two features Y and Z at this time, thus,
all of the tests Dep�C, X|Y�, Dep�C, X|Z�, and Dep�C, X|Y, Z�
must hold so that X can be added into BCF. When the
available instances suffice to only check the tests
Dep�C, X|Y� and Dep�C, X|Z� , OSFS will assume that
Ind�C, X|Y, Z� holds and return a type II error. Therefore, to
control the type II error in this case, OSFS can limit the size of
the maximum conditioning subset of BCF according to the
sizes of the available sample and BCF, instead of using an
exhaustive search over all subsets within BCF on line 15.
 To control the false positives, OSFS classifies them into
irrelevant and redundant features. For an irrelevant feature, if
an incoming feature X is irrelevant to C, X is discarded at the
line 7 test.

For a redundant feature, two situations to be considered
include (1) the size of the streaming feature set is finite; and
(2) the size of the streaming feature set is infinite. When the
feature size is finite, OSFS searches a subset S on line 15,
based on Proposition 1, for each feature within BCF to
evaluate its redundancy with respect to C. For example, a
redundant feature X is added into BCF as a relevant feature on
line 7. If training instances are sufficient and most of the
features are irrelevant and redundant features, OSFS can keep
the size of BCF reasonably small so that conditioning on all
subsets within BCF is computationally feasible. As features
flow in one by one over time, the subset S within BCF must be
found to make X redundant and remove it from BCF at the test
on line 15, but if we limit the size of the maximum
conditioning subset of BCF to k, OSFS might return a type I
error (false positives will enter BCF) when k is not big enough
to make X and C conditionally independent.

When the size of the streaming feature set is infinite, OSFS
may also fail to remove X during the independence tests on
line 15. In this case, false positive errors may occur which
results in redundant features to enter into BCF. Because a
feature could arrive randomly, OSFS does not know in
advance when the subset S for X can be found within BCF;
therefore, the actual time for OSFS to remove X is unknown.
Assuming that all tests are reliable, if X is really a redundant
feature, a subset S must exist to satisfy the term	Ind�C, X|S� as
features flow in one by one over time.

In summary, on the assumption that all independence tests
are reliable, OSFS can control the false positive and false
negative errors well. If the size of the maximum conditioning
subset is limited to k, the selection of the k value is crucial.

Our empirical studies show that setting k to 3 yields
satisfactory results. Since the G: test focuses on the
independence tests of discrete distribution, Fisher’s z-test is an
alternative and reliable test [28] to assess the conditional
independence tests of continuous data (refer to reference [21],
pp. 611-615 for detailed explanations about Fisher’s z-test).

Time complexity of OSFS: The time complexity of OSFS
depends on the number of tests. Assuming |M| is the number
of features that have arrived so far, the worst-case complexity
is O�|M||BCF|k|opq|� where k is the maximum size to which a
conditioning set may grow and r|stu| denotes the total number
of subsets needs to be checked in BCF (i.e., all subsets whose
sizes do not exceed k). Assuming |SF| contains the number of
all relevant features in |M|, the average time complexity is
O�|SF||BCF|k|opq|� . It is clear that the time complexity of
OSFS is determined by the number of features within BCF,
and is independent of the total number of features and training
instances. Thus, OSFS is very time-efficient if only a small
number of features in a large feature space is predictive and
relevant to C, which is the case in many real-world
applications. Meanwhile, OSFS is also memory-efficient,
because it only needs to store a small number of relevant
features at any time by adding and discarding features online.

B. Fast-OSFS Algorithm

As we have discussed, the most time-consuming part of
OSFS is the redundancy analysis phase. When OSFS includes
an incoming feature to BCF, its redundancy analysis phase
will re-examine the redundancy of each feature of BCF. If the
size of BCF is large, this process will significantly reduce the
runtime performance of OSFS.

To improve selection efficiency, the process of handling
redundant features can be divided into two steps: (1)
determining whether an incoming new feature is redundant,
and (2) identifying which of the selected features observed so
far may become redundant once the inclusion of the new
feature occurs. Based on Definition 7, we propose to use
Proposition 2 to identify whether a newly arrived feature is
redundant.

Proposition 2 As features flow in one by one over time, a
current Markov blanket of C at time t is denoted by CMB�C��.
At time t+1, a new feature X� streams in and is relevant to C.
If ∃S ⊆ CMB�C��		s. t.		P�C|X�, S� = P�C|S� , then X� is
redundant can be discarded.

To test which features in CMB�C�� might become redundant
due to the inclusion of X�, we propose Proposition 3 as follows.

Proposition 3 As the features continuously flow in, for any
given time point t with CMB�C�� , when a new feature X�
arrives at time t+1, if there is no MB�X�� within CMB�C�� and
the following condition applies, Y ∈ CMB�C��, ∃S ⊆
�CMB�C�� ∪ X�� − �Y�	s. t. P�C|Y, S� = P�C|S� , then Y can be
removed from CMB�C��.

Proposition 3 explains that as an incoming feature is added
into BCF by Proposition 2, only the subsets created by the
inclusion of this new feature need to be tested to check the
redundancy of the other features in BCF. Clearly, propositions
2 and 3 also satisfy the property of Corollary 1. Therefore,
with the above two Propositions, an accelerated OSFS
algorithm named Fast-OSFS is proposed in Figure 4.

TPAMI-2011-10-0721(R2)

6

Fast-OSFS accelerates OSFS by dividing the online
redundancy analysis in OSFS into two parts. The first part
(lines 10-18) is a redundancy analysis which aims to remove a
new relevant but redundant feature, say Xi, from inclusion in
BCF. If Xi is successfully removed, Fast-OSFS directly deals
with the next incoming feature. Otherwise, if Xi is not
eliminated in the first part, the second part (lines 19-28) is
triggered, which adds the new feature Xi into BCF, validates
each originally existing feature in BCF, and checks whether
any of these features has become redundant after the inclusion
of new feature Xi into BCF. In the second part, Fast-OSFS
reduces the computational cost of conditional independence
tests by only considering the subsets within BCF that contain
the newly added feature instead of all subsets within BCF.

Figure 4: The Fast-OSFS algorithm

 The time complexity of Fast-OSFS is as follows. Assuming
|M| is the number of features that have arrived so far and |SF|
contains the number of all relevant features in |M|, the best
time complexity of Fast-OSFS is v�|/w|r|stu|� if Fast-OSFS
does not perform the second part for all |/w| arrived features.
If the second part is performed for |SF1| features in SF, the
time complexity is v�|/w − /w�|r

|stu| + |/w�||$-w|r
|stu|∗�

where r|stu|
∗
only considers those subsets in BCF that contain

the newly added feature, and if the sizes of the subsets do not
exceed k. r|stu| denotes all subsets in BCF whose sizes are
less than or equal to k. If the second part is performed for all
features in SF, the worst-case time complexity is
O(|/w||$-w|r|stu|

∗
). When compared with OSFS, it is easy

to conclude that for all three conditions above, Fast-OSFS is
faster than OSFS.

V. EXPERIMENTAL STUDIES

To compare the performance of the proposed OSFS and
Fast-OSFS algorithms with existing streaming feature
selection methods, we use high dimensional datasets as our
test-beds, by observing features one by one to simulate the
situation of streaming features. Table 1 summarizes the 16
high-dimensional datasets used in our experiments.

In Table 1, the ovarian-cancer and breast-cancer datasets are
biomedical datasets [8, 32]. The lymphoma and sido0 datasets
are from [25] and the WCCI 2008 Performance Prediction
Challenges. The madelon, arcene, dexter, and dorothea
datasets are from the NIPS 2003 feature selection challenge.

The colon, prostate, leukemia, and lung-cancer datasets are
four frequently studied public microarray datasets [35]. The
ohsumed and apcj-etiology are two massive high-dimensional
text datasets [17, 4].

Table 1: Summary of the benchmark datasets.
#: the number of features, SIZE: the number of instances

Dataset # SIZE Dataset # SIZE
bankruptcy 147 7063 leukemia 7129 72
sylva 216 14374 prostate 6033 102
madelon 500 2000 lung-cancer 12533 181
arcene 10000 100 breast-cancer 17816 286
dexter 20000 300 ovarian-cancer 2190 216
dorothea 100000 800 sido0 4932 12678
lymphoma 7399 227 ohsumed 14373 5000
colon 2000 62 apcj-etiology 28228 15779

For the four NIPS 2003 challenge datasets, we use their

original training and validation sets, and for the remaining
twelve datasets we use 10-fold cross-validation in our
experiments. Two measurements for evaluating our algorithms
with Grafting and Alpha-investing are compactness (the
proportion or number of selected features) and prediction
accuracy (the percentage of the correctly classified test
instances which were previously unseen). We use two
classifiers, Knn and J48 in Spider toolbox, and report the
average prediction accuracy in the experiments. The results
were collected on a DELL workstation with Windows 7,
2.9GHz CPU and 12GB memory. Grafting and Alpha-
investing were performed using their original
implementations. The tuning parameter λ for Grafting was
selected using cross-validation and the parameters of Alpha-
investing were set using its default settings, W0=0.5 and
α∆=0.5. For all 16 datasets in Table 1, the independence tests
are G2 tests with the statistical significance level, y, being set
to 0.05. For the impact crater case study dataset, we use
Fisher’s z-tests.

A. Comparing OSFS to Grafting and Alpha-investing

Figure 5 reports the performance of OSFS with Grafting with
respect to the prediction accuracy (the y-axis to the left) and
the compactness in terms of the number of selected features
(the y-axis to the right). From the top two curves in Figure 5,
we can see that the prediction accuracy of OSFS is superior to
Grafting on 13 out of 16 datasets. For the remaining 3
datasets, arcene, ovarian-cancer, and leukemia (corresponding
labels in the x-axis are 1, 5, and 9), the accuracy of OSFS is
inferior to Grafting, whereas the two curves at the bottom
show that Grafting selects more features than OSFS on those
three datasets. For most datasets, we can conclude that OSFS
selects fewer features than Grafting. Although for the dexter,
madelon, and the last three datasets, ohsumd, bankruptcy, and
sylva, Grafting selects fewer features than OSFS, the accuracy
of Grafting on those five datasets is lower than OSFS. It is
worth noting that Grafting uses a gradient-based heuristic,
which is computationally inefficient, to identify whether a new
feature is predictive in each iteration. The large number of
features in dorothea make the runtime of Grafting increase
dramatically and eventually fail in our experiments.

TPAMI-2011-10-0721(R2)

7

Figure 5: The prediction accuracy (top two figures) and number of selected
features (bottom two figures) of OSFS vs. Grafting. (The labels of the x-axis
from 1 to 16 denote the datasets: 1:arcene; 2:dexter; 3:madelon; 4:dorohthea;
5:ovarian-cancer; 6:breast-cancer; 7: lymphoma; 8: colon; 9:leukemia;
10:lung-cancer; 11:prostate; 12:sido0; 13: apcj-etiology; 14:ohsumed;
15:bankruptcy; 16:sylva.)

Figure 6: The prediction accuracy (top two figures) and number of selected
features (bottom two figures) of OSFS and Alpha-investing. (The labels of the
x-axis are the same as the labels of the x-axis in Figure 5.)

 In Figure 6, we report the comparisons between OSFS and
Alpha-investing, which show that OSFS wins 10 times and
ties 3 times on prediction accuracy compared to Alpha-
investing. The results show that OSFS selects far fewer
features than Alpha-investing on most of datasets datasets (see
the bottom two figures). On the third dataset, madelon, and the
seventh dataset, lymphoma, Alpha-investing selects fewer
features than OSFS, the accuracy of Alpha-investing on those
two datasets is significantly lower than OSFS. Moreover,
Alpha-investing fails to select any features on the dexter
dataset because it is a very sparse dataset.

B. Comparing Fast-OSFS to Grafting and Alpha-investing

Figure 7 reports the prediction accuracy (the two curves at the
top) and compactness (the two curves at the bottom)
comparisons between Fast-OSFS and Grafting. The results
show that Fast-OSFS wins over Grafting 14 times and only
loses twice against Grafting on prediction accuracy.
Meanwhile, in the bottom two figures, Fast-OSFS loses 8
times on compactness compared to Grafting, but Fast-OSFS
has higher accuracy than Grafting on those eight datasets.

In Figure 8, in comparison with Alpha-investing, Fast-OSFS
also only loses on two datasets with respect to prediction
accuracy. Although on the third dataset, madelon, and the
seventh dataset, lymphoma, Alpha-investing selects fewer
features than Fast-OSFS, the accuracy of Alpha-investing on
those two datasets is significantly lower than Fast-OSFS.

Moreover, on the massive and high-dimensional datasets, such
as sido0, apcj-etiology, and ohsumed, Fast-OSFS selects far
fewer features than Alpha-investing, but it achieves the same,
or higher prediction accuracy than Alpha-investing.

Figure 7: The prediction accuracy (top two figures) and number of selected
features (bottom two figures) of Fast-OSFS and Grafting. (The labels of the x-
axis are the same as the labels of the x-axis in Figure 5.)

Figure 8: The prediction accuracy (top two figures) and number of selected
features (bottom two figures) of Fast-OSFS and Alpha-investing. (The labels
of the x-axis are the same as the labels of the x-axis in Figure 5.)

Figure 9: The prediction accuracy (top two figures) and number of selected
features (bottom two figures) of Fast-OSFS and OSFS. (The labels of the x-
axis from 1 to 16 denote the datasets: 1:dexter; 2:ovarian-cancer; 3:dorothea;
4:bankruptcy; 5:sido0; 6:arcene; 7:lymphoma; 8:madelon; 9:breast-cancer;
10:colon; 11:leukemia; 12:lung-cancer; 13:prostate; 14: apcj-etiology; 15:
ohsumed; 16:sylva.)

 In our experiments, we find that Alpha-investing, similar to
OSFS, also shows slightly better accuracy than Fast-OSFS on
the arcene and ovarian-cancer datasets. A possible
explanation is that for datasets with a very small sample-to-
variable ratio, this could aggravate the number of unreliable
tests if the number of features within BCF increases over time.

TPAMI-2011-10-0721(R2)

8

C. Comparisons between OSFS and Fast-OSFS

The comparisons between Fast-OSFS and OSFS in Figure 9
show that Fast-OSFS has higher accuracy than OSFS on 13
out of the 16 datasets, although Fast-OSFS selects more
features than OSFS, which demonstrates that Fast-OSFS
significantly improves the performance of OSFS. Both OSFS
and Fast-OSFS perform multiple statistical comparisons to
assess whether a feature is redundant. In the redundancy
analysis phase, OSFS needs to evaluate each feature within
BCF without first considering whether a newly added feature
is redundant. It significantly increases the system runtime
when the number of features within BCF is large which, in
turn, reduces the test of statistical power. Fast-OSFS, on the
other hand, significantly reduces the total number of tests
because it first examines the redundancy of a new feature and
checks only the subsets of BCF containing the feature newly
added into BCF.

Table 2 reports the accelerate ratio which is the number of
tests performed by OSFS divided by the number of tests
performed by Fast-OSFS on the same dataset (the alpha value
is fixed at 0.05). An accelerate ratio value greater than one
indicates that Fast-OSFS performs fewer tests than OSFS. In
Table 2, Fast-OSFS involves far fewer tests than OSFS, thus,
Fast-OSFS has stronger statistical power than OSFS.

 Table 2: The ratio of conditional independence tests (OSFS/Fast-OSFS)

Dataset Accelerate Ratio Dataset Accelerate Ratio
dexter 31.82 lymphoma 3.41
dorothea 35.96 breast-cancer 10.67
arcene 3.50 ovarian-cancer 15.50
madelon 3.34 sylva 13.79
colon 2.08 bankruptcy 14.17
prostate 3.26 sido0 23.81
lung-cancer 4.88 apcj-etiology 159.91
leukemia 2.54 ohsumed 107.50

D. Runtime Analysis
D.1 A summary of runtime of OSFS and Fast-OSFS

In addition to the theoretical analysis of the time complexity
for OSFS and Fast-OSFS, a summary of the runtime
performance for OSFS and Fast-OSFS is reported in Tables 3
and 4. Because the runtime of OSFS and Fast-OSFS is
significantly influenced by the size of BCF, we report the
runtime of both algorithms with the alpha value up to 0.01
(Table 3) and up to 0.05 (Table 4). The results in Tables 3 and
4 show that Fast-OSFS is much faster than OSFS on all
datasets. When only a small number of features are predictive,
the proposed OSFS and Fast-OSFS algorithms are very
efficient, even if a dataset has hundreds of thousands of
features, as is the case for the lung-cancer and dexter datasets.
For a dataset with a large number of predictive features, such
as sido0, apcj-etiology, and ohsumed (the number of
predictive features is shown in the bottom figures of Figure 9),
OSFS is time-consuming, even for the bankruptcy and sylva
datasets which contain no more than 300 features. In addition,
we observe that the runtime of OSFS is linear to the number of
total features, but exponential to the number of features which
are predictive.

As we have analyzed in Section IV.B, Fast-OSFS alleviates
this problem by significantly reducing the number of tests (as
shown in Table 2). For example, from the bottom figures of
Figure 9, we can see that there is a large number of predictive
features on bankruptcy, sido0, apcj-etiology, and ohsumed, but
Fast-OSFS is still quite efficient, as shown in Tables 3 and 4.

Table 3: Runtime performance (in seconds) of OSFS and Fast-OSFS
(alpha=0.01). (A/B in the second column denotes the runtime of OSFS, i.e., A,
vs. the runtime of Fast-OSFS, i.e., B)

Dataset Runtime Dataset Runtime
dexter 4/1 lymphoma 0/0
dorothea 64/34 breast-cancer 20/4
arcene 0/0 ovarian-cancer 1/0
madelon 0/0 sylva 1892/170
colon 0/0 bankruptcy 1272/127
prostate 0/0 sido0 10085/410
lung-cancer 6/1 apcj-etiology 11141/139
leukemia 0/0 ohsumed 2851/66

Table 4: Runtime performance (in seconds) of OSFS and Fast-OSFS
(alpha=0.05). (A/B in the second column denotes the runtime of OSFS, i.e., A,
vs. the runtime of Fast-OSFS, i.e., B)

Dataset Runtime Dataset Runtime
dexter 38/2 lymphoma 2/1
dorothea 1988/78 breast-cancer 97/9
arcene 1/0 ovarian-cancer 4/0
madelon 0/0 sylva 4807/348
colon 0/0 bankruptcy 3645/261
prostate 1/0 sido0 42789/2014
lung-cancer 10/2 apcj-etiology 118329/676
leukemia 0/0 ohsumed 156271/1103

D.2 Runtime Analysis for Grafting and Alpha-investing

Since the Grafting and Alpha-investing algorithms used in the
experiments are both implemented in MATLAB by the authors
and our algorithms are written in C language, a direct time
comparison between the baselines and our algorithms is
inappropriate. Instead, we investigate an analysis as follows.
Grafting recasts feature subset selection as optimizing the L1-
regularized maximum likelihood estimation by iteratively
performing two steps: optimizing over all the free parameters
and selecting a new feature. Grafting needs a regularization
parameter—λ in advance to determine which feature is most
likely to be selected to the model at each iteration. It is
understandable that choosing a suitable regularization
parameter requires the entire feature set information in
advance, but the full feature set information is unknown in
advance in streaming features. Moreover, finding an optimum
value for a free parameter at each step is usually a
computationally expensive step. Because Alpha-investing and
our proposed two algorithms do not need to determine any
prior parameters in advance, we focus on the comparison
between Alpha-investing and Fast-OSFS.
 The Alpha-investing algorithm uses linear and logistic
regression to dynamically adjust the threshold on the error
reduction required for evaluating a new feature that is added to
the predictive model. Alpha-investing only considers whether
to add a new feature and never considers the discard of the
selected features or adding discarded features again.
Therefore, when a new feature X arrives, even if X is
irrelevant, Alpha-inverting adds it into the current model, that
is, �z{,1| ∪ .�, and then uses linear regression to compute

TPAMI-2011-10-0721(R2)

9

the error reduction between �z{,1| ∪ .� and �z{,1|� to
decide whether to drop X. At the arrival of each new feature,
the time complexity of Alpha-investing is O�|V||model|:�
where |V| is the total number of features arrived so far and
|model| is the number of features selected from V in the
current model.

Table 5: Runtime performance (in seconds) of Alpha-investing and Fast-
OSFS (A/B in the second and last columns denotes the runtime of Alpha-
investing, i.e., A, vs. the runtime of Fast-OSFS, i.e., B).

alpha=0.01 alpha=0.05
Dataset Runtime Dataset Runtime

dorothea 993/34 dorothea 993/78
sido0 929/410 sido0 929/2014
apcj-etiology 7305/139 apcj-etiology 7305/676
ohsumed 794/66 ohsumed 794/1103

When the feature set size is not large and the number of

features in the current model is small, Alpha-investing is very
time efficient. However, when the size of the streaming
feature set is huge and the number of features within the
current model is large, Alpha-investing is not computationally
efficient. Although Alpha-investing is implemented in
MATLAB, we still show the runtime of Alpha-inverting and
Fast-OSFS in Table 5. We can see that when the alpha value
goes up to 0.01, Fast-OSFS is computationally efficient
whereas Alpha-investing is not. When the alpha value is
around 0.05, Fast-OSFS is still very fast on the dorothea and
apcj-etiology datasets.

E. Handling datasets with an unknown feature space

 In the above experiments, the streaming features are
simulated using datasets with known feature sizes. In this
subsection, we study the performance of OSFS and Fast-OSFS
under the situation where the entire feature set of a dataset is
unknown in advance. To demonstrate the performance of the
algorithms, we use prediction accuracy as a criterion to
explore the streaming feature selection process; four
NIPS2003 feature selection challenge datasets, madelon,
arcene, dexter, and dorothea, and four gene datasets, colon,
prostate, leukemia, and lung-cancer in Table 1 are used for
these evaluation studies.

We use the original training and validation sets for the NIPS
2003 challenge datasets. Because the colon and leukemia gene
expression datasets have a small number of instances, we
randomly select 10 instances as the test instances (5 positive
and 5 negative instances) and the rest of the instances are used
for training. For the remaining two gene expression datasets,
we randomly select, using cross-validation, the first 2/3
instances for training and the remaining 1/3 instances are used
for testing. Knn is used as a baseline classifier on the training
and testing sets with all features. With this baseline, our two
algorithms and Alpha-investing use Knn to dynamically
evaluate streaming feature selection on the testing instances.

In Figure 10, we report the change of the prediction
accuracies of three algorithms on Knn with respect to the
features continuously arriving over time. The red horizontal
line in each figure denotes the prediction accuracy of the
baseline Knn classifier trained using all features. Because

Alpha-investing fails to select any features on dexter, its
accuracy is omitted in the figure.
 The results in Figure 10 demonstrate that a comparison of
Fast-OSFS with OSFS and Alpha-investing shows that Fast-
OSFS is more stable and has better prediction accuracy.

Among the four NIPS 2003 datasets, the prediction
accuracies of all of three algorithms on the arcene dataset fall
below the accuracy of the baseline classifier. Alpha-investing
stops selecting any features with the percentage of features up
to 10%, while Fast-OSFS continues the feature selection till
the feature percentage increases to 60% and then stops
(denoted by the straight line after the selected features are
60% or higher). For the dexter dataset, Fast-OSFS and OSFS
reach the baseline accuracy as the feature percentage increases
to 70%. For the madelon and dorothea datasets, both OSFS
and Fast-OSFS exceed the baseline accuracy as features
stream in, while Alpha-investing falls behind. Among the four
gene expression datasets, Fast-OSFS is able to reach or
outperform the baseline without an exhaustive search over the
entire feature set, with the exception of the leukemia dataset.

Figure 10: The prediction accuracy changes with respect to the number of
features streaming in

The above observations conclude that when the underlying
feature space is unknown or significantly large, it is
unnecessary to exhaustively search over the entire feature
space. Compared to Alpha-investing and OSFS, Fast-OSFS
achieves better and more stable performance in terms of the
prediction accuracy of the models trained from selected
streaming features.

TPAMI-2011-10-0721(R2)

10

F. Conclusions of the Experimental Results

The above experiments and comparisons conclude that OSFS
and Fast-OSFS outperform both Grafting and Alpha-investing
on most of the datasets (in terms of the prediction accuracy
and the compactness of the selected features). When handling
streaming features, the main drawback of Grafting is that it
needs to tune parameter λ in advance while Alpha-investing
cannot properly handle the original features without any prior
information about the feature structure. Since Alpha-investing
only considers each feature once, its running speed is very
fast, but this also causes Alpha-investing to select more
features than other methods (including our algorithms). In
addition, Alpha-investing cannot discard redundant features
from the current model to deal with the situation that some
features may have been useful in the past but have become
redundant or irrelevant to the target concept as time goes by.
 In personalized news filtering, for example, users’ interests
constantly change so that new words may become useful
whereas previously selected words may become outdated and
redundant. Grafting and the proposed OSFS and Fast-OSFS
algorithms can effectively handle this problem.
 With the prior knowledge about the structure of the feature
space, Alpha-investing is fast and achieves good performance
since the prior knowledge helps the algorithm to heuristically
control the selection of candidate features. With prior
knowledge, our framework also performs well; with domain
knowledge, for example, the corresponding redundant features
can be removed earlier because it is easier for our algorithms
to find strongly relevant and non-redundant features if
informative features are placed earlier in the streaming
features. For a strongly relevant feature, say Y, and its copies,
say Y1 and Y2, which carry exactly the same predictive
information about the class attribute C, the incoming order of
these features does not matter. This is because both our
algorithms and Alpha-investing can select any one feature
from Y and its copies Y1 and Y2. As soon as one of the
strongly relevant features, Y, Y1, or Y2, is selected, the
remaining features will be excluded from the succeeding
streaming feature selection process.
 In reality, features are rarely identical but may be strongly
correlated; thus, given a feature A which is relevant to the
class attribute C, the order of features A and B might matter if
feature B is redundant (but not identical) to A. Under such
circumstances, our algorithms and Alpha-investing might
select a different set of features depending on the actual order
of the features. To evaluate the impact of feature order on the
algorithm’s performance, we generate a number of trials in
which each trial represents a random ordering of features as a
feature stream. We apply different algorithms (OSFS, Fast-
OSFS, and Alpha-investing) to each randomized trial and
report the results in Figures 11-13, where the x-axis represents
each of the randomized trials and the y-axis represents the
number of selected features (Figure 11) and the prediction
accuracies from the corresponding trial.

The results in Figures 11-13 (the madelon dataset) confirm
that varying the order of the incoming features does impact on
the final outcomes. Overall, the results demonstrate that Fast-

OSFS is the most stable method and Alpha-investing appears
to be highly unstable.

Figure 11: Numbers of selected features from 12 randomized trials (each trial

represents a random ordering of features as a feature stream)

 Figure 12: Prediction accuracies from 12 randomized trials using decision
tree learning algorithms (J48)

Figure 13: Prediction accuracies from 12 randomized trials using Knn learning
algorithms

As for the proposed OSFS and Fast-OSFS algorithms, Fast-
OSFS significantly accelerates OSFS by employing a new
redundancy analysis strategy. The accelerated feature selection
strategy in Fast-OSFS might introduce additional false
positive features into BCF, which explains why OSFS always
selects fewer features than Fast-OSFS (as shown in Figure
11). With sufficient instances and a small size of BCF, OSFS
achieves almost the same prediction accuracy and runtime as
Fast-OSFS, but it results in a smaller number of selected
features. On the other hand, with sufficient instances and a
large size of BCF, Fast-OSFS is much faster than OSFS. With
an insufficient number of instances and a large size BCF, Fast-
OSFS is superior to OSFS because Fast-OSFS significantly
mitigates the false negative errors by reducing the number of
tests involved in checking feature redundancy.

G. A Case Study on Automatic Impact Crater Detection

TPAMI-2011-10-0721(R2)

11

In addition to the validation on the publicly available
benchmark datasets, we also use a real-world impact crater
dataset to evaluate our streaming feature selection algorithms.
Impact craters, the structures formed by the collisions of
meteoroids on planetary surfaces, are among the most studied
geomorphic features in the solar system because they yield
information about past and present geological processes.
Surveying craters provides the only tool for remotely
measuring the relative ages of geologic formations.
 Planetary probes deliver ever-increasing volumes of high

resolution images; however, the scientific utilization of these
images in ever-higher spatial resolution is hampered by the
lack of tools for their effective automated analysis. Texture
features have proven to be effective for crater detection. Tens
of thousands of texture-based features in different scales and
resolutions can be generated for crater detection on remotely
sensed images which provide an extensive near-global
coverage of a remote planet, such as Mars. While rich texture
features provide a tremendous source of potential features for
use in crater detection tasks, they are expensive to generate
and store. The reality calls for efficient feature selection to
develop a processing pipeline for fast and accurate surveys of
craters from high resolution images and make possible the
assembly of global “million crater” catalogs of craters, not
only on Mars, but also on Mercury, the Moon, and other
planets. Consequently, this makes an ideal case study for
validating our streaming selection framework, compared to
traditional feature selection approaches.
 In this case study, our work is based on the crater detection

framework proposed by Ding et al. (Figure 14). There are
three steps in the crater-detection framework [11].
(1) Crater candidates are the regions of an image that may

potentially contain craters and the image can be collected
using remote sensing techniques. A key insight to constructing
crater candidates is that a sub-kilometer crater can be
recognized as a pair of crescent-like highlight and shadow
regions in an image (see Figure 15 [11]). Crescent-like
shadow and highlight regions in an image are identified from
images using a shape detection method based on mathematical
morphology, and those highlight and shadow regions are
matched so that each pair will be used to construct crater
candidates, that is, the locations where craters are likely to
reside.
 (2) Image texture features are extracted from crater

candidates using square kernels.
 (3) Craters are identified using supervised learning

algorithms.
 The experiments in crater detection are evaluated on Mars
because it is at the center of NASA exploration efforts. There
is a very extensive, near-global coverage of the Martian
surface with high resolution planetary images. A portion of the
High Resolution Stereo Camera (HRSC) nadir panchromatic
image h0905 is selected, taken by the Mars Express
spacecraft, to serve as the test set [11]. The selected image has
a resolution of 12.5 meters/pixel and a size of 3,000 by 4,500
pixels (37,500×56,250m2). The image represents a significant
challenge to automatic crater detection algorithms because it
covers a terrain that has spatially variable morphology and

because its contrast is rather poor (mostly noticeable when the
image is inspected at a small spatial scale).

Figure 14: The crater-detection framework proposed by Ding et al. [11]

Figure 15: (A) an illustration explaining why an image of a sub-kilometer
crater consists of crescent-like highlight and shadow regions. (B) An image of
an actual 1 km crater showing the highlight and shadow regions.

Figure 16: Impact craters in a 37,500×56,250 m2 test image from Mars.

The image is divided into three sections denoted as the west

region, the central region, and the east region (see Figure 16
[11]) for the test sets summarized in Table 6. The central
region is characterized by surface morphology that is distinct
from the rest of the image. The west and east regions have
similar morphology but the west region is much more heavily

West Region

Central Region East Region

TPAMI-2011-10-0721(R2)

12

cratered than the east region. 1,089 image texture features are
constructed. The training set consists of 204 true craters and
292 non-crater examples selected randomly from crater
candidates located in the northern half of the east region. A
streaming feature selection framework for the crater detection
is given in Figure 17.

Table 6: Summary of crater datasets

 #samples (crater candidates) #features

West region 6,708 1,089

Central region 2,935 1,089
East region 2,026 1,089

Figure 17: A framework of streaming feature selection for crater detection

In the following sections, we compare our algorithms
(OSFS and Fast-OSFS) with Alpha-investing and other state-
of-the-art feature selection algorithms. Knn is used to train
classifiers from each selected feature set, through which we
can compare the prediction accuracies of different methods. In
order to thoroughly demonstrate the behaviors of our
algorithms in the case study, we report the number of selected
features and the prediction accuracy with respect to two alpha
values (0.01 and 0.05). The best results are bold-faced in the
tables.

G.1 Comparisons with Alpha-investing

With the value of alpha up to 0.01, Table 7 reports the
prediction accuracy on three regions using our algorithms and
Alpha-investing. On the three regions, both our algorithms
select the same four features from the training dataset and
result in the same prediction accuracy. From Table 7, we can
see that our algorithms select fewer features and have higher
accuracy than Alpha-investing on the west and central regions,
and the accuracies of our algorithms on the east region are also
comparable to Alpha-investing.

Table 7: The prediction accuracy on three regions (alpha=0.01)

 #Selected
features

West
region

Central
region

East
region

OSFS 4 0.7753 0.7826 0.7725
Fast-OSFS 4 0.7753 0.7826 0.7725
Alpha-investing 16 0.7589 0.7666 0.7730

With the value of alpha up to 0.05, as shown in Table 8, our

algorithms also select fewer features and have higher accuracy
than Alpha-investing on all three test regions. On the west
region and central region, OSFS has the highest prediction
accuracy, while Fast-OSFS has the highest accuracy on the
east region.

 Table 8: The prediction accuracy on the three regions (alpha=0.05)

 # Selected
features

West
region

Central
region

East
region

OSFS 5 0.7809 0.7874 0.7828
Fast-OSFS 5 0.7809 0.7874 0.7828
Alpha-investing 16 0.7589 0.7666 0.7730

Figures 18 and 19 report the performance of OSFS and

Alpha-investing with the percentage of the features streaming
in (Fast-OSFS has the same performance as OSFS, so its
performance is omitted from the figures). Figure 18 shows that
the number of selected features changes as more features
stream in. We can see that our two algorithms select far fewer
features than Alpha-investing at any stage. When the
percentage of the features increases to 50%, the number of
selected features remains stable for Alpha-investing and OSFS.

Figure 19 illustrates that the test errors of both OSFS and
Alpha-investing change over time as the features flow in
continuously. The overall results confirm that OSFS is
superior to Alpha-investing. The test errors of both algorithms
remain stable when the percentage of the total features
increases to 50%. This observation validates the rationality of
stream feature selection and confirms that instead of trying to
smooth across all potential features, we can use a small
number of features to train a much stronger model.

Figure 18: Number of selected features changes as the percentage of the
features increases over time

G.2 Comparisons with Traditional Feature Selection
Algorithms

In this section, we compare our algorithms with the state-of-
the-art non-streaming fashion feature selection algorithms, a
causal feature selection algorithm, the LARS (Least Angle
Regression) algorithm, a Naïve boosting algorithm and an
algorithm without feature selection. Causal feature selection
has recently been proposed as an emerging successful filtering
approach in feature selection and has shown that it dominates
most feature selection methods in prediction accuracy and
compactness [3]. The HITON_PC algorithm is selected to
instantiate a causal feature selection approach [3]. The LARS
algorithm is an embedded feature selection method recently
introduced to handle classification or regression problems by
using optimization with specified loss and penalty functions.
The Naïve boosting algorithm was proposed by Ding et al.
[11]; it integrates the boosting algorithm and greedy feature
selection algorithms for crater detection.
 In Tables 9 and 10, we report the prediction accuracies of
all methods on the three regions. With the value of alpha up to

TPAMI-2011-10-0721(R2)

13

0.01, as shown in Table 9, we can see that our algorithms win
on the west region and are very competitive with the LARS
and Naïve boosting algorithms on the central and east regions.
As shown in Table 10, both our algorithms outperform the
other four algorithms on the west and east regions. Although
our algorithms lose on the central region, they are also very
close to the Naïve boosting algorithm. In summary, compared
to the traditional non-streaming fashion feature selection
algorithms, our new algorithms select far fewer features and
result in higher or at least comparable accuracies as other
methods. Most importantly, our algorithms provide a new
processing pipeline for streaming based feature selection with
fast and accurate surveys of craters from high resolution
images.

Table 9: The prediction accuracy on three regions (alpha=0.01)

 #Selected
features

West
region

Central
region

East
region

OSFS 4 0.7753 0.7826 0.7725
Fast-OSFS 4 0.7753 0.7826 0.7725
HITON_PC 4 0.7722 0.7853 0.7636
LARS 6 0.7740 0.7881 0.7799
Naïve Boosting 150 0.7661 0.7888 0.7749
No feature selection 1089 0.7303 0.7499 0.7710

Table 10: The prediction accuracy on three regions (alpha=0.05)

 #Selected
features

West
region

Central
region

East
region

OSFS 7 0.7809 0.7874 0.7828
Fast-OSFS 7 0.7809 0.7874 0.7828
HITON_PC 6 0.7749 0.7792 0.7813
LARS 6 0.7740 0.7881 0.7799
Naïve Boost 150 0.7661 0.7888 0.7749
No feature selection 1089 0.7303 0.7499 0.7710

 Interestingly, the results in Tables 9 and 10 demonstrate
that although a river-shaped region (the Nanedi Valles on
Mars) runs through the central image, which makes it
morphologically different from the original training set, the

five feature selection algorithms in Tables 9 and 10 result in
slightly better prediction accuracy on the central region than
other regions. The reason for this is that we use crater
candidates, which are the regions of an image that may
potentially contain craters, for crater detection and calculation
of prediction accuracy instead of an inefficient, exhaustive
search of the entire image. While the river-shaped region
appears to make crater detection more difficult, the distinct
texture features generated by the crater candidates make them
fairly easy to recognize compared to the small crater regions
to the east and west. Moreover, although the west and east
regions have similar morphology, the west region is much
more heavily dense with small craters than the east region.
Thus, the prediction accuracy on the west region is slightly
lower than the accuracy on the east region.

VI. CONCLUSIONS

In this paper, we have proposed two new algorithms for
streaming feature selection. Compared to the two state-of-the-
art algorithms, Grafting and Alpha-investing, the proposed
algorithms OSFS and Fast-OSFS have demonstrated high
efficiency and effectiveness for applications containing many
irrelevant and/or redundant features.

In the experiments, our study has shown that in most cases
for applications involving streaming or an infinite size of
features, a small number of features can be selected to train a
much stronger model, rather than trying to smooth across all
potential features. We have also applied online streaming
feature selection to a real-world Mars impact crater dataset
and compared our algorithms with Alpha-investing and other
state-of-the-art traditional feature selection algorithms. The
experiments have demonstrated that the proposed algorithms
select far fewer features than other methods, and their
prediction accuracy is mostly higher than, or at least as good
as, other methods.

Figure 19: The test errors of three algorithms with respect to the increase of the percentage of features in three regions (In the top figures OSFS using alpha=0.01

and in the bottom three figures OSFS using alpha=0.05).

TPAMI-2011-10-0721(R2)

14

ACKNOWLEDGEMENTS

This work is supported by the National 863 Program of China
(2012AA011005), the National Natural Science Foundation of
China (61229301, 61070131, 61175051 and 61005007), the
US National Science Foundation (CCF-0905337), and the US
NASA Research Award (NNX09AK86G). X. Zhu is
sponsored by Australian Research Council (ARC) Future
Fellowship (FT100100971). The authors would like to thank
the anonymous reviewers for their valuable and constructive
comments on improving the paper.

References

[1] A. Agresti. Categorical Data Analysis. (1990) New York: John Wiley
and Sons.

[2] A. Akadi, A. Amine, A. Ouardighi and D. Aboutajdine. (2011) A two-
stage gene selection scheme utilizing MRMR filter and GA wrapper.
Knowledge and Information Systems, 26(3), 487-500.

[3] C. F. Aliferis, A.Statnikov, I. Tsamardinos , S. Mani and X. Koutsoukos.
(2010) Local causal and Markov blanket induction for causal discovery
and feature selection for classification, Part I: Algorithms and empirical
evaluation. Journal of Machine Learning Research, 11:171-234.

[4] Y. Aphinyanaphongs, A. Statnikov and C. F. Aliferis. (2006) A
comparison of citation metrics to machine learning filters for the
identification of high quality medline documents. J. Am. Med. Inform.
Assoc., 13(4):446–455.

[5] G. Brown, A. Pocock, M. Zhao and M. Luj´an. (2012) Conditional
likelihood maximisation: a unifying framework for information theoretic
feature selection. Journal of Machine Learning Research, 13:27-66.

[6] G. Bontempi and P. E. Meyer. (2010) Causal filter selection in
microarray data. ICML’10, 95-102.

[7] N. Bouguila and D. Ziou. (2011) A countably infinite mixture model for
clustering and feature selection. Knowledge and Information Systems,
21:1-20.

[8] T. P. Conrads et al. (2004) High-resolution serum proteomic features for
ovarian cancer detection. Endocr. Relat Cancer, 11:163-178.

[9] A. Cuzzocrea. (2011) Data warehousing and knowledge discovery from
sensors and streams. Knowledge and Information Systems, 28:491-493.

[10] M. Dash and H. Liu. (2003) Consistency-based search in feature
selection. Artificial Intelligence, 151(1-2), 155-176.

[11] W. Ding, T. Stepinski, Y. Mu, L. Bandeira, R. Vilalta, Y. Wu, Z. Lu, T.
Cao and X. Wu. (2011) Sub-kilometer crater discovery with boosting
and transfer learning. ACM Transactions on Intelligent Systems and
Technology, 2(4), 1-22.

[12] P. S. Dhillon, D. Foster and L. Ungar. (2010) Feature selection using
multiple streams. AISTATS’10, 153-160.

[13] K. Glocer, D. Eads and J. Theiler. (2005) Online feature selection for
pixel classification. ICML’05, 249 - 256.

[14] I. Guyon, C.F. Aliferis and A. Elisseeff. (2008) Causal feature selection.
In: Computational methods of feature selection. H. Liu and H. Motoda
Eds. Boca Raton, FL: Chapman and Hall.

[15] I. Guyon and A. Elisseeff. (2003) An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157-1182.

[16] X. He, M. Ji, C. Zhang and H. Bao. (2011) A variance minimization
criterion to feature selection using laplacian regularization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(10),
2013-2025.

[17] T. Joachims. (2002) Learning to classify text using support vector
machines. Boston: Kluwer Academic.

[18] R. Kohavi and G. H. John. (1997) Wrappers for feature subset selection.
Artificial Intelligence, 97: 273-324.

[19] D. Koller and M. Sahami. (1996) Toward optimal feature selection.
ICML’96, 284-292.

[20] H. Malik, D. Fradkin and F. Moerchen. (2011) Single pass text
classification by direct feature weighting. Knowledge and Information
Systems, 28(1), 79-98.

[21] R. Neapolitan. (2003) Learning Bayesian networks. Upper Saddle River,
NJ: Prentice Hall.

[22] S. Perkins and J. Theiler. (2003) Online feature selection using grafting.
ICML’03, 592-599.

[23] H. Peng, F. Long and C. Ding. (2005) Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226–1238.

[24] I. Rodriguez-Lujan, R. Huerta, C. Elkan and C. Santa-Cruz. (2010)
Quadratic programming feature selection. Journal of Machine Learning
Research, 11:1491-1516.

[25] A. Rosenwald et al. (2002) The use of molecular profiling to predict
survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl.
J Med., 346, 1937-1947.

[26] M. Shah, M. Marchand, J. Corbeil. (2012) Feature selection with
conjunctions of decision stumps and learning from microarray data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1),
174-186.

[27] L. Song, A. Smola, A. Gretton, J. Bedo and K. Borgwardt. (2012)
Feature selection via dependence maximization. Journal of Machine
Learning Research, 13:1393−1434.

[28] P. Spirtes, C. Glymour and R. Scheines. (2000) Causation, prediction,
and search, 2nd edition. Cambridge, MA: MIT Press.

[29] R. Tibshirani. (1996) Regression shrinkage and selection via the Lasso.
Journal of Royal. Statist. Soc. B. 58, 267–288.

[30] E. Tuv, A. Borisov, G. C. Runger and K.Torkkola. (2009) Feature
selection with ensembles, artificial variables, and redundancy
Elimination. Journal of Machine Learning Research, 10:1341-1366.

[31] L. Ungar, J. Zhou, D. Foster and B. Stine. (2005) Streaming feature
selection using IIC. AI&Statistics’05, 384-393.

[32] Y. Wang et al. (2005) Gene-expression profiles to predict distant
metastasis of lymph-node negative primary breast cancer. Lancet, 365,
671-679.

[33] R. Wang, S. Shan, X. Chen, J. Chen and W. Gao. (2011) Maximal linear
embedding for dimensionality reduction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(9), 1776–1792.

[34] K. Yu, H. Wang and W. Ding. (2010) Online streaming feature
selection. ICML’10, 1159-1166.

[35] L. Yu, C. Ding and S. Loscalzo. (2008) Stable feature selection via
dense feature groups. KDD’08, 803-811.

[36] L. Yu and H. Liu. (2004) Efficient feature selection via analysis of
relevance and redundancy. Journal of Machine Learning Research, 5:
1205-1224.

[37] P. Zhao and B. Yu. (2006) On model selection consistency of Lasso.
Journal of Machine Learning Research, 7:2541–2567.

[38] T. Zhang. (2009) On the consistency of feature selection using greedy
least squares regression. Journal of Machine Learning Research, 10:
555-568.

[39] Z. Zhang and N. Ye. (2011) Locality preserving multimodal
discriminative learning for supervised feature selection. Knowledge and
Information Systems, 27(3), 473-490.

[40] J. Zhou, D. P. Foster, R. Stine and L.H. Ungar. (2005) Streaming feature
selection using Alpha-investing. KDD’05, 384 -393.

[41] J. Zhou, D. Foster, R.A. Stine and L.H. Ungar. (2006) Streamwise
feature selection. Journal of Machine Learning Research, 7:1861-1885.

[42] X. Zhu, W. Ding, P. S. Yu and C. Zhang. (2011) One-class learning and
concept summarization for data streams. Knowledge and Information
Systems, 28(3), 523-553.

[43] H. Zeng and Y. Cheung. (2011) Feature selection and kernel learning for
local learning-based clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(8), 1532-1547.

TPAMI-2011-10-0721(R2)

15

Xindong Wu is a Yangtze River Scholar
in the School of Computer Science and
Information Engineering at the Hefei
University of Technology (China), a
Professor of Computer Science at the
University of Vermont (USA), and a Fellow
of the IEEE. He received his Bachelor's and
Master's degrees in Computer Science from
the Hefei University of Technology, China,
and his Ph.D. degree in Artificial Intelligence

from the University of Edinburgh, Britain. His research interests
include data mining, knowledge-based systems, and Web
information exploration.
 Dr. Wu is the Steering Committee Chair of the IEEE
International Conference on Data Mining (ICDM), the Editor-in-
Chief of Knowledge and Information Systems (KAIS, by
Springer), and a Series Editor of the Springer Book Series on
Advanced Information and Knowledge Processing (AI&KP). He
was the Editor-in-Chief of the IEEE Transactions on Knowledge
and Data Engineering (TKDE, by the IEEE Computer Society)
between 2005 and 2008. He served as Program Committee
Chair/Co-Chair for ICDM '03 (the 2003 IEEE International
Conference on Data Mining), KDD-07 (the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining), and CIKM 2010 (the 19th ACM Conference on Information
and Knowledge Management).

Kui Yu received the MSc degree in Computer
Science from the Hefei University of
Technology, China, in 2007. He is currently a
Ph.D. student in the School of Computer
Science and Information Engineering at the
Hefei University of Technology (China), and
also a visiting Ph.D. student in the Department
of Computer Science at the University of
Massachusetts Boston (USA). His research

interests include feature selection, probabilistic graphical models and
machine learning.

Wei Ding received her Ph.D. degree
in Computer Science from the
University of Houston in 2008. She
has been an Assistant Professor of
Computer Science in the University of
Massachusetts Boston since 2008. Her
research interests include data mining,
machine learning, artificial
intelligence, computational semantics,
and with applications to astronomy,
geosciences, and environmental

sciences. She has published more than 60 referred research papers, 1
book, and has 1 patent. She is an Associate Editor of Knowledge and
Information Systems (KAIS) and an editorial board member of the
Journal of System Education (JISE). She is the recipient of a Best
Paper Award at the 2011 IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), a Best Paper Award at the 2010
IEEE International Conference on Cognitive Informatics (ICCI), a
Best Poster Presentation award at the 2008 ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems (SIGSPAITAL GIS), and a Best PhD Work Award between
2007 and 2010 from the University of Houston. Her research projects
are currently sponsored by NASA and DOE.

Hao Wang received his Ph.D. degree in
Computer Science from the Hefei University of
Technology, China, in 1997. He is a Professor of
the School of Computer Science and
Information Engineering, Hefei University of
Technology, Hefei, China. His research interests
include robotics, artificial intelligence, data
mining, probabilistic graphical models and

machine learning.

Xingquan Zhu received his Ph.D. degree in
Computer Science from Fudan University,
Shanghai, China, in 2001. He is a recipient of
the Australian Research Council (ARC) Future
Fellowship and a Professor of the Centre for
Quantum Computation & Intelligent Systems,
Faculty of Engineering and Information
Technology, University of Technology, Sydney
(UTS), Australia. Dr. Zhu’s research focuses on

data mining, machine learning, and multimedia systems. Since 2000,
he has published more than 140 referred journal and conference
proceedings papers in these areas. Dr. Zhu is an Associate Editor of
the IEEE Transactions on Knowledge and Data Engineering (2009-),
a General Co-Chair for the 11th International Conference on Machine
Learning and Applications (ICMLA 2012), the Program Committee
Co-Chair for the 23rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2011), and the 9th International
Conference on Machine Learning and Applications (ICMLA 2010).

