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Online Feature Selection with Streaming Features

Xindong Wd, Kui Yu!, Wei Ding’, Hao Wang, and Xingquan zZHu

Abstract—We propose a new online feature selection framework
for applications with streaming features where theknowledge of
the full feature space is unknown in advance. We (iae
streaming features as features that flow in one bgne over time
whereas the number of training examples remains fed. This is
in contrast with traditional online learning methods that only
deal with sequentially added observations, with lite attention
being paid to streaming features. The critical chdénges for
online streaming feature selection include (1) thecontinuous
growth of feature volumes over time; (2) a large f&ture space,
possibly of unknown or infinite size; and (3) the navailability of
the entire feature set before learning starts.

In the paper, we present a novel Online Streaming dature
Selection (OSFS) method to select strongly relevargnd non-
redundant features on the fly. An efficient Fast-O8S algorithm
is proposed to improve feature selection performare The
proposed algorithms are evaluated extensively on gin-
dimensional datasets and also with a real-world casstudy on
impact crater detection. Experimental results demostrate that
the algorithms achieve better compactness and higherediction
accuracy than existing streaming feature selectioalgorithms.

Index Terms— Feature selection, streaming features, supervised
learning

. INTRODUCTION

[11], tens of thousands of texture-based featuresiffereht
scales and different resolutions, can potentiatlygenerated
for high resolution planetary images. It is inféédeito pre-
generate texture features from planetary images ltage a
near global coverage of the Martian surface.

An intriguing question is that if we need igthlevel of
computational effort to generate those features frugmt,
should we develop a new way of integrating newuiest as
they arrive and carry out the computation, or stiau¢ wait a
long time for all features to become available #meh carry
out the learning process? This presents an integestsearch
guestion on how to design an effective mechanisndédal
with feature selection without the knowledge of thél
feature space. At the same time, when the potefaatlure
space is enormous, an exhaustive search over tine fxature
space becomes very costly or simply infeasible. ddrglich
circumstances, we need an effective design to enthat
feature selection is properly and effectively cadrout, even
though smoothing through the entire feature spacgimply
not an option.

Indeed, many existing feature selection agors are
effective in selecting a subset of predictive feagufor various
classification problems, but their scope is esaéiytiimited to
the problem settings that all features are giveforeethe
learning begins and they therefore cannot deal thithabove

Feature selection in predictive modeling has reckivechallenges [9, 22, 34].

considerable attention in statistics and machimeniag
[14-15, 26, 43] during the last three decades. Wetya of
feature selection algorithms have been developedpaoven

Motivated by these observations, we formuldyaamic
features as streaming features, whereby featuees@tonger
static but flow in one by one, and each new featisre

to be effective in improving prediction accuracyr fo Processed upon its arrival. Based on the newly dtated

classification [2, 20, 33]. Traditional featureesgtion methods
assume that all features are pre-computed andrjpeeséo a
learner before feature selection takes place. @&kssmption,
however, is often violated in many real-world apations
where not all features can be present in advarareexxample,
many image processing processes involve a seangtiential
features for machine learning algorithms to fulfiie pattern
recognition goal, but image features are often Bspe to
generate and store and therefore may exist in earsing

format [13, 22, 4R More specially, Mars crater detection

from high resolution planetary images is an impartask in
planetary research because it provides an effestitgion for
measuring the relative ages of planetary surfat@hile

texture features have proven to be effective itecrdetection
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problem, we present a novel framework for selecteajures
from streaming features, which is inspired by featu
relevance and feature redundancy. This framewovklies
two key components: (1) the utilization of featuegevance to
select features on the fly, and (2) the removatesfundant
features from the selected candidates thus fagdbas feature
redundancy. Two new algorithms, Online Streamingtéie
Selection (OSFS) and Fast-OSFS, are proposed ittatathe
effectiveness of the proposed framework.

In summary, the unique contributions thatidgtish the
proposed work from existing approaches are thrdefdl) our
work advances the relevance- and redundancy-basedré
selection one step further for handling streamizafdres; (2)
a novel framework based on feature selection ipgsed to
manage streaming features; and (3) two new ontisamsing
feature selection algorithms are proposed with resite
comparisons and experimental studies.

The remainder of the paper is organized asvial Section
2 discusses related work. Section 3 presents tbpoped
framework for streaming feature selection. Sectiatescribes
two algorithmic solutions to the streaming featsedection
problem. Section 5 reports experimental results ancase
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study on streaming features for impact crater dietecand
Section 6 concludes the paper.

1. RELATED WORK

For many years, feature selection as an effectieans for
handling data with high dimensionality has been egalty
viewed as being the problem of searching for arinogt
subset of features. Feature selection can be lyatafisified
into three categories: wrapper, filter, and embeddaethods.
A wrapper method performs a heuristic search insthece of
all possible feature subsets, using a classifiechadice to
assess each subset. Although this method has bmhazy,
the exponential number of possible subsets malkem#thod
computationally expensive in general [7, 18].

The filter methods, independent of any cless, apply
evaluation measures such as distance,
dependency, and consistency to select featureshamdbuil
a classifier using selected features [5, 10, 23, B&cause of
their simplicity and fast computational performaneceany

filter methods have been proposed to solve theufeat

selection problem [24, 30]. In recent studies eisilgc causal
filter methods have attracted much attention [3, 6]

in orm(;:l IOby the predictive model so far.

inevitably requires information about the globaatige set.
Therefore, Grafting is ineffective in dealing witlireaming
features with an unknown feature size.

Ungar et al. and Zhou et al. studied streamviesgure
selection and proposed two novel algorithms based o
streamwise regression, information-investing, antphA-
investing [31, 40-41]. Dhillon et al. extended tidpha-
investing method and proposed a multiple streamv¥eéature
selection algorithm to address the case of multipleture
classes [12]. The Alpha-investing method sequdntial
considers new features for addition to a predictivedel by
modeling the candidate feature set as a dynamigaiherated
stream. Alpha-investing can handle candidate feasets of
unknown or even infinite sizes. It uses linear dogistic
regression to dynamically adjust the threshold ofore
rﬁduction required for evaluating a new feature ifmusion

One inherent deficiency of Alpha-investing is tliabnly
considers adding new features but never evaluates t
redundancy of selected features after new featun®e been
added. Because the information-investing uses g sianilar
approach to Alpha-investing, we adopt Alpha-investin this

The embedded methods attempt to simultan}aouﬁaper for comparative studies. Alpha-investing nexgusome

maximize classification performance and minimizee t
number of features used. These types of methediypically
more efficient than the wrapper methods becausdter f
algorithm is built with a classifier to guide theature
selection procedure. A variety of embedded feasglection
methods have been introduced, including using ifleston
or regression as an optimization problem with dpetiloss
and penalty functions [16, 29, 37-39].

The work discussed above shares one commomassn,
which is that all candidate features are availétdm the very
beginning, because all features are examined &t itzr@tion
to select the best feature. In the context of stieg features,
feature dimensions continuously increase and ndeatures
are presented in advance. Consequently, this pgsest
challenges to traditional feature selection methods

Several research efforts have been made doessl the
streaming feature challenge. Perkins and Theilesidered an
online feature selection problem and proposed theftiGg
algorithm based on a stagewise gradient descembagip for
online feature selection [22]. Grafting treats gedection of
suitable features as an integral part of learnipgedictor in a
regularized learning framework.
regularized maximum likelihood using two iteratieteps:
optimizing over all the free parameters and selgcthew
features. Grafting operates in an incremental titereashion,
gradually building up a feature set while trainiagpredictor
model using gradient descent. In each iteratidastgradient-
based heuristic is used to identify a feature hahost likely

to improve the existing model, with the model being

incrementally optimized using gradient descent.c@toet al.
extended this algorithm to solve the edge detegiioblem in
grayscale imagery [13]. While the Grafting algomiths able
to handle streaming features, it needs to selecv#hue of a

It optimizes the -L1

hprior knowledge about the structure of the featspace in

order to heuristically control the choice of carad@l feature
selection. In real-world applications, obtainindfigient prior
information about the structure of the feature spac not
always feasible. Our proposed framework, by consoari
makes an additional effort to manage the real-wéekture
selection problem in streaming features without any
prerequisite for (or prior knowledge of) the featuspace
structure.
M. A FRAMEWORK FOR FEATURE SELECTION WITH
STREAMING FEATURES

In this section, we formally define streaming featuand
discuss relevant special characteristics. Basedhennew
definition, we review notations of feature relevarand make
two propositions to deal with feature redundancgtieaming
features.

Definition 1 Streaming features: Streaming features
involve a feature vector that flows in one by onerotime
while the number of training examples remains fixed

The uniqueness of feature selection in streamiadufes,
compared to traditional feature selection, is dsvs.

The dynamic and uncertain nature of the feature
space Feature dimensions may grow over time and
may even extend to an infinite size.
The streaming nature of the feature spaceFeatures
flow in one at a time and each feature is requicede
processed online upon its arrival.
Due to the inapplicability of traditional featurelesction
methods for handling applications involving streami
features, we will review some notations of feattgkevance
and then propose two methods to handle featurendedhey in

regularization parameteri—in advance to determine which streaming features. To characterize feature retmyaam input

feature is most likely to be selected for the modeleac
iteration. Choosing a suitable regularization patam A

h feature can be in one of three disjoint categoriesnely,

strongly relevant, weakly relevant or irrelevan8{19]. In the
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definitions below, F represents a full set of feasuand C

time. We then use it to identify and remove redumdeatures

denotes thelass attributénote that the full feature set F doesfrom the streaming features. If an incoming feafareelevant

not include the class attribute @ssumingX; denotes the"i

to the class attribute C and is added into theettifieature set,

input featureF — {X;} represents the feature subset excludingge use Proposition 1 to determine which of the ciete

featureX;.
Definition 2 Conditional Independence[19]: Two distinct

features observed so far may become redundamhagtisses.
Proposition 1 As the features flow in one by one, a current

featuresX; € F andX; € F are conditionally independent on aMarkov blanket of the class attribute at time t is denoted as

subsetS € F, iff P(X;|Xy, S) = P(X;|S) or P(%/X,S) =P(X%IS).
Definition 3 Strong relevance: A featureX; is strongly
relevant toC iff vS € F — {X;} s.t. P(C|S) # P(C|S,X)).
Definition 4 Weak relevance: A featureX; is weakly
relevant toC iff it is not strongly relevant, and
3S c F — {X;}s.t.P(C|S) # P(C|S, X)) (1)
Definition 5 Irrelevance: A featureX; is irrelevant taC iff
it is neither strongly nor weakly relevant, and
VS € F — {X;}s.t. P(C|S,X;) = P(C|S) (2)
Weakly relevant features can be further dividedo
redundant features and non-redundant featureso@&d on a
Markov blanket criterion [19].
Definition 6 Markov blanket: DenotingM; c F a subset of
features, if for the givenM; the following property
VY € F— M; s.t. P(C|M;,Y) = P(C|M;) (3)
holds, therM; is a Markov blanket fo€ (MB(C) for short).
Definition 7 Redundant features: A feature X; is
redundant to the class attribute C, if and onlit it weakly
relevant to C and has a Markov blanket, MB( that is a
subset of the Markov blanket of MB(C).

CMB(C),. At time t+1, a new featur&; which is relevant to
C is added t€MB(C).,,. If for any existing feature Y in
CMB(C)w1, 3S S {CMB(C)yy; — Y} s.t. P(C]Y,S) = P(C|S),
thenY is redundant and can be removed floMB(C) ;.

Theorem 1 [19] Assume G is our current set of selected
features, and a previously removed featlfez G has a
Markov blanket within G. WherY € MB(X;) is removed
based on a Markov blanket within G, th¥palso has a
Markov blanket within G-{Y}.

Theorem 1 shows that a redundant feature remeadir
remains redundant during the rest of the processnvdome
features within its Markov blanket are later remehv@/e use
Corollary 1 to guarantee that Proposition 1 sassfthis
desirable property.

Corollary 1 A featureX; removed earlier by Proposition 1
remains redundant when some features wiMB(X;) are
removed during the rest of the streaming featulecien
process.

Proof: Assuming that at time featureX; is discarded
because its Markov blanketB(X;) < CMB(C) by Proposition

The Markov blanket of a featur®; subsumes the 1. Assume3dY € MB(X;) is removed later. In this case,
information tha®; has about C while the Markov blanket ofTheorem 1 guarantees that also has a Markov blanket

the class attribute C carries information thatddlithe other
features have about C. In other words, the Marlanket of
the class attribute C is the optimal feature subshbich
contains all the weakly relevant but non-redund®atures
and strongly relevant features, as shown in Figure

F

| ¢

Irrelevant features Weakly relevant features  Strongly relevant features

|

Redundant features Non-redundant features

Markov blanket of C : Strongly relevant features + Non-redundant features

Figure 1: Feature relevance and Markov blanket of C

While irrelevant features can be easily removethadng
redundant features is the key task for an optineature
selection process. Existing methods for removindunelant
features are based on the Markov blanket critefi@inG be
the current set of features (G contains the whele@&features

at the beginningj.e. G=F); at any phase, if there exists a

Markov blanket for a feature X within the current & is
removed from G [19]. When the full feature spacdaige,
finding a Markov blanket for a feature is very difit.
Moreover, it is nontrivial to convert existing leamg methods

to deal with redundant features in streaming festlrecause

the prior knowledge about the whole feature spaesmknown.
Within the context of streaming features, wetketMB(C)
as an empty set initially and gradually build th&(@) over

within {MB(X;) — Y} U {MB(Y)}. Thus, in streaming features,
if at timet+ ¢ (e > 0),Y is removedX; remains redundant
because it still has a Markov blanketGMB(C) — {Y}. As a
result, a feature removed earlier by Propositiomeftains
redundant during the rest of the processd

Corollary 1 therefore guarantees that the stromglgvant
features and non-redundant features can be selestetthe
features stream one by one over time. By Propositicand
Corollary 1, we propose a framework for featureestbn
with streaming features that contains two majopstel)
online relevance analysis that discards irrele¥eatures and
retains relevant ones; and (2) online redundancglyais
which eliminates redundant features from the festgelected
so far (see Figure 2).

1. Initialization
Best candidate feature set BCF={}, the clat#baite C
2.0nline Relevance Analysis
(1) Stream in a new feature X
(2) Determine whether X is relevant to C.
a. If X is irrelevant to C, then X is disded
b. Otherwise, X is added to BCF
3.0nline Redundancy Analysis
Online identify redundant features and remdneart from
BCF by Proposition 1.
4. Alternate steps 2 and 3 until a predefined otéxti
accuracy or the maximum number of iterations ished.
5. Output selected features contained in BCF.

Figure 2: The framework for Feature Selection vtreaming Features
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\VA ONLINE STREAMING FEATURE SELECTION Sk are defined in a similar way. X; andX; are conditionally
ALGORITHMS independent giveK,, theG? statistic is defined as
. . . abc cc
In this section, we propose two new algorithms to G2 =2y, sy Sijk Sk 4)
implement the framework for feature selection vatleaming ab,cijk T gab She

features: Online Streaming Feature Selection (OSHE) an This formula can be easily extended to the aasehichX;
accelerated OSFS (Fast-OSFS), for streaming featusadX; are conditionally independent given a subset oft&
selection. G2 statistic is asymptotically distributed gswith appropriate
A. An Online Sreaming Feature Selection Algorithm Qegrees of freedom. In ge_neral, when we checkahdittional
independence of; andX; given S, the number of degrees of

OSFS Algorithm: The pseudo-code of the Online Streamin?reedom df used in the test is calculated as

Feature Selection (OSFS) algorithm is shown in g8, B
where Ind(C,X|S) denotes conditional independence test . df = (Ifi - -1 Hrk§5 Tk (®)
between a feature X and the class attribute C giveabset S, Wherer; is the domain (number of distinct valuesjxpf As a
Dep(C, X|S) represents conditional dependence test, and pceuristic, Spirtes et alreduced the number of degrees of

stands for the set of best candidate featuresrso fa freedom by one for each count that is equal to {28 N
A significance level ot is used to measure the probability

The OSFS algorithm of rejecting a conditional independency hypothesisye can

i i:a:“' i ;;Z’;ﬁ;e‘mndmmy malysis conclude the conditional independence catlevel (often

3 added=o: 14, for each feature ¥ € BCF significance levels of 0.01 or 0.05 are used).

4. /* Stream in a new feature™/ 15. 1f38 € BCF-Y s.t. Ind(C,Y|S) To measure the fUnCtiOﬂB’ld(C, XlS) and Dep(C, XlS) ’

5. Xeget new feature() 16. /*Remove Y from BCF */ OSFS uses a p-value returned by GRdest to measure these
6. /*Online relevance analysis*/ 17. BCF = BCF-Y; two functions. Under the null hypothesis of the ditional

7. if Dep(C,X]0) 18.  endif independence between a feature X and the clasbuitrC

8 added”L; 19 endfor given the subset S, assumings the p-value returned by the
?0 *_\d;C‘\l;ti]?;Cl;iJX 2? :ildi;tqpredeﬁued1ccm‘1cysatisﬁed Gz test and(l is a given Signiﬁcance Ievel, the functions
L endif 22 output BCF Ind(C, X|S) andDep(C, X|S) in OSFS are defined as follows.

Definition 8 Dep(C, X|S): The function Dep(C,X|S)
Figure 3: The OSFS algorithm defines that X and C are conditionally dependevemiS. This

OSFS employs a two-phase optimal subset discovefyiction holds if and only ip < o, which concludes that the
scheme: online relevance analysis (from steps 6did null hYP_O_theS'S Is rejected. . )
online redundancy analysis (from steps 12-20). he t Definition 9 Ind(C,X|S): The functionind(C,X|S) defines
relevance analysis phase, OSFS discovers stronglyvaakly that X and C are conditionally independent givenT8is
relevant features and adds them into BCF. Whemafeature function holds if and only ip > o, which concludes that the
arrives, OSFS assesses its relevance to the diamite ¢ null hypothesis is accepted. .
and decides to either discard the new feature dritad BCF, With the above two definitions and Proposition 1¢ w
according to its relevance. conclude that for the current BCF, X is redundantCt and

Once a new feature is included into BCF, the rednogl Should be discarded if the functiomd(C,X|S) holds
analysis phase is triggered. In this phase, usingdgition 1, Cconditioned on a subset S. Otherwise, we conclbele X is
OSFS dynamically identifies and eliminates redundairongly relevant or non-redundant to C for theetioeing, and
features within BCF. If a subset exists within B& make then add X into BCF if the functiodep(C,X|S) holds
any existing feature in BCF and the class attrib@e Cconditioned on all subsets within the current BCF.
conditionally independent, the previously selecieature Y,  Reliability of the Ind and Dep: According to the work of
YOBCF, becomes redundant and is removed from BCEDOSH: 28] by performl_ng a reliable conditional mde;ien_ce test
alternates the above two phases till one of théovidhg betweerX; andX; givenX, the average number of instances
stopping criteria is satisfied: (1) a predefinedediction per cell of the contingency table 0f;, X;} U X, must be at
accuracy is satisfied, or (2) the maximum numbeteshtions leaste, i.e.,N/((rj — 1) X (rj_1) X)) = ¢ (N is the total
is reached, or (3) no further features are availabl number of instances, is the number of distinct values X,

The Ind and Dep functions in OSFS: In Figure 3, OSFS ande is often set to 5 or 10). With ti@ test, the calculation
uses the notationsd (C, X|5) andDep(C, X|S) to denote the of s2b¢ requires the counting of the number of occurrerades
conditional independence/dependence _tests to  fiently gitterent possible values for featurés X; andX,, This

irrelevant and redundant features. The tests can H’ﬁplies that the number of training instances resito

: . 2 ) .
|tmptle2rger21tled u?m% th@f test thaztlls an a6lt1elrn£1t%/e tfo thé accurately count these values is exponential tosie of the

gg [28, 1413(265?; odrete_rler;ce [ | ] Fip t; tGIE\et ertence conditioning seK. Hence in the OSFS algorithm, we assume
[28], pp. i or detailed explanations aboat(h test). Ind(X;, Xj|Xyx) holds unless there are at least five training

We briefly explain th&? test using one example. With three, . :
y exp abe g P instances ¢ = 5) for each set of different possible values of
featuresX;, X; andXy, we setSi;° to be the number of counts X. X. andX
i 4 k-

H H _ _ A b ¢cb
satisfyingX; = a,X; = b andX, = cin a dataseS}",Sjic and  Rgjiapility of OSFS: As illustrated by the algorithm in

Figure 3, conditional tests on line 7 and line Dmtool the
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reliability of OSFS because these two lines coultkenfalse
positive and false negative errors that corresgortcaditional
type | and type Il errors. A type | error in stéts is the error
of rejecting the null hypothesis when it is trueileta type I
error is the error of accepting the null hypothestsen it is
false.

The false negative errors denote that OSFS mayarmdisc
strongly relevant or non-redundant features inailye The
dependence test on line 7 always performs a reliegst, since
it is an unconditional independence test. OSFS mighduct
unreliable tests on line 15 when the availableains¢s are
insufficient to check the tests conditioning on slibsets of
BCF, and false negative errors may then occur.example,
an incoming feature X is strongly relevant to C. e 15,
assume BCF contains two features Y and Z at this,tihus,
all of the testdep(C,X|Y), Dep(C,X|Z), andDep(C,X|Y,Z)
must hold so that X can be added into BCF. When t

Our empirical studies show that setting k to 3 dsel
satisfactory results. Since th* test focuses on the
independence tests of discrete distribution, Fishetest is an
alternative and reliable test [28] to assess theditional
independence tests of continuous data (refer trante [21],
pp. 611-615 for detailed explanations about Fisheitest).
Time complexity of OSFS; The time complexity of OSFS
depends on the number of tests. Assunivipis the number
of features that have arrived so far, the worseaasmplexity
is O(|M||BCF|k!BCFly where k is the maximum size to which a
conditioning set may grow arid?¢f! denotes the total number
of subsets needs to be checked in BCF (i.e., biets whose
sizes do not exceed k). Assuming |SF| containsitingber of
all relevant features in |[M|, the average time demify is
O(|SF||BCF|k'BCFy | 1t is clear that the time complexity of
OSFS is determined by the number of features wiB@Gt,

hehd is independent of the total number of featarestraining

available instances suffice to only check the testasiances. Thus, OSFS is very time-efficient ifyoal small

Dep(C,X|Y) and Dep(C,X|Z) , OSFS will assume that

number of features in a large feature space isigireel and

Ind(C,X|Y,Z) holds and return a type Il error. Therefore, tQelevant to C, which is the case in many real-world

control the type Il error in this case, OSFS caritlthe size of
the maximum conditioning subset of BCF accordingttte
sizes of the available sample and BCF, insteadsofguan
exhaustive search over all subsets within BCF o 15.

To control the false positives, OSFS classifirent into
irrelevant and redundant features. For an irreleteature, if
an incoming feature X is irrelevant to C, X is dised at the
line 7 test.

For a redundant feature, two situations to be clemsed
include (1) the size of the streaming feature sdtnite; and
(2) the size of the streaming feature set is itdinWhen the
feature size is finite, OSFS searches a subset fnhenl5,

based on Proposition 1, for each feature within BCF taedundant features can be divided

evaluate its redundancy with respect to C. For grema
redundant feature X is added into BCF as a relefeattire on
line 7. If training instances are sufficient and sthof the
features are irrelevant and redundant features,SO%IR keep
the size of BCF reasonably small so that conditigron all
subsets within BCF is computationally feasible. faatures
flow in one by one over time, the subset S withMBmust be
found to make X redundant and remove it from BCthattest

applications. Meanwhile, OSFS is also memory-edfiti
because it only needs to store a small number lelvaat
features at any time by adding and discarding featanline.

B. Fast-OS~S Algorithm

As we have discussed, the most time-consuming gqfart
OSFS is the redundancy analysis phase. When OSh&ias
an incoming feature to BCF, its redundancy analydiase
will re-examine the redundancy of each feature GFBIf the
size of BCF is large, this process will signifidgnteduce the
runtime performance of OSFS.

To improve selection efficiency, the process of disy
into two steds: (
determining whether an incoming new feature is neidnt,
and (2) identifying which of the selected featuobserved so
far may become redundant once the inclusion of rnbes
feature occurs. Based on Definition 7, we propaseuse
Proposition 2 to identify whether a newly arriveshfure is
redundant.

Proposition 2 As features flow in one by one over time, a
current Markov blanket df at time t is denoted b§MB(C),.

on line 15, but if we limit the size of the maximumAt time t+1, a new feature; streams in and is relevant@o

conditioning subset of BCF to k, OSFS might retartype |
error (false positives will enter BCF) when k ig bay enough
to make X and C conditionally independent.

When the size of the streaming feature set isitefiOSFS
may also fail to remove X during the independeresist on
line 15. In this case, false positive errors maguocwhich
results in redundant features to enter into BCFcaBse a
feature could arrive randomly, OSFS does not knaow
advance when the subset S for X can be found wiB@ifr;
therefore, the actual time for OSFS to remove Xriknown.
Assuming that all tests are reliable, if X is rgad redundant
feature, a subset S must exist to satisfy the ted{(C, X|S) as
features flow in one by one over time.

In summary, on the assumption that all independéesis
are reliable, OSFS can control the false positind &alse
negative errors wellf the size of the maximum conditioning
subset is limited to k, the selection of the k eals crucial.

If 3S € CMB(C), s.t. P(CIX;, S) = P(C|S) , is
redundant can be discarded.

To test which features @MB(C), might become redundant
due to the inclusion adf;, we propose Proposition 3 as follows.

Proposition 3 As the features continuously flow in, for any
given time point t withCMB(C),, when a new featur#;
arrives at time t+1, if there is MéB(X;) within CMB(C), and
the following condition applies, Y € CMB(C),, 3S <
{CMB(C), U X;} — {Y} s.t. P(C|Y,S) = P(C|S), thenY can be
removed fronCMB(C),.

Proposition 3 explains that as an incoming feaisiradded
into BCF by Proposition 2, only the subsets credigdthe
inclusion of this new feature need to be testedheck the
redundancy of the other features in BCF. Cleangppsitions
2 and 3 also satisfy the property of Corollary hefefore,
with the above two Propositions, an accelerated SF
algorithm named Fast-OSFS is proposed in Figure 4.

then X;
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Fast-OSFS accelerates OSFS by dividing the onlinknhe colon, prostate, leukemia, andlung-cancer datasets are

redundancy analysis in OSFS into two parts. Th&t firart
(lines 10-18) is a redundancy analysis which aimnemove a
new relevant but redundant feature, sayfm inclusion in

BCF. If X; is successfully removed, Fast-OSFS directly deals

with the next incoming feature. Otherwise, ifi ¥ not

four frequently studied public microarray datasgs]. The
ohsumed andapcj-etiology are two massive high-dimensional
text datasetfl7, 4].

Table 1: Summary of the benchmark datasets.
#: the number of features, SIZE: the number ofinsts

eliminated in the first part, the second part @irk9-28) is Dataset # SIZE Dataset # SIZE
triggered, which adds the new featurgidto BCF, validates [ bankruptcy | 147 7063 leukemia 7129| 72
. ot B sylva 216 14374 prostate 6033 102

each originally existing feature in BCF, and chgmﬂmther o delon =00 =000 lung-cancer o535 181

any of these features has become redundant aéiénc¢husion arcene 10000 100 breast-cance 17816 286
of new feature Xinto BCF. In the second part, Fast-OSFS gexter: 20000 300 ngfian-cancef 2190 216

: P : orothea 100000 800 sido0 4932 12678

reduces the computat_lonal cost of con_dlt_lonal nexdmmm_:e ymphoma | 7399 227 Shsumed 12375 5000

tests by only considering the subsets within BC&t ttontain colon 2000 62 apcjetiology | 28228 15779

the newly added feature instead of all subsetsinvBIiCF.

The Fast-OSFS algorithm
1. BCF={}:

For the four NIPS 2003 challenge datasets, we hsi t
original training and validation sets, and for the@maining
twelve datasets we use 10-fold cross-validation our
experiments. Two measurements for evaluating @oréhms
with Grafting and Alpha-investing are compactnesise (
proportion or number of selected features) and iptied
accuracy (the percentage of the correctly claskifiest
instances which were previously unseen). We use two

16. endif
/*Add X to BCF #/
BCF =BCFUX;

*Redundancy analysis 2: */

. repeat
added=0: 18.

19.

20. /*for each feature within BCF*/

. for each feature Y € BCF-X

. /*Find § € BCFcontaining X*/

. if3S € BCF-Y s.t. Ind(C,Y|S)

4. [*Stream in a new feature®/

(&}

. /*online relevance analysis */

2
9

2

3

4

5. Xe—get new feature()
6

7 if Dep(C,X|0)
8

W b

added=1;

23
9. endif 24. /*Remove Y from BCF */ classifiers,Knn and J48 in Spider toolbox, and report the
10. /*Redundancy analysis 1:*/ 25 BCF = BCF-Y; average prediction accuracy in the experiments. rEsalts
il :(f]‘;dz‘d: f; :13?:: were collected on a DELL workstation with Windows 7
. itiasgBCFs_t_M(“|5) 38 endif 2.96Hz CPU and 12GB memory. Graftmg.and Alpha—
14, MDiscard X/ 20, until a predefined aceuracy satisfied  INVESHING  were  performed  using  their  original
15. 20 toStep2 30. output BCF implementations. The tuning parameferfor Grafting was

selected using cross-validation and the parameterdpha-
investing were set using its default settingsg=W/5 and
a,=0.5. For all 16 datasets in Table 1, the indepecelgests
areG? tests with the statistical significance lewe),being set
to 0.05. For the impact crater case study dataset,use
Fisher's z-tests.

Figure 4: The Fast-OSFS algorithm

The time complexity of Fast-OSFS is as folloissuming
M| is the number of features that have arrived saffal |SF|
contains the number of all relevant features in |k best
time complexity of Fast-OSFS @&(|SF|k!E¢F) if Fast-OSFS
does not perform the second part for|&H| arrived features. . . . .
If the sec%nd part is performer:d for |BFeatures in SF, the A. Comparing OS=Sto Grafting and Alpha-investing
time complexity isO(|SF — SF,|k'B¢F| + |SF,||BCF|k'BCFI"y  Figure 5 reports the performance of OSFS with Graftvith
wherek!B¢F"only considers those subsets in BCF that contafi§sSpect to the prediction accuracy (the y-axishe left) and
the newly added feature, and if the sizes of thesets do not the compactness in terms of the number of selefetetiires
exceed kk!B<F! denotes all subsets in BCF whose sizes akf1€ y-axis to the right). From the top two curves-igure 5,
less than or equal to k. If the second part isqueréd for all We can see that the prediction accuracy of OSf8psrior to
features in SF, the worst-case time complexity i&rafting on 13 out of 16 datasets. For the remgind
O(ISF||BCF|k'B¢FI"). When compared with OSFS, it is eas)}jatasetsarcene, ovarian-cancer, andleukemia (corresponding

to conclude that for all three conditions abovestFaSFS is !abe[s in the x—axis are 1, 5, and 9), the accuro@SFS is
faster than OSES. inferior to Grafting, whereas the two curves at twtom

show that Grafting selects more features than O&@F8ose
v three datasets. For most datasets, we can contlat ©SFS
’ selects fewer features than Grafting. Although tfa dexter,

To compare the performance of the proposed OSFS apgldelon, and the last three datasethsumd, bankruptcy, and
Fast-OSFS algorithms with ~existing streaming fe&tursylva Grafting selects fewer features than OSFS, toearacy
selection methods, we use high dimensional datasetsur of Grafting on those five datasets is lower thanFSSIt is
test-beds, by observing features one by one tolatendhe \yorth noting thatGrafting uses a gradient-based heuristic,
situation of streaming features. Table 1 summarthes 16 \hich is computationally inefficient, to identifyhether a new
high-dimensional datasets used in our experiments. feature is predictive in each iteration. The largember of

In Table 1, the ovarian-cancer and breast-candeses are features indorothea make the runtime of Grafting increase

biomedical datasets [8, 32]. Themphoma andsido0 datasets gramatically and eventually fail in our experiments
are from [25] and the WCCI 2008 Performance Preamtict

Challenges. Themadelon, arcene, dexter, and dorothea
datasets are from the NIPS 2003 feature selectiatienge.

EXPERIMENTAL STUDIES
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Moreover, on the massive and high-dimensional é&gasuch
as sido0, apcj-etiology, and ohsumed, Fast-OSFS selects far
fewer features than Alpha-investing, but it achetlee same,
or higher prediction accuracy than Alpha-investing.

—F— DSFS(accuracy)
-- =% -~ Grafting(accuracy)

—H— 05SFS(compactness) =40
R EE Grafting(compaciness)

1

e
=

Prediction accuracy
*

5]

=
@
=1

0.9

| —F— Fast-0SFS(accuracy)
--—# -~ Grafting(accuracy)

—H— Fast-0SFS(compactness)
- - Grafting{compactness)

=]
o
=]

sl
=
The number of selected features{compactness)

08

=
=)

0.7}

2 4 6 8 10 12 14 16 fx

16 Datasets
Figure 5: The prediction accuracy (top two figurasg number of selected
features (bottom two figures) of OSFS vs. Graftifithe labels of the x-axis
from 1 to 16 denote the datasets: 1:arcene; 2:dektmadelon; 4:dorohthea;
5:ovarian-cancer; 6:breast-cancer; 7: lymphoma; cBlon; 9:leukemia; d
10:lung-cancer; 11l:prostate; 12:sidoO; 13: apdlegy; 14:ohsumed,; ) ‘ ‘ : ) ) )
0.4 0
15:bankruptcy; 16:sylva.) 2 4 3 8 10 12 14 16
16 Datasets
1500 Figure 7: The prediction accuracy (top two figurasg number of selected
i features (bottom two figures) of Fast-OSFS and tigf(The labels of the x-

P
=1

Prediction accuracy

0.6

(=]
=1

0.56F--

=]

The number of selected featuresicompactness)

1

w
o
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16 Datasets sl by ; 1100
Figure 6: The prediction accuracy (top two figurasg number of selected : -
features (bottom two figures) of OSFS and Alphaesting. (The labels of the i

x-axis are the same as the labels of the x-axfgare 5.) 04

)

16 Datasets
In Figure 6, we report the comparisons betw®SES and Figure 8: The prediction accuracy (top two figuresil number of selected

Alpha-investing, which show that OSFS wins 10 ti features (bottom two figures) of Fast-OSFS and Alptvesting. (The labels

. . e of the x-axis are the same as the labels of thas<#a Figure 5.)
ties 3 times on prediction accuracy compared tohadp

investing. The results show that OSFS selects é&avef 1
features than Alpha-investing on most of datasatastts (see )
the bottom two figures). On the third datasaddelon, and the — °*[ ..+~
seventh datasetlymphoma, Alpha-investing selects fewer [

features than OSFS, the accuracy of Alpha-invesimghose

0.8

=
=

two datasets is significantly lower than OSFS. Mwex, £ o7t e
Alpha-investing fails to select any features on tlexter & -~ -~ O8FS(ascurasy 0
dataset because it is a very sparse dataset. e oo B FastOSFS(acauran) ]

B. Comparing Fast-OS-Sto Grafting and Alpha-investing EEN

The nurnber of selected features(compactness)

Figure 7 reports the prediction accuracy (the twves at the 04— L - : i > " o
top) and compactness (the two curves at the bottor | 16 Datasets
comparisons between Fast-OSFS and Grafting. Thaltses Figure 9: The prediction accuracy (top two figuragp number of selected

. . . features (bottom two figures) of Fast-OSFS and O$HSe labels of the x-
show that Fast-OSFS wins over Graftlng 14 times amy axis from 1 to 16 denote the datasets: 1:dextena2ian-cancer; 3:dorothea;

loses twice against Grafting on prediction accuracy:bankruptcy; 5:sido0; 6:arcene; 7:lymphoma; 8:nmwe9:breast-cancer;
Meanwhile, in the bottom two figures, Fast-OSFSeto$ 10:colon; 1l:leukemia; 12:lung-cancer; 13:prostetd; apcj-etiology; 15:
times on compactness compared to Grafting, but-@&§ts ohsumed; 16:sylva.)

has higher accuracy than Grafting on those eigtaiseés.

In Figure 8, in comparison with Alpha-investing SE®SFS
also only loses on two datasets with respect taigtion
accuracy. Although on the third dataseidelon, and the
seventh datasetlymphoma, Alpha-investing selects fewer
features than Fast-OSFS, the accuracy of Alphasiing: on
those two datasets is significantly lower than fSES.

In our experiments, we find that Alpha-investisgnilar to
OSFS, also shows slightly better accuracy than-B6&$tS on
the arcene and ovarian-cancer datasets. A possible
explanation is that for datasets with a very smsalhple-to-
variable ratio, this could aggravate the numbeumfeliable
tests if the number of features within BCF incresaseer time.
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C. Comparisons between OSFS and Fast-OSFS As we have analyzed in Section 1V.B, Fast-OSFSrigtes
this problem by significantly reducing the numbérests (as
The comparisons between Fast-OSFS and OSFS ineFfyurshown in Table 2). For example, from the bottonufes of
show that Fast-OSFS has higher accuracy than O8FE30 Figure 9, we can see that there is a large nuntberedictive
out of the 16 datasets, although Fast-OSFS selmcie features orbankruptcy, sidoO, apcj-etiology, andohsumed, but
features than OSFS, which demonstrates that FaBSOSFast-OSFS is still quite efficient, as shown in [Eal8 and 4
significantly improves the performance of OSFS.BGSFS
and Fast-OSFS perform multiple statistical compadgsto Table 3: Runtime performance (in seconds) of OSFS and F&§SO

assess whether a feature is redundant. In the dedgy (2/Pha=0.01). (A/Bin the second column denotesungme of OSFS, i.e., A,
vs. the runtime of Fast-OSFS, i.e., B

analy5|§ phas_e, OSFS_ ne_eds to evaluate each faaitinia Dataset Runtime Dataset Runtime
BCF without first considering whether a newly addedture dexter 4/1 lymphoma 0/0
is redundant. It significantly increases the systamtime dorothea 684 breast-cancer [ 20/
when the number of features within BCF is large alhiin arcene 0/0 ovarian-cancef 1/0
‘e madelon 0/0 sylva 189p7C

turn, reduces the test of statistical power. F&BES), on the -

S colon 0/0 bankruptcy 127227
other har_1d,_ S|gn|f|ca_ntly reduces the total numbértests prostate 00 sido0 1008BL
because it first examines the redundancy of a matufe and lung-cancer | @ apcj-etiology 111413¢
checks only the subsets of BCF containing the featewly leukemia 0/0 ohsumed 285€/

ad_l(_jegl In;O BCF. h | . hich is thelmer of Table 4: Runtime performance (in seconds) of OSFS and F&§SO
able 2 reports the accelerate ratio which Is taer o (alpha=0.05). (A/B in the second column denotesdiméime of OSFS, i.e., A,

tests performed by OSFS divided by the number efste vs. the runtime of Fast-OSFS, i.e., B

performed by Fast-OSFS on the same dataset (tha afdue Dataset Runtime Dataset Runtime
is fixed at 0.05). An accelerate ratio value gredftan one ge"ter: 389’)28 = 'g’mphoma Z‘gg/
indicates that Fast-OSFS performs fewer tests @&RS. In afcrgrt]eea i/o Lflzsrfa%azgﬁrcer a0
Table 2, Fast-OSFS involves_ fgr fewer tests thaRr ®)$hus, madelon 0/0 sylva 4804¢
Fast-OSFS has stronger statistical power than OSFS. colon 0/0 bankruptcy 364561
prostate 1/0 sido0 4273914
Table 2: The ratio of conditional independetests (OSFS/Fast-OSFS) lung-cancer | 1@ apcj-etiology 11832877¢€
Dataset | Accelerate Ratio Dataset Accelerate Ratip leukemia 0/0 ohsumed 1562710¢
dexter 31.82 lymphoma 3.41
dorothea 35.96 breast-cancer 10.67 D.2 Runtime Analysis for Grafting and Alpha-investing
arcene 3.50 ovarian-cancef 15.50
madelon 3.34 sylva 13.79 . . . . . .
colon 2.08 bankruptcy 1417 Since the Grafting and Alpha-investing algorithnsedi in the
prostate 3.26 sido0 23.81 experiments are both implementedMAATLAB by the authors
lung-cancer 4.88 apcj-etiology 159.91 and our algorithms are written in C language, &ditime
leukemia 2.54 ohsumed 107.50

comparison between the baselines and our algoritisns
inappropriate. Instead, we investigate an analgsigollows.
Grafting recasts feature subset selection as aptignithe L1-
regularized maximum likelihood estimation by itératy
performing two steps: optimizing over all the fre@rameters

for OSFS and Fast-OSFS, a summary of the runtimgrameter— in advance to determine which feature is most
performance for OSFS and Fast-OSFS is reportediied 3 |ikely to be selected to the model at each iteratiti is

and 4. Because the runtime of OSFS and Fast-OSFSigjerstandable that choosing a suitable reguléizat

significantly influenced by the size of BCF, we oepthe parameter requires the entire feature set infoomatin
runtime of both algorithms with the alpha value ©0p0.01  adyvance, but the full feature set information iknown in
(Table 3) and up to 0.05 (Table 4). The result§ables 3 and 5dyance in streaming features. Moreover, findingpiimum
4 show that Fast-OSFS is much faster than OSFSllon gglue for a free parameter at each step is usually
datasets. When only a small number of featureprmtdzictive, computationally expensive step. Because Alpha-iinvgsind
the proposed OSFS and Fast-OSFS algorithms are Ve proposed two algorithms do not need to deternainy

efficient, even if a dataset has hundreds of thedsaof prior parameters in advanceye focus on the comparison
features, as is the case for theg-cancer anddexter datasets. petween Alpha-investing and Fast-OSFS.

as sido0, apcj-etiology, and ohsumed (the number of regression to dynamically adjust the threshold o érror
predictive features is shown in the bottom figuseigure 9), reduction required for evaluating a new feature thadded to

OSFS is time-consuming, even for thankruptcy andsylva  the predictive model. Alpha-investing only consilehether
datasets which contain no more than 300 featuneaddiition, g 3dd a new feature and never considers the dismiathe

we observe that the runtime of OSFS is linear éorthmber of gelected features or adding discarded features nagai
total features, but exponential to the number afufees which  Therefore, when a new feature X arrives, even ifisX

are predictive. irrelevant, Alpha-inverting adds it into the currenodel, that
is, {model U X}, and then uses linear regression to compute

D. Runtime Analysis
D.1 A summary of runtime of OSFSand Fast-OSFS
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the error reduction betweefimodel U X} and {model} to
decide whether to drop X. At the arrival of eaclwrfeature,
the time complexity of Alpha-investing B(|V|/model|?)
where |V| is the total number of features arrivedfar and
model| is the number of features selected from V in th
current model.

Table 5: Runtime performance (in seconds) of Alpha-investaryl Fast-
OSFS (A/B in the second and last columns denotesruhtime of Alpha-
investing, i.e., A, vs. the runtime of Fast-OSES,, iB).

alpha=0.01 alpha=0.05
Dataset Runtime Dataset Runtime
dorothea 993/34 dorothea 993/78
sido0 929/410 sido0 929/2014
apcj-etiology | 7305/139 apcj-etiology| 7305/676
ohsumed 794/66 ohsumed 794/1103

When the feature set size is not large and the eurnb
features in the current model is small, Alpha-inivegis very
time efficient. However, when the size of the stnewm
feature set is huge and the number of featuresinvitie
current model is large, Alpha-investing is not cangtionally
efficient. Although Alpha-investing is implementedh
MATLAB, we still show the runtime of Alpha-inverting and
Fast-OSFS in Table 5. We can see that when the alalue
goes up to 0.01, Fast-OSFS is computationally ieffic
whereas Alpha-investing is not. When the alpha eaisi
around 0.05, Fast-OSFS is still very fast on dbeothea and
apcj-etiology datasets.

E. Handling datasets with an unknown feature space

In the above experiments, the streaming featuaes
simulated using datasets with known feature sibesthis
subsection, we study the performance of OSFS asd®aFS
under the situation where the entire feature set dataset is
unknown in advance. To demonstrate the performaficbe
algorithms, we use prediction accuracy as a coiterio
explore the streaming feature selection procesgyr fo
NIPS2003 feature selection challenge datasetadelon,
arcene, dexter, and dorothea, and four gene datasetxlon,
prostate, leukemia, andlung-cancer in Table 1 are used for
these evaluation studies.

We use the original training and validation setstii@ NIPS
2003 challenge datasets. Because the colon andrealgene
expression datasets have a small number of ingame
randomly select 10 instances as the test instaficpssitive
and 5 negative instances) and the rest of theriostaare used
for training. For the remaining two gene expressiatasets,
we randomly select, using cross-validation, thestfi2/3
instances for training and the remaining 1/3 instsnare used

and testing sets with all features. With this biaselour two
algorithms and Alpha-investing usknn to dynamically
evaluate streaming feature selection on the tegtstgnces.

Alpha-investing fails to select any features dexter, its

accuracy is omitted in the figure.

The results in Figure 10 demonstrate that apasison of
Fast-OSFS with OSFS and Alpha-investing shows Faet-
©SFS is more stable and has better prediction acgur

Among the four NIPS 2003 datasets, the prediction
accuracies of all of three algorithms on treene dataset fall
below the accuracy of the baseline classifier. Alghvesting
stops selecting any features with the percentadeatfires up
to 10%, while Fast-OSFS continues the feature Setedill
the feature percentage increases to 60% and theps st
(denoted by the straight line after the selectemtufes are
60% or higher). For thdexter dataset, Fast-OSFS and OSFS
reach the baseline accuracy as the feature pegeeintereases
to 70%. For theamadelon and dorothea datasets, both OSFS
and Fast-OSFS exceed the baseline accuracy asrefeatu
stream in, while Alpha-investing falls behind. Angpthe four
gene expression datasets, Fast-OSFS is able td reac
outperform the baseline without an exhaustive $eaver the
entire feature set, with the exception of the lenieedataset.
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The above observations conclude that when the lymagr
feature space is unknown or significantly large, it

In Figure 10, we report the change of the predictiounnecessary to exhaustively search over the efeméure

accuracies of three algorithms d&nn with respect to the
features continuously arriving over time. The reafizontal
line in each figure denotes the prediction accuratythe
baselineKnn classifier trained using all features.

space. Compared to Alpha-investing and OSFS, F&§SO
achieves better and more stable performance insterfithe
prediction accuracy of the models trained from celé

Becaus&treaming features.
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F. Conclusions of the Experimental Results

The above experiments and comparisons concludeQ8&sS

and Fast-OSFS outperform both Grafting and Alpha-investing

on most of the datasets (in terms of the predictioauracy
and the compactness of the selected features). \Wdnediing
streaming features, the main drawback of Graftmghat it
needs to tune parametkrin advance while Alpha-investing
cannot properly handle the original features withay prior
information about the feature structure. Since Aklghvesting
only considers each feature once, its running speeckry
fast, but this also causes Alpha-investing to selmore
features than other methods (including our algorih In
addition, Alpha-investing cannot discard redundestures
from the current model to deal with the situatibvatt some
features may have been useful in the past but bageme
redundant or irrelevant to the target conceptras tjoes by.
In personalized news filtering, for exampleenss interests

constantly change so that new words may becomeuluse

whereas previously selected words may become @addaid
redundant. Grafting and the proposed OSFS and G&B5
algorithms can effectively handle this problem.

With the prior knowledge about the structurethed feature
space, Alpha-investing is fast and achieves goafbpeance
since the prior knowledge helps the algorithm tartstically
control the selection of candidate features. Withorp
knowledge, our framework also performs well; witbnehin
knowledge, for example, the corresponding reduntiaitires
can be removed earlier because it is easier foalyarithms
to find strongly relevant and non-redundant featuié
informative features are placed earlier in the astimg
features. For a strongly relevant feature, saynd, its copies,

say Y; and Y, which carry exactly the same predictive

information about the class attribute C, the inamgnorder of
these features does not matter. This is because tot
algorithms and Alpha-investing can select any oeature
from Y and its copies Yand Y,. As soon as one of the
strongly relevant features, Y, Yor Y, is selected, the
remaining features will be excluded from the sudosg
streaming feature selection process.

In reality, features are rarely identical butymze strongly
correlated; thus, given a feature A which is refgven the
class attribute C, the order of features A and Bhimatter if
feature B is redundant (but not identical) to A.dén such
circumstances, our algorithms and Alpha-investingghtn
select a different set of features depending orattieal order
of the features. To evaluate the impact of featwder on the
algorithm’s performance, we generate a number iafsttin
which each trial represents a random ordering afuifes as a
feature stream. We apply different algorithms (OSF8st-
OSFS, and Alpha-investing) to each randomized taiadl
report the results in Figures 11-13, where theiz-eepresents
each of the randomized trials and the y-axis reprssthe
number of selected features (Figure 11) and theligtien
accuracies from the corresponding trial.

The results in Figures 11-13 (theadelon dataset) confirm
that varying the order of the incoming featuresdioepact on
the final outcomes. Overall, the results demonsttaat Fast-

10

OSFS is the most stable method and Alpha-investpyppars
to be highly unstable.
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Figure 11: Numbers of selected features from 18aarized trials (each trial

represents a random ordering of features as aréestieam)
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Figure 12: Prediction accuracies from 12 randomtzeds using decision
tree learning algorithms (J48)
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Figure 13: Prediction accuracies from 12 randomtreds using Knn learning
algorithms

As for the proposed OSFS and Fast-OSFS algorithas;
OSFS significantly accelerates OSFS by employingew
redundancy analysis strategy. The acceleratedréeaéliection
strategy in Fast-OSFS might introduce additionalsefa
positive features into BCF, which explains why OSH#Bays
selects fewer features than Fast-OSFS (as showfigure
11). With sufficient instances and a small sizeB@fF, OSFS
achieves almost the same prediction accuracy amihre as
Fast-OSFS, but it results in a smaller number d&csed
features. On the other hand, with sufficient insemand a
large size of BCF, Fast-OSFS is much faster thaRS)8Vith
an insufficient number of instances and a large BIZF, Fast-
OSFS is superior to OSFS because Fast-OSFS saptific
mitigates the false negative errors by reducingrilmber of
tests involved in checking feature redundancy.

G. A Case Sudy on Automatic Impact Crater Detection



TPAMI-2011-10-0721(R2)

In addition to the validation on the publicly awdle
benchmark datasets, we also use a real-world impadter
dataset to evaluate our streaming feature seleatgorithms.
Impact craters, the structures formed by the dotiis of
meteoroids on planetary surfaces, are among thé shadied
geomorphic features in the solar system because ytiedd
information about past and present geological Eees
Surveying craters provides the only tool for rerhote
measuring the relative ages of geologic formations.

Planetary probes deliver ever-increasing volumiesigh
resolution images; however, the scientific utiliaatof these
images in ever-higher spatial resolution is hampdrg the
lack of tools for their effective automated anadysTexture
features have proven to be effective for crateect&in. Tens
of thousands of texture-based features in diffeseales and
resolutions can be generated for crater detectionemotely
sensed
coverage of a remote planet, such as Mars. While teéxture
features provide a tremendous source of potergatfes for
use in crater detection tasks, they are expensivgeherate
and store. The reality calls for efficient featugelection to
develop a processing pipeline for fast and accisateeys of
craters from high resolution images and make ptesdite
assembly of global “million crater” catalogs of s, not
only on Mars, but also on Mercury, the Moon, antieot
planets. Consequently, this makes an ideal casgy sior
validating our streaming selection framework, corepato
traditional feature selection approaches.

In this case study, our work is based on theecrdétection
framework proposed by Ding et al. (Figure 14). Ehere
three steps in the crater-detection framework [11].

(1) Crater candidates are the regions of an imhge rhay
potentially contain craters and the image can bkecated
using remote sensing techniques. A key insighbttstructing
crater candidates is that a sub-kilometer craten &&
recognized as a pair of crescent-like highlight amédow
regions in an image (see Figure 15 [11]). Crestkeat-
shadow and highlight regions in an image are ifiedtifrom
images using a shape detection method based orematical
morphology, and those highlight and shadow regians
matched so that each pair will be used to constcuater
candidates, that is, the locations where crategsligely to
reside.

(2)
candidates using square kernels.

(3) Craters are identified using supervised
algorithms.

The experiments in crater detection are evathain Mars
because it is at the center of NASA exploratioors$f There
is a very extensive, near-global coverage of thertisia
surface with high resolution planetary images. Aipa of the
High Resolution Stereo Camera (HRSC) nadir panchtimm
image h0905
spacecraft, to serve as the test set [11]. Thetselémage has
a resolution of 12.5 meters/pixel and a size 063,By 4,500

leayni

images which provide an extensive neardglot

Image texture features are extracted from ecrat

11

because its contrast is rather poor (mostly ndbieeavhen the
image is inspected at a small spatial scale).

Identifying

Combining shadow &
shadow regions

highlight pairs

dentifying
highlight regions

Extracting Image
texture features

Detecting craters using supervised learning

®

Figure 14: The crater-detection framework propdse®ing et al. [11]

PLAS. i
“ .

Figure 15: (A) an illustration explaining why anage of a sub-kilometer
crater consists of crescent-like highlight and shadegions. (B) An image of
an actual km crater showing the highlight and shadow regions.

West Region Central Region

East Region

Figure 16: Impact craters in a 37,500x56,2530est image from Mars.

is selected, taken by the Mars Express

The image is divided into three sections denotetth@svest
region, the central region, and the east regioa [Sgure 16

pixels (37,500x56,250t The image represents a significan{11]) for the test sets summarized in Table 6. Teetral

challenge to automatic crater detection algorithhasause it
covers a terrain that has spatially variable molgiy and

region is characterized by surface morphology thatistinct
from the rest of the image. The west and east nsgltave
similar morphology but the west region is much mioeavily
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cratered than the east region. 1,089 image teféateres are
constructed. The training set consists of 204 tmaers and

292 non-crater examples selected randomly fromecrat

candidates located in the northern half of the eagion. A
streaming feature selection framework for the crdttection
is given in Figure 17.

Table 6: Summary of crater datasets

#samples (crater candidates) #features
West region 6,708 1,089
Central region 2,935 1,089
East region 2,026 1,089
Inputimage Construct crater | Generate a new feature N Online relevancy
h0905 candidates from crater candidates analysis
No L

Online redundancy
analysis
2
Update the current
feature pool

i

Evaluate current
feature pool

A given predictive accuracy’
or maximum number of
iterations is reached?

Output the feature pool
so far

Figure 17: A framework of streaming feature setatfor crater detection
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Table 8: The prediction accuracy on the three reg{alpha=0.05)

# Selected | West Central | East

features region | region | region
OSFS 5 0.7809 0.7874 0.7828
Fast-OSFS 5 0.7809 0.7874 0.7828
Alpha-investing 16 0.7589 0.7666 0.7730

Figures 18 and 19 report the performance of OSKE an
Alpha-investing with the percentage of the featsgsaming
in (Fast-OSFS has the same performance as OSF&s so
performance is omitted from the figures). Figuresh®ws that
the number of selected features changes as motardsa
stream in. We can see that our two algorithms sédedewer
features than Alpha-investing at any stage. Whea th
percentage of the features increases to 50%, thebew of
selected features remains stable for Alpha-invgsdimd OSFS.

Figure 19 illustrates that the test errors of bOBFS and
Alpha-investing change over time as the featuresv fin
continuously. The overall results confirm that OSKS
superior to Alpha-investing. The test errors oftbalgorithms
remain stable when the percentage of the totalurfeat
increases to 50%. This observation validates ttienaity of
stream feature selection and confirms that instdadying to
smooth across all potential features, we can ussmall

In the following sections, we compare our algorithmnumber of features to train a much stronger model.

(OSFS and Fast-OSFS) with Alpha-investing and osate-
of-the-art feature selection algorithmisnn is used to train
classifiers from each selected feature set, througith we
can compare the prediction accuracies of differesthods. In

order to thoroughly demonstrate the behaviors of ou

algorithms in the case study, we report the nuratbeelected
features and the prediction accuracy with respetivd alpha
values (0.01 and 0.05). The best results are lzaldef in the
tables.

G.1 Comparisons with Alpha-investing

With the value of alpha up to 0.01, Table 7 repdtts
prediction accuracy on three regions using ourrétlyns and
Alpha-investing. On the three regions, both ouroetgms
select the same four features from the trainingaskdtt and
result in the same prediction accuracy. From Tablee can
see that our algorithms select fewer features awe fhigher
accuracy than Alpha-investing on the west and aérggions,
and the accuracies of our algorithms on the eggmeare also
comparable to Alpha-investing.

Table 7: The prediction accuracy on three regiafh@=0.01)

#Selected West Central East

features | region region region
OSFS 4 0.7753 0.7826 0.7725
Fast-OSFS 4 0.7753 0.7826 0.7725
Alpha-investing 16 0.7589 0.7666 | 0.7730

With the value of alpha up to 0.05, as shown inl&& our
algorithms also select fewer features and haveehigbcuracy
than Alpha-investing on all three test regions. tBa west
region and central region, OSFS has the highediqiien
accuracy, while Fast-OSFS has the highest accuvacthe
east region.

o 15 B--E--E---B--8 -]
@ -

2 14r __B---a"

@ ;] —f— osFs

E 12 alpha=0.05 -—E}- alpha-investing

B 10

@

w

5 B

s P s P P s, P P s, r
g E | | | | |l | | |l L5
E °f |
=

= 4t

10 100

50
The percentage of features streaming in (%)
Figure 18: Number of selected features changdseagercentage of the
features increases over time

G.2 Comparisons with Traditional Feature Selection

Algorithms

In this section, we compare our algorithms with st&te-of-
the-art non-streaming fashion feature selectiomralyms, a
causal feature selection algorithm, the LARS (LeAsgle
Regression) algorithm, a Naive boosting algorithnd an
algorithm without feature selection. Causal featsedection
has recently been proposed as an emerging suckcissfing
approach in feature selection and has shown tltdntinates
most feature selection methods in prediction aayurand
compactness [3]. The HITON_PC algorithm is selected
instantiate a causal feature selection approachrfs LARS
algorithm is an embedded feature selection metleagntly
introduced to handle classification or regressioobfems by
using optimization with specified loss and pendiiyictions.
The Naive boosting algorithm was proposed by Dihagle
[11]; it integrates the boosting algorithm and ghedeature
selection algorithms for crater detection.

In Tables 9 and 10, we report the predicdonuracies of
all methods on the three regions. With the valualpfia up to
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0.01, as shown in Table 9, we can see that ouridigts win
on the west region and are very competitive with tHARS
and Naive boosting algorithms on the central arsdl ieggions.
As shown in Table 10, both our algorithms outperfahe
other four algorithms on the west and east regigithough
our algorithms lose on the central region, they @s® very
close to the Naive boosting algorithm. In summapmpared
to the traditional non-streaming fashion featurdecten
algorithms, our new algorithms select far fewertdeas and
result in higher or at least comparable accuraa®sther
methods. Most importantly, our algorithms providenew
processing pipeline for streaming based featurecieh with
fast and accurate surveys of craters from high luésa
images.

Table 9: The prediction accuracy on three regiaiigh@=0.01)

#Selected | West | Central | East
features region | region | region
OSFS 4 0.7753 | 0.7826 0.7725
Fast-OSFS 4 0.7753 | 0.7826 0.7725
HITON_PC 4 0.7722 0.7853 0.7634
LARS 6 0.7740 0.7881 | 0.7799
Naive Boosting 150 0.7661] 0.7888 0.7749
No feature selection 1089 0.7308  0.7499 0.7710
Table 10: The prediction accuracy on three reg{afha=0.05)
#Selected | West | Central | East
features region | region | region
OSFS 7 0.7809 | 0.7874 0.7828
Fast-OSFS 7 0.7809 | 0.7874 0.7828
HITON_PC 6 0.7749 0.7792 0.7813
LARS 6 0.7740 0.7881 0.7799
Naive Boost 150 0.7661| 0.7888 0.7749
No feature selection 1089 0.7308  0.7499 0.7710

Interestingly, the results in Tables 9 anddEnonstrate
that although a river-shaped region (the Nanedilegabn
Mars) runs through the central image, which makes
morphologically different from the original trairgnset, the

0.28
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five feature selection algorithms in Tables 9 afdrdsult in
slightly better prediction accuracy on the centedion than
other regions. The reason for this is that we ussec
candidates, which are the regions of an image thay
potentially contain craters, for crater detectiowl @alculation
of prediction accuracy instead of an inefficienghaustive
search of the entire image. While the river-shapegion
appears to make crater detection more difficule tlistinct
texture features generated by the crater candidasés them
fairly easy to recognize compared to the smallecraggions
to the east and west. Moreover, although the wadt east
regions have similar morphology, the west regionmisch
more heavily dense with small craters than the esgibn.
Thus, the prediction accuracy on the west regioslightly
lower than the accuracy on the east region.

VI.

In this paper, we have proposed two new algoritHors
streaming feature selection. Compared to the tatesif-the-
art algorithms, Grafting and Alpha-investing, theogmosed
algorithms OSFS and Fast-OSFS have demonstrateu
efficiency and effectiveness for applications caritey many
irrelevant and/or redundant features.

In the experiments, our study has shown that int mases
for applications involving streaming or an infinigze of
features, a small number of features can be sel¢atérain a
much stronger model, rather than trying to smoattoss all
potential features. We have also applied onlineasting
feature selection to a real-world Mars impact cratataset
and compared our algorithms with Alpha-investingl ather
state-of-the-art traditional feature selection althms. The
experiments have demonstrated that the proposexditaigs
select far fewer features than other methods, dmelr t
prediction accuracy is mostly higher than, or aisteas good
as, other methods.

CONCLUSIONS

West region Central region
024~ .
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Figure 19: The test errors of three algorithms wétspect to the increase of the percentage ofriesatn three regions (In the top figures OSFS ualpba=0.01
and in the bottom three figures OSFS using alpt¥30.
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