Regression - I

Prof. Dan A. Simovici

UMB
1 Brief Remainder of Linear Algebra

2 Linear Regression

3 Examples in R
Most of this preliminary discussion is centered around the notion of **matrix rank**.

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The **null space of A** is the subspace of \mathbb{R}^n defined by

$$\text{Nullsp}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0_m \}.$$

The **range of A** is the subspace of \mathbb{R}^m defined as

$$\text{Ran}(A) = \{ y \in \mathbb{R}^m \mid y = Ax \}.$$

The **rank of A** is the number $\text{rank}(A)$ that is dimension of $\text{Ran}(A)$, that is, the size of the largest linearly independent set in $\text{Ran}(A)$.
If \(A \in \mathbb{R}^{m \times n} \), the transposed matrix is \(A' \in \mathbb{R}^{n \times m} \).

The *inner product* of two vectors \(x, y \) in \(\mathbb{R}^p \) is the number \((x, y) = x' y\).
Theorem

Let \(A \in \mathbb{R}^{m \times n} \), and \(x \in \mathbb{R}^n \), and \(y \in \mathbb{R}^m \). We have \((Ax, y) = (x, A'y)\).

Proof: We have \((Ax, y) = (Ax)'y = x'A'y\) and \((x, A'y) = x'(A'y)\) and these numbers are equal by the associativity.
If $a \in \mathbb{R}^{m \times n}$ and $A = BC$, where $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$, then

- the ith row of A is a linear combination of the r rows of C with coefficients from the ith row of B;
- the jth column of A is a linear combination of the r columns of B with coefficients from the jth row of C;
If any collection of rows $\bar{c}_1, \ldots, \bar{c}_r$ spans the row space of A an $r \times n$ matrix C can be formed by taking these vectors as its rows; then, the i^{th} row of A is a linear combination of the rows of C, say $\bar{a}_i = b_{i1}\bar{c}_1 + \cdots + b_{ir}\bar{c}_r$. This means that $A = BC$, where $B = (b_{ij})$ is the $m \times r$ matrix, where the i^{th} row is $\bar{b}_i = (b_{i1}, \ldots, b_{ir})$;

similarly, if any r column vectors span the column space of A and B is the $m \times r$ matrix formed by these columns, then the $r \times n$ matrix C formed from appropriate coefficients satisfies $A = BC$.
Theorem

If \(A \in \mathbb{R}^{m \times n} \), then the row rank of \(A \) is equal to the column rank of \(A \).

Proof: If \(A = O_{m \times n} \), then the row rank and the column rank are 0; otherwise, let \(r \) be the smallest positive integer such that there exists \(B \in \mathbb{R}^{m \times r} \) and \(C \in \mathbb{R}^{r \times n} \) such that \(A = BC \). Since the \(r \) rows of \(C \) form a minimal spanning set of the row space of \(A \) and the \(r \) columns of \(B \) form a minimal spanning set of the column space of \(A \), row and column ranks are both \(r \).
Theorem

Let $A \in \mathbb{R}^{m \times n}$. We have

$$\dim(\text{Nullsp}(A)) + \dim(\text{Ran}(A)) = n.$$

Suppose that $\{e_1, \ldots, e_m\}$ is a basis for $\text{Nullsp}(A) \subseteq \mathbb{R}^n$. Extend this base to a base for \mathbb{R}^n: $\{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$. Any $v \in \mathbb{R}^n$ can be written as $v = v_1e_1 + \cdots + v_me_m + v_{m+1}e_{m+1} + \cdots + v_ne_n$, hence

$$Av = v_{m+1}Ae_{m+1} + \cdots + v_nAe_n.$$

Therefore, $\{Ae_{m+1}, \ldots, Ae_n\}$ spans $\text{Ran}(A)$. This set is linearly independent, so it is a base for $\text{Ran}(A)$ and thus, $\dim(\text{Ran}(A)) = n - m$.

Definition

A matrix A is **invertible** if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.

Theorem

If $A \in \mathbb{R}^{n\times n}$ is invertible, then $\text{rank}(A) = n.$
$B \in \mathbb{R}^{m \times n}$ is a **full-rank matrix** if $\text{rank}(B) = \min\{m, n\}$.

Let $B \in \mathbb{R}^{m \times n}$ be a full-rank matrix such that $m > n$, so $\text{rank}(B) = n$. The symmetric square matrix

$$B' B \in \mathbb{R}^{n \times n}$$

has the same rank n as the matrix B because $\text{Nullsp}(B'B) = \text{Nullsp}(B)$. This makes $B'B$ an invertible matrix, that is, there exists $(B'B)^{-1}$.
The design matrix of an experiment is put together as follows:

- The results of a series of m experiments are the components of a vector $\mathbf{y} \in \mathbb{R}^m$.
- For the i^{th} experiment, the values b_{i1}, \ldots, b_{in} of the input variables x_1, \ldots, x_n are placed in the i^{th} row of a matrix $B \in \mathbb{R}^{m \times n}$.
- The outcome of the i^{th} experiment y_i is supposed to be a linear function of the values b_{i1}, \ldots, b_{in} of x_1, \ldots, x_n, that is

$$y_i = b_{i1}r_1 + \cdots + b_{in}r_n.$$
The variables x_1, \ldots, x_n are referred to as the *regressors*. The values assumed by the variable x_j in the series of m experiments, b_{1j}, \ldots, b_{mj} have been placed in the j^{th} column b_j of the matrix B.

<table>
<thead>
<tr>
<th>1</th>
<th>x_1</th>
<th>\cdots</th>
<th>x_j</th>
<th>\cdots</th>
<th>x_n</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b_{11}</td>
<td>\cdots</td>
<td>b_{1j}</td>
<td>\cdots</td>
<td>b_{1n}</td>
<td>y_1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>m</td>
<td>b_{m1}</td>
<td>\cdots</td>
<td>b_{mj}</td>
<td>\cdots</td>
<td>b_{mn}</td>
<td>y_m</td>
</tr>
</tbody>
</table>
Linear regression assumes the existence of a linear relationship between the outcome of an experiment and values of variables that are measured during the experiment.

In general there are more experiments than variables, that is, we have $n < m$. In matrix form we have $\mathbf{y} = B\mathbf{r}$, where $B \in \mathbb{R}^{m \times n}$ and $\mathbf{r} \in \mathbb{R}^n$. The problem is to determine \mathbf{r}, when B and \mathbf{y} are known. Since $n < m$, this linear system is inconsistent, but is is possible to obtain an approximative solution by determining \mathbf{r} such that $\| \mathbf{y} - B\mathbf{r} \|$ is minimal. This amounts to approximating \mathbf{y} by a vector in the subspace $\text{Ran}(B)$ generated by the columns of the matrix B.
The columns b_1, \ldots, b_n of the matrix B are referred to as the *regressors*; the linear combination $r_1 b_1 + \cdots + r_n b_n$ is the *regression of y onto the regressors* b_1, \ldots, b_n.

A variant of the previous model is to assume that y is affinely dependent on b_1, \ldots, b_q, that is,

$$y = r_0 + r_1 b_1 + \cdots + r_n b_n,$$

and we seek to determine the coefficients r_0, r_1, \ldots, r_n. The term r_0 is the *bias* of the model. The dependency of y on b_1, \ldots, b_n can be homogenized by introducing a dummy vector b_0 having all components equal to 1, which gives

$$y = r_0 b_0 + r_1 b_1 + \cdots + r_n b_n,$$

as the defining assumption of the model.
As we stated before, if the linear system $Br = y$ has no solution r, the “next best thing” is to find a vector $r \in \mathbb{R}^n$ such that

$$\| Br - y \|_2 \leq \| Bw - y \|_2$$

for every $w \in \mathbb{R}^n$. This approach is known as the least square method. We will refer to the triple (B, r, y) as an instance of the least square problem.
Note that $Br \in \text{range}(B)$ for any $r \in \mathbb{R}^n$. Thus, solving this problem amounts to finding a vector Br in the subspace $\text{range}(B)$ such that Br is as close to y as possible.

Let $B \in \mathbb{R}^{m \times n}$ be a full-rank matrix such that $m > n$, so $\text{rank}(B) = n$. The symmetric square matrix $B' B \in \mathbb{R}^{n \times n}$ has the same rank n as the matrix B. Therefore, the system

$$(B'B)r = B'y$$

has a unique solution $r = (B'B)^{-1}B'y$.

Moreover, $B'B$ is positive definite because $r'B'Br = (Br)'Br = \|Br\|^2 > 0$ for $r \neq 0_n$.
Theorem

Let $B \in \mathbb{R}^{m \times n}$ be a full-rank matrix such that $m > n$ and let $y \in \mathbb{R}^m$. The unique solution

$$r = (B' B)^{-1} B' y$$

of the system $(B' B)r = B'y$ equals the projection of the vector y on the subspace $\text{Ran}(B)$.
Proof

The n columns of the matrix $B = (b_1 \cdots b_n)$ constitute a basis of the subspace $\text{range}(B)$. Therefore, we seek the projection c of y on $\text{range}(B)$ as a linear combination of the columns of B, $c = Bt$, which allows us to reduce this problem to a minimization of the function

$$f(t) = \|Bt - y\|^2_2$$

$$= (Bt - y)'(Bt - y) = (t'B' - y')(Bt - y)$$

$$= t'B'Bt - y'Bt - t'B'y + y'y.$$

The necessary condition for the minimum is

$$(\nabla f)(t) = 2B'Bt - 2B'y = 0,$$

which implies $B'Bt = B'y$.

The linear system \((B' B)t = B'y\) is known as the system of normal equations of \(B\) and \(y\).
The Case of non-full rank matrix B

Suppose now that $B \in \mathbb{R}^{m \times n}$ has rank k, where $k < \min\{m, n\}$, and $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthonormal matrices such that B can be factored as $B = UMV'$, where

$$M = \begin{pmatrix} R & O_{k,n-k} \\ O_{m-k,k} & O_{m-k,n-k} \end{pmatrix} \in \mathbb{R}^{m \times n},$$

$R \in \mathbb{R}^{k \times k}$, and $\text{rank}(R) = k$.

For $y \in \mathbb{R}^{m}$ define $c = U'y \in \mathbb{R}^{m}$ and let $c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$, where $c_1 \in \mathbb{R}^{k}$ and $c_2 \in \mathbb{R}^{m-k}$.
Since \(\text{rank}(R) = k \), the linear system \(Rz = c_1 \) has a unique solution \(z_1 \).

Theorem

All vectors \(r \) that minimize \(\| Br - y \|_2 \) have the form

\[
r = V \begin{pmatrix} z \\ w \end{pmatrix},
\]

for an arbitrary \(w \), where \(z \) is the solution of the system \(Rz = c_1 \) considered above.
We have

\[\| Br - y \|_2^2 = \| UMV'r - UU'y \|_2^2 = \| U(MV'r - U'y) \|_2^2 = \| MV'r - U'y \|_2^2 \]

(because multiplication by an orthonormal matrix is norm-preserving)

\[= \| MV'r - c \|_2^2 = \| My - c \|_2^2 \]

\[= \| Rz - c_1 \|_2^2 + \| c_2 \|_2^2, \]

where \(z \) consists of the first \(r \) components of \(y \). This shows that the minimal value of \(\| Br - y \|_2^2 \) is achieved by the solution of the system \(Rz = c_1 \) and is equal to \(\| c_2 \|_2^2 \). Therefore, the vectors \(r \) that minimize \(\| Br - y \|_2^2 \) have the form \(\begin{pmatrix} z \\ w \end{pmatrix} \) for an arbitrary \(w \in \mathbb{R}^{n-r} \).
Instead of the Euclidean norm we can use the $\| \cdot \|_\infty$. Note that we have $t = \| Br - y \|_\infty$ if and only if $-t1 \leq Br - y \leq t1$, so finding r that minimizes $\| \cdot \|_\infty$ amounts to solving a linear programming problem:

\[
\text{minimize } t \\
\text{subjected to the restrictions } -t1 \leq Br - y \leq t1.
\]
An Equivalent Formulation

An optimization approach to linear regression seeks \(\mathbf{r} \in \mathbb{R}^n \) that minimizes the square loss function \(L : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0} \) defined as

\[
L(\mathbf{r}) = \frac{1}{n} \sum_{j=1}^{n} ((\mathbf{b}_j, \mathbf{r}) - y_j)^2.
\]

Since

\[
\frac{\partial L}{\partial r_k} = \frac{2}{n} \sum_{j=1}^{n} ((\mathbf{b}_j, \mathbf{r}) - y_j) b_k,
\]

it follows that the gradient of \(L \) is

\[
(\nabla L)(\mathbf{r}) = \frac{2}{n} \sum_{j=1}^{n} ((\mathbf{b}_j, \mathbf{r}) - y_j) \mathbf{b}_j.
\]

The condition \((\nabla L)(\mathbf{r}) = 0\) that is necessary for the optimum amounts now to \((B' B) \mathbf{r} = B' \mathbf{y}\), that is to the system of normal equations of \(B \) and \(\mathbf{y} \).
Consider the simple data set that comes with the basic distribution of R.

> data(cars)

> str(cars)

will produce a brief description of `cars` that looks like:

> str(cars)

'data.frame': 50 obs. of 2 variables:
 $ speed: num 4 4 7 7 8 9 10 10 10 11 ...
 $ dist : num 2 10 4 22 16 10 18 26 34 17 ...
To produce a scatter plot of the data we write:

```r
> pdf("scatter.pdf")
>
> str(cars)

'data.frame': 50 obs. of 2 variables:
  $ speed: num 4 4 7 7 8 9 10 10 10 11 ...
  $ dist : num 2 10 4 22 16 10 18 26 34 17 ...

> pdf.off()
```
This results in the scatter plot graph; a smooth curve through the scatter plot is added to help you to see relationship between variables and foresee trends.
To build the linear models we need to use the function `lm()` which takes two arguments:

- a formula, and
- data.

The data is typically a `data.frame` object and the formula is a object of class `formula`.
The function \texttt{lm} generates the \textit{regression model}. Its arguments are a \texttt{formula} and a \texttt{data set}. For the next call of \texttt{lm} the formula is dist \texttt{speed} indicating that we seek a dependency of dist on speed:

\begin{verbatim}
build linear regression model on full data
> linearMod <- lm(dist ~ speed, data=cars)
\end{verbatim}
print(linearMod)

Call:

lm(formula = dist ~ speed, data = cars)

Coefficients:

(Intercept) speed

-17.579 3.932

We have established the relationship between the predictor speed and response dist:

\[\text{dist} = -17.579 + 3.932 \times \text{speed} \]
The data set and the regression line are drawn next using the R code:

```r
> pdf("cars.pdf")
> plot(cars)
> abline(-17.579,3.932,col="red")
> dev.off()
```
This results in the drawing:
This enables us to make predictions. For example if speed is 100, the dist will be

\[17.579 + 3.932 \times 100 = 50.899 \]
Multiple Linear Regression

Example

The data set `mtcars` is part of the basic R:

```r
> data(mtcars)
> str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 4 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```
To regress the miles per gallon mpg on the regressors disp, hp and wt we define input as a projection of mtcars:

```r
> input <- mtcars[,c("mpg","disp","hp","wt")]
> print(head(input))

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>disp</th>
<th>hp</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>160</td>
<td>110</td>
<td>2.620</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>160</td>
<td>110</td>
<td>2.875</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>108</td>
<td>93</td>
<td>2.320</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>258</td>
<td>110</td>
<td>3.215</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>360</td>
<td>175</td>
<td>3.440</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>225</td>
<td>105</td>
<td>3.460</td>
</tr>
</tbody>
</table>
```
- `disp` is the displacement of an engine which is the cumulative volume of all the cylinders that is displaced by the pistons as they move up and down;
- `hp` is the power of an engine;
- `wt` is the weight of the car.
The formula that is the first argument expresses the fact that the mpg is dependent on disp, hp and wt.

> model <- lm(mpg ~ disp+hp+wt, data=input)
> print(model)
Example in R:

```r
lm(formula = mpg ~ disp + hp + wt, data = input)
```

Coefficients:

<table>
<thead>
<tr>
<th>(Intercept)</th>
<th>disp</th>
<th>hp</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.105505</td>
<td>-0.000937</td>
<td>-0.031157</td>
<td>-3.800891</td>
</tr>
</tbody>
</table>
Examples in R

```r
# hp = 37.105505 + (-0.999937)* disp + (-0.0311)*hp + (-3.8008)*wt

# hp = 37.105505 + (-0.999937)* disp + (-0.0311)*hp + (-3.8008)*wt
```